第23章 旋转(单元测试)(解析版)
- 格式:docx
- 大小:737.46 KB
- 文档页数:16
2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。
人教版九年级上册第二十三章旋转单元测试(含答案)(3)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°【答案】C 解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB +∠BAB′=125°,故选:C .2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒ 【答案】D 解 ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆∴∠BAD=∠CAE=20°∴BAE ∠=+BAC CAE ∠∠=30°+20°=50°故选D3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.【答案】C解A可以从基本图形转到整体图形;B可以通过旋转将基本图形旋转成整体图形;C不可以通过旋转得到整体图形;D可以通过旋转将基本图形旋转成整体图形。
故选C.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶【答案】A解A 是平移;B是旋转;C是旋转;D是旋转。
故选A5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】D解A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,不符合题意。
故选D。
6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形【答案】D解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.【答案】C解:如图:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=60°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°−∠C=90°−60°=30°,∴∠DAE=∠CAF+∠CAE=30°+65°=95°,∴∠BAC=∠DAE=95°.故选:C.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B 、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为( )A.(30,0)B.(32,0)C.(34,0)D.(36,0)【答案】D 解根据图形,每3个图形为一个循环组, ,图⑨的直角顶点在x 轴上,横坐标为 ,图⑨的顶点坐标为 ,图⑩的直角顶点与图⑨的直角顶点重合,图⑩的直角顶点的坐标为 .故选D.9.如图,将ABC △绕点B 顺时针旋转60︒得到DBE ,点C 的对应点E 落在AB 的延长线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=【答案】C 解如图,因为ABC △绕点B 顺时针旋转60︒得到DBE ,所以60ABD CBE ︒∠=∠=,AB=BD ,∠C=∠E所以ADB △是等边三角形,又∠COF=∠EOB所以=60EFC CFO CBE ︒∠=∠=∠因为∠C 的大小未知,所以∠COF不能确定,故选:C10.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①②④C.①②③D.①③④【答案】D解:∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以②正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以④错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD ,∴△AED 的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正确.故选:D .二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;【答案】4解∵点P (4,-5)与点Q (-4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案是:4.12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.【答案】2解:如图,作AH ⊥BC 于H .由题意得:∠EAD =∠BAC =120°,∠EAC =∠C =30°,∴AE ∥BC ,∵∠ADH =∠B +∠BAD ,∠B =∠BAD =30°,∴∠ADH =60°,BD =AD =AE =2cm ,∴AH cm ),∵BD =AE ,BD ∥AE ,∴四边形ABDE 是平行四边形,∴S 平行四边形ABCD =BD •AH cm 2).故答案为:2.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.【答案】10.解∵ΔABC 绕点A 逆时针旋转60°得到ΔAB 1C 1∴AC=AC 1,∠CAC 1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC 1=90°,AB=8,AC 1=6,∴在RtΔBAC 1中,BC 1的长10=,故答案为:10.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.【答案】5;解:在Rt △ABC 中,∠A=30°,AC=10,∴BC=12AC=5. 根据旋转的性质可知,B C=BC′,所以BC′=5.故答案为5.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.【答案】解:将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,AE AB ∴=.设AB x =,则CD AE x ==,DE x =60DAG ∠=︒,90GAE ∠=︒,30DAE ∴∠=︒,在Rt ADE ∆中,2AE DE =,(2x x ∴=,解得x =故答案为:16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.【答案】150解将△BCD 绕点B 逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=150°,故答案为150.三、解答题:(共72分)17.如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【答案】(1)图形见解析(2)(-1,1)【解析】解:(1)如图所示:(2)如图所示,A 1(-1,1).18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.【答案】(1)等边三角形,理由见解析;(2)5解:(1)BPP ∆’是等边三角形.理由:BP 绕点B 顺时针旋转60︒至BP ',BP BP ∴=',60PBP ∠=︒;BPP ∴∆'是等边三角形.(2)BPP ∆'是等边三角形,60BPP ∴∠'=︒,3PP BP '==,1506090P PC BPC BPP ∠'=∠-∠=-︒=︒;在Rt △P PC ''中,由勾股定理得5P C '=,∵60ABC BPP ∠=∠'=︒,∴∠ABP =∠CB P ' 人教版九年级上册第二十三章旋转单元测试(含答案)一、选择题1、在图所示的4个图案中既有图形的旋转,还有图形轴对称的是( )2、右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是( D )A ①⑤B ②④C ③⑤D ②⑤3、在我国古代数学家赵爽所著《勾股圆方图注》中所画的图形(如图),下列说法正确是()A 它是轴对称图形,但不是中心对称图形B 它是轴对称图形,又是中心对称图形C 它是中心对称图形,但不是轴对称图形D 它既不是轴对称图形,也不是中心对称图形4、下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第象限.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= .边形ABCD三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?20.如图,请画出△ABC关于点O点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.《第23章旋转》参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第三象限.【考点】关于原点对称的点的坐标.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P1所在象限.【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P1在第三象限.故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB 上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= 25 .边形ABCD【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE=S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S△ABE=S△ADF,∴四边形AECF是边长为5的正方形,∴S四边形ABCD=S正方形AECF=52=25.故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD≌△AEB,所以可知点B旋转到什么位置是点D.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≌△DFA,∴可知点B旋转到什么位置是点D.【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC关于点O点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO 并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是 6 ,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=>a,BF=|AB﹣AF|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,∴∠OAD=∠ODA,∴OA=OD,点O在AD的垂直平分线上,∴直线BO是AD的垂直平分线,即BO⊥AD;方法二:延长BO交AD于点G,同方法一,OA=OD,在△ABO和△DBO中,,∴△ABO≌△DBO,∴∠ABO=∠DBO,在△ABG和△DBG中,,∴△ABG≌△DBG,∴∠AGB=∠DGB=90°,∴BO⊥AD.【点评】本题综合考查全等三角形、等腰三角形和旋转的有关知识.注意对三角形全等知识的综合应用.。
精品基础教育教学资料,仅供参考,需要可下载使用!人教版九年级上册数学《第23章旋转》单元测试题一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=度.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了度.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(写出1个即可).16.下列4种图案中,是中心对称图形的有个.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.21.如图所示的两个图形成中心对称,请找出它的对称中点.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度.(2)若连结EF,则△AEF是三角形;并证明.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.人教版九年级上册数学《第23章旋转》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.【分析】旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键,据此解答即可.【解答】解:A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90°得到的.故选:D.【点评】此题主要考查了旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.【分析】先利用旋转的性质得∠CBD=α,BC=BD,再根据等腰三角形的性质和三角形内角和定理得到∠BCD=90°﹣α,然后利用互余表示出∠ACE,从而利用互余可得到∠CAE的度数.【解答】解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.【分析】根据旋转对称图形的概念作答.【解答】解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.【点评】本题考查了旋转对称图形的知识,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣1)关于中心对称的点的坐标为(﹣2,1).故选:D.【点评】此题主要考查了关于原点对称的点坐标的关系,记忆方法是结合平面直角坐标系的图形记忆.8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.【分析】根据平移后对应点的连线平行且相等可得答案.【解答】解:能通过图甲平移得到的是B,故选:B.【点评】此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=42 度.【分析】先利用旋转的性质得到∠CAC′=∠BAB'=32°,AB=AB′,再根据等腰三角形性质和三角形内角和定理计算出∠B=74°,接着利用平行线的性质得到∠B′AC′=∠AB′B=74°,然后计算∠B′AC﹣∠CAC′即可.【解答】解:∵△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,∴∠CAC′=∠BAB'=32°,AB=AB′,∵AB=AB′∴∠B=∠AB′B=(180°﹣32°)=74°,∵AC'∥BC,∴∠B′AC′=∠AB′B=74°,∴∠B'AC=∠B′AC﹣∠CAC′=74°﹣32°=42°.故答案为42.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当PB ⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC =,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=AD•tan30°=AD=,BD =AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了140 度.【分析】∠AOA′就是旋转角,根据等边三角形的性质得出∠AOB等于60°,再根据∠BOA′等于90°,从而求出∠AOA′的度数.【解答】解:旋转角∠AOA′=∠AOB+∠BOA′=60°+80°=140°.∴△AOB旋转了140度.故答案为:140.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键;此题较简单,解题时要能根据等边三角形的性质求出角的度数.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=﹣5 .【分析】根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.【解答】解:∵点A(a,1)与点A′(4,b)关于原点对称,∴a、b的值分别为﹣4,﹣1.所以a+b=﹣1﹣4=﹣5,故答案为:﹣5【点评】本题考查了关于原点对称的点的坐标:两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(0,1)(写出1个即可).【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.下列4种图案中,是中心对称图形的有 2 个.【分析】根据中心对称图形的概念即可求解.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是轴对称图形(填写“轴对称”、“中心对称”).【分析】根据轴对称图形的概念与中心对称图形的概念即可作答.【解答】解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096 .【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.【分析】充分运用旋转的性质,旋转前后三角形全等,即△ABP≌△ACE,根据对应角相等,三角形内角和定理,对应边的夹角为旋转角,通过计算解答题目问题.【解答】解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.【点评】本题考查旋转的性质,旋转变化前后,对应角分别相等,结合三角形内角和定理求出相关的角.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.【分析】先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE =BD=19,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=13,然后计算△DEC的周长.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,∴AD=AE,CE=BD=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴DE=AD=13,∴△DEC的周长=DE+DC+CE=13+21+19=53.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.21.如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点评】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和平移的性质画出A、B、C的对应点A2、B2、C2,然后计算一个矩形的面积加上△ABC的面积得到△ABC扫过的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC扫过的面积=5×4+×2×4=24.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90 度.(2)若连结EF,则△AEF是等腰直角三角形;并证明.【分析】(1)根据旋转变换的定义,即可解决问题;(2))根据旋转变换的定义,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)等腰直角三角形由旋转得:AF=AE,∠FAB=∠EAD∴∠FAB+∠BAE=∠EAD+∠BAE即∠FAE=∠BAD∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为等腰直角.【点评】本题主要考查了旋转变换的性质、正方形的性质及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质,这是灵活运用、解题的基础和关键.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.【分析】(1)由旋转性质知BD=BA、∠CBA=∠EBD,据此可得∠BDA=∠BAD=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;(2)由旋转性质得BE=BC=8、DE=AC=6、AB=BD=10,从而得AE=2,利用勾股定理知AD =2,作BF⊥AD得AF=AD=,再次利用勾股定理可得答案.【解答】解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.也考查了等腰三角形的性质和勾股定理.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.【分析】(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【解答】(1)证明:∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠BC A′=90°﹣30°=60°,∵∠A′=∠A=60°,∴△A′CD是等边三角形;(2)解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA1=120°,∵∠B′=30°,∠A′CB′=90°,设AC=a,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=AC.【点评】此题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.。
第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。
第23章 旋转一、选择题1.在平面直角坐标系中,点A (﹣2,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣2,1)B .(2,﹣1)C .(2,1)D . (﹣2,﹣1)2.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交边AD 、BC 与E 、F 两点,则阴影部分的面积是( )A .1B .2C .3D . 43.如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( )A .线段AB 与线段CD 互相垂直 B .线段AC 与线段CE 互相垂直C .点A 与点E 是两个三角形的对应点D .线段BC 与线段DE 互相垂直 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A =45°,∠D =30°,斜边AC =BD =10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A .1个B .2个C .3个D .4个6.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)7.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )A.4 B.5 C.6 D.89.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称,其中正确的个数为( )A.2个 B.3个 C.4个 D.5个10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)二、填空题11、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC =______°.12、时钟6点到9点,时针转动了__度.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°得△A ′B ′O ,则点A 的对应点A ′的坐标为_ _.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点),点B′恰好落在BC 边上,则∠C=__ __度.16.如图,已知抛物线C 1,抛物线C 2关于原点对称.若抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为__ __.三、解答题17.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A ,B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.18.直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.19.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状,并说明理由.答案 BACCC DBCDA11、20°、70°,12、90º ,13. (2,3)14. π15. 10516. y =-34(x -2)2+1 17.解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:2)如图所示:18 解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-719解:(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,由ASA可证△BCF≌△BA1D(2)四边形A1BCE是菱形,理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠C=α,∴∠AED=∠C,∴A1E∥BC,由(1)知△BCF≌△BA1D,∴∠C=∠A1,∴∠A1=∠AED=α,∴A1B ∥AC,∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形。
第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。
2022-2023学年人教版九年级数学上册单元测试第二十三章旋转(提升卷)时间:100分钟总分:120分一、选择题(每题3分,共24分)1.下列图形中,是中心对称图形的是()A.B.C.D.【解析】解:A、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;B、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;C、能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故此选项符合题意;D、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;故选:C.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.如图,点D为等边△ABC的边AB上一点,且AD AB,将△ACD绕点C逆时针旋转60°,得到△BCE,连接DE交BC于点F,则下列结论不成立的是()A.BE∥AC B.△CDE为等边三角形C.∠BFD=∠ADC D.DF=4EF【解析】解:∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,由旋转的性质得:∠DCE=60°,△ACD≌△BCE,AC=BC,AD=BE,∠A=∠ABE=60°,∴△CDE是等边三角形,∠A+∠ABE=180°,∴BE∥AC,故A,B结论正确,但不符合题意;∵△ABC和△CDE是等边三角形,∴∠ABC=∠CDF=60°,∵∠BFD=∠CDF+∠DCF=60°+∠DCF,∠ADC=∠ABC+∠DCF=60°+∠DCF,∴∠BFD=∠ADC,故C结论正确,但不符合题意;故选:D.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.3.在平面直角坐标系中,点与点关于原点成中心对称,则的值为()A.B.C.1D.3【解析】解:∵点与点关于原点成中心对称,∴,,故选C.【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.4.如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P的坐标为()A.(1,2)B.(1,4)C.(0,4)D.(2,1)【解析】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故选:A.【点睛】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,在Rt中,,将绕点顺时针旋转,得到,连接交于点,则与的周长之和为()A.44B.43C.42D.41【解析】解:∵△BDE由△BCA旋转得出,∴BD=BC=12.∵∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=12.在Rt△ABC中,∠ACB=90°,AC=5,BC=12,∴,∴C△ACF+C△BDF=AC+CF+AF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42.故选:C.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、勾股定理以及三角形的周长,利用三角形的周长公式结合边与边的关系,找出C△ACF+C△BDF=AC+AB+CD+BD是解题的关键.6.如图,,将平行四边行绕原点O逆时针旋转,则点B的对应点的坐标是()A.B.C.D.【解析】解:连接OB、AC交于点M,∵,∴M(,),即M(,2),∴B(5,4),将平行四边行绕原点O逆时针旋转,则点B的对应点,连接OB′,分别过点B′、B作y轴、x轴的垂线,垂足为E、F,则OF=5,BF=4,∠B′EO=∠OFB=90°,OB′=OB,∵∠B′OB=∠EOF=90°,∴∠B′OE=∠BOF,∴△B′OE≌△BOF(AAS),∴OE=OF=5,B′E=BF=4,∴,故选:B.【点睛】本题考查了坐标与图形,平行四边形的性质,旋转的性质,全等三角形的判定和性质等,求出点B的坐标是解答此题的关键.7.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A 逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.B.C.D.【解析】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标是,顶点B 的坐标是,对角线AC,BD的交点为M.将正方形ABCD绕着原点O逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M的坐标为()A.B.C.D.【解析】解:∵,,∴,.过点D作轴,垂足为N,如解图所示,则.∵四边形ABCD为正方形,∴,.∴.∴.∴,.∴点D的坐标为.∵点M为BD的中点,∴点M的坐标为.由题意,可知正方形ABCD绕着原点O逆时针旋转,每次旋转45°,点M也绕着原点O逆时针旋转,每次旋转45°,则点M旋转一周需要旋转(次).又∵,,∴第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M 的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.∴第2022次旋转结束时,点M的坐标为,故选:D.【点睛】本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.二、填空题(每题3分,共24分)9.如图,将△ABC绕点A逆时针旋转60°得到△AB'C',若AC⊥B'C',则∠C=________度.【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB'C',∴∠CAC'=60°,∠C=∠C',∵AC⊥B'C',∴∠C'=90°-∠CAC'=30°=∠C,故答案为:30.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.10.如图,在中,,将绕点逆时针旋转能与重合,若,则_________.【解析】解:∵CD∥AB,∴∠ACD=∠CAB=65°,∵△ABC绕点A旋转得到△AED,∴AC=AD,∴∠CDA=∠ACD =65°,∴∠CAD=180°-2∠ACD=180°-2×65°=50°,故答案为:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.11.将边长为3的正方形ABCD绕点C顺时针方向旋转45°到FECG的位置(如图),EF与AD相交于点H,则HD的长为___.(结果保留根号)【解析】解:∵四边形ABCD为正方形,∴CD=3,∠CDA=90°,∵边长为3的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D 落在对角线CF上,∴CF=3,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=3﹣3.故答案为:3﹣3.【点睛】本题考查了旋转的性质,正方形的性质,熟练掌握旋转的性质是解题的关键.12.如图,在平面直角坐标系中,△ABC顶点的横、纵坐标都是整数,若将△ABC 以某点为旋转中心,顺时针旋转得到△DEF,其中A、B、C分别和D、E、F对应,则旋转中心的坐标是___.【解析】解:如图所示,分别作线段AD、BE的垂直平分线,交于点Q,Q即为旋转中心,由A(1,2),D(4,-1),E(4,2),B(-2,2)知,线段BE的垂直平分线为x=1,△ADE为等腰直角三角形,E在AD垂直平分线上,AD中点坐标为(2.5,0.5),设线段AD垂直平分线解析式为y=kx+b,则:,解得:,则线段AD的垂直平分线为y=x-2,∴Q(1,-1),故答案为:(1,-1).【点睛】本题考查了坐标与图形的旋转变化及求线段垂直平分线解析式的方法.解题关键是理解旋转中心是对应点连线垂直平分线的交点.13.如图,中,,P是边AB上一点,连接CP,将线段CP绕点P逆时针旋转90°得,连接.若AP=BC=4,BP =2,则线段______.【解析】解:如图,过点作,交的延长线于点,将线段CP绕点P逆时针旋转90°得,连接.,,,,,,,,,中,,,故答案为:.【点睛】本题考查了旋转的性质,全等三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.14.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=_____度.【解析】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′,∴AB=AB′,∠BAB′=30°,AB∥CD,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∠B+∠C=180°,∴∠C=180°﹣75°=105°.故答案为:105.【点睛】本题主要考查了图形的旋转,平行性四边形的性质,熟练掌握图形的旋转的性质,平行性四边形的性质是解题的关键.15.如图,△ABC中,∠C=90°,AC=BC=9cm,将△ABC绕点A顺时针旋转15°后得到△AB'C',则图中阴影部分面积等于_____cm2.【解析】解:等腰中,,,绕点顺时针旋转后得到△,,,,,在△中,,阴影部分的面积.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.16.如图,正方形中,,点E为边上一动点,将点A绕点E顺时针旋转得到点F,则的最小值为__________.【解析】如图,上截取,过点作交的延长线于点,正方形中,,将点A绕点E顺时针旋转得到点F,是等腰直角三角形,在射线上运动,则是等腰直角三角形,与点重合时,取得最小值,等于即的最小值为故答案为:【点睛】本题考查了正方形的性质,全等三角形的性质,垂线段最短,求得的轨迹是解题的关键.三、解答题(每题8分,共72分)17.如图,方格纸中有三个格点,,,要求作一个多边形使这三个点在这个多边形的边(包括顶点)上,且多边形的顶点在方格的顶点上.(1)在图甲中作一个三角形是轴对称图形;(2)在图乙中作一个四边形是中心对称图形但不是轴对称图形;(3)在图丙中作一个四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)【解析】解:(1)如图甲中,△DEC即为所求作.(2)如图乙中,四边形ABCD即为所求作.(3)如图丙中,四边形AECD即为所求作.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图,在中,,将绕点A旋转一定的角度得到,且点E恰好落在边上.(1)求证:平分;(2)连接,求证:.【解析】(1)证明:由旋转性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.19.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α<120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AO=CO,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS);(2)解:当α=90°时,四边形AFCE为菱形,理由:∵△AOE≌△COF,∴OE=OF,又∵AO=CO,∴四边形AFCE为平行四边形,又∵∠AOE=90°,∴四边形AFCE为菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,菱形的判定,矩形的性质等知识,证明△AOE≌△COF是解题的关键.20.已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.【解析】(1)证明:∵△AED是△ABC旋转90°得到的,,∠CAD=90°,∴AC=AD,∴△ACD是等腰直角三角形;(2)解:∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,,由(1)知,∠ADE=∠ACB=135°,∴∠CDE=∠ADE-∠ADC=90°,∵DE=BC=1,∴.【点睛】本题考查了旋转的性质、全等三角形的性质、勾股定理、等腰直角三角形的判定和性质,解题的关键是先证明△ACD是等腰直角三角形,并证明△CDE是直角三角形.21.如图,正方形ABCD中,M是对角线BD上的一个动点(不与B、D重合),连接CM,将CM绕点C顺时针旋转90°到CN,连接MN,DN,求证:BM=DN.【解析】证明:四边形ABCD是正方形,,将CM绕点C顺时针旋转到CN,,,,在和中,,.【点睛】本题考查正方形中的旋转变换,解题的关键是掌握旋转的旋转,证明△CBM≌△CDN.22.如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D'CE'(如图乙).这时AB与CD'相交于点O,D'E'与AB相交于点F.求线段AD'的长.【解析】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°,∴∠DCE=60°,∠B=45°∵把三角板DCE绕点C顺时针旋转15°得到△D'CE',∴∠D'CE'=60°,∠BCE'=15°,∴∠OCB=45°,又∵∠B=45°,∴∠COB=90°,又∵△ACB是等腰直角三角形,∴AO=CO=BO=3cm,∴D'O=4cm,∴AD'===5cm.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰直角三角形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.23.将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.【解析】(1)证明:∵两块是完全相同的且含角的直角三角板和,∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,∴∠AEC=∠ACE,∴∠AEC-∠AEF=∠ACE-∠ACB,∴∠PEC=∠PCE,∴PE=PC,又AE=AC,∴所在的直线是线段的垂直平分线.(2)解:在旋转过程中,能成为直角三角形,由旋转的性质得:∠FAC= ,当∠CNP=90°时,∠FNA=90°,又∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;当∠CPN=90°时,∵∠NCP=30°,∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,∵∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,综上,旋转角的的度数为30°或60°.【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.24.【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,.求证:.【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接.当时,求的长.【模型迁移】(3)如图3,在菱形中,,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接,与交于点G.当时,判断线段与的数量关系,并说明理由.【解析】(1)证明:如图1中,∵四边形是正方形,∴,,在和中,,∴;(2)解:如图2中,设交于点J.由(1)知,,,∵EF是绕点E逆时针旋转得到,∴,在中,;(3)解:结论:.理由:如图3中,∵四边形是菱形,∴,,在和中,,∴),∴,是绕点E逆时针旋转得到的,∴,∴是等边三角形,∴.【点睛】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质,勾股定理,正确理解图形的相关性质是解本题的关键.25.(1)发现:如图1,点是线段上的一点,分别以,为边向外作等边三角形和等边三角形,连接,,相交于点.结论:①线段与的数量关系为:________;②的度数为________;(2)应用:如图2,若点,,不在一条直线上,(1)中的结论①还成立吗?请说明理由;(3)拓展:在四边形中,,,,若,,请直接写出,两点之间的距离.【解析】(1)解:∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=ED=DB,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD,∠BAE=∠BCD,由三角形的外角性质,∠AOC=∠BAE+∠BDC=∠BCD+∠BDC,∠ABC=∠BCD+∠BDC,∴∠AOC=∠ABC=;故答案为;.(2)依然成立,理由如下:∵和均是等边三角形,∴,,,∴,即在和中,∵,,,∴∴.设与交于点∵,∴在和中,其内角和均为∵,∴(3)将绕点顺时针旋转得到,根据旋转的性质可得:,,【点睛】考查全等三角形的判定与性质,等边三角形的性质,旋转的性质、三角形的外角性质等,掌握全等三角形的判定定理与性质定理是解题的关键.。
单元卷旋转基础卷一、单选题(共12小题)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【知识点】轴对称图形、中心对称图形2.点A(2,1)与点A′(﹣2,﹣1)关于()对称.A.x轴B.y轴C.原点D.都不对【解答】解:点A(2,1)与点A′(﹣2,﹣1)关于原点对称.故选:C.【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标3.如图,△ABC绕点B顺时针旋转到△EBD位置,若∠A=30°,∠D=15°,A、B、D在同一直线上,则旋转的角度是()A.50°B.45°C.40°D.30°【解答】解:∵△ABC绕点B顺时针旋转到△EBD位置,∴∠C=∠D=15°,∠CBD等于旋转角,∵∠CBD=∠A+∠C=30°+15°=45°,∴旋转角的度数为45°.故选:B.【知识点】旋转的性质4.如图,在△ABC中,∠ACB=α,将△ABC绕点C顺时针方向旋转到△A′B′C的位置,使AA′∥BC,设旋转角为β,则α,β满足关系()A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°【解答】解:当△ABC绕点C顺时针旋转到△A′B′C的位置,使AA′∥BC,∴∠CAA′=∠ACB=α,AC=A′C,∴∠AA′C=∠A′AC=α;∴∠ACA′=180°﹣∠CAA′﹣∠CA′A=180°﹣2α=β,∴2α+β=180°,故选:C.【知识点】旋转的性质、平行线的判定5.下列各点关于原点对称的是()A.(2,﹣2)→(2,2)B.(0,2)→(﹣2,0)C.(a,﹣b)→(﹣a,b)D.(a,b)→(﹣a,b)【解答】解:根据两个点关于原点对称,则点(a,﹣b)关于原点对称的点的坐标是(﹣a,b).故选:C.【知识点】关于原点对称的点的坐标6.如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【解答】解:∵|3﹣a|+(b+5)2=0,∴3﹣a=0,b+5=0,解得:a=3,b=﹣5,∴点A(a,b)关于原点对称的点A′的坐标为:(﹣3,5).故选:C.【知识点】非负数的性质:偶次方、关于原点对称的点的坐标、非负数的性质:绝对值7.如图,将△ABC绕点A按逆时针旋转50°后,得到△ADE,则∠ABD的度数是()A.30°B.45°C.65°D.75°【解答】解:∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB,∴∠ABD=(180°﹣50°)=65°.故选:C.【知识点】旋转的性质8.在平面直角坐标系中,点A的坐标是(﹣1,3),将原点O绕点A顺时针旋转90°得到点O′,则点O′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣4,2)D.(2,4)【解答】解:观察图象可知O′(﹣4,2),故选:C.【知识点】坐标与图形变化-旋转9.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4B.3C.2D.1【解答】解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF=∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.【知识点】勾股定理、全等三角形的判定与性质、旋转的性质、等腰直角三角形10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离()A.1B.C.D.3【解答】解:如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=1,MJ=CJ=,∴MN===2,∵•NC•MJ=•MN•CH,∴CH==,故选:B.【知识点】旋转的性质、含30度角的直角三角形11.如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E、F、G处,且点B、E、D、F在同一直线上,若∠CBA=115°,则∠CBD的大小为()A.65°B.55°C.50°D.40°【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,∴AB=AE,∠AEF=∠CBA=115°,∴∠AEB=∠ABE=65°,∴∠CBD=∠CBA﹣∠ABE=115°﹣65°=50°;故选:C.【知识点】平行四边形的性质、旋转的性质12.如图,边长为2的正方形ABCD的中心与坐标原点O重合,AB∥x轴,将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B的坐标是()A.(,﹣1)B.(0,﹣)C.(0,﹣1)D.(﹣1,﹣1)【解答】解:由题意旋转8次回到原来位置,2019÷8=252…3,∴将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B在y轴的负半轴上,B(0,﹣),故选:B.【知识点】坐标与图形变化-旋转、规律型:点的坐标二、填空题(共4小题)13.下列4种图案中,是中心对称图形的有个.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【知识点】中心对称图形14.已知点(a,8)与点(7,﹣8)关于原点对称,则a=﹣.【解答】解:由题意,得a+7=0,解得a=﹣7,故答案为:﹣7.【知识点】关于原点对称的点的坐标15.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°.将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=4,则△ABC的面积等于.【解答】解:∵∠ABC=90°,∠ACB=30°,∵△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,∴AB=AB1,∠B1=∠ABC=90°,∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∴AB1=AD=×4=4,∴AB=4,∵∠ABC=90°,∠ACB=30°,∴BC=AB=4,∴△ABC的面积=BC•AB=×4×4=8.故答案为:8.【知识点】旋转的性质16.如图,在△ABC中,AC=4+4,∠BAC=45°,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点E为线段AB中点,点P是线段AC上的动点,将△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点1,则线段EP1的最大值与最小值之差为.【解答】解:如图,过点B作BD⊥AC,D为垂足,在Rt△ABD中,∵∠ADB=90°,∠A=45°,∴AD=BD,设AD=BD=x,在Rt△BDC中,∵∠BDC=90°,BD=x,∠C=30°,∴CD=BD=x,∵AD+CD=AC,解得x=4,∴AD=BD=4,BC=2BD=8,AB=AD=4当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=4﹣2.当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=8+2,∴EP1的最大值与最小值之差为(8+2)﹣(4﹣2)=4+4.故答案为4+4.【知识点】勾股定理、旋转的性质三、解答题(共6小题)17.把三角形绕A点按顺时针方向旋转90°.画出旋转后的图形.【解答】解:如图,△AB′C′为所作.【知识点】作图-旋转变换18.已知点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,求x+y的值.【解答】解:∵点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=1.【知识点】关于原点对称的点的坐标19.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.【知识点】中心对称20.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.【解答】解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=3,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为90°或270°;(2)DE=AD﹣AE=7﹣3=4;(3)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.【知识点】旋转的性质、正方形的性质21.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长及点D的坐标.【解答】解:∵△AOB是等边三角形,∴∠OAB=60°,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠P AD=60°,AD=AP,∴△APD是等边三角形,∴DP=AP,∠P AD=60°,∵A的坐标是(0,3),∠OAB的平分线交x轴于点P,∴∠OAP=30°,AP==2,∴DP=AP=2,∵∠OAP=30°,∠P AD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2,3).【知识点】坐标与图形变化-旋转22.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB,AC于M,N两点,以点D为中心旋转∠MDN(∠MDN的度数不变),若DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,若DM与AB不垂直时,点M在边AB上,点N在边AC上,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,若DM与AB不垂直时,点M在边AB上,点N在边AC的延长线上,上述结论是否成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.【解答】解:(1)结论BM+CN=BD成立,理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.【知识点】含30度角的直角三角形、等边三角形的性质、旋转的性质、全等三角形的判定与性质。
第23章旋转测试卷一、单选题1.下列图形中,由原图旋转得到的是()A.B.C.D.【答案】D【解析】A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90 得到的.故选:D.2.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【答案】C【解析】如图所示,把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形.故选:C.3.平面直角坐标系中,线段OA的两个端点的坐标分别为O(0,0),A(-3,5),将线段OA绕点O旋转180°到O'A的位置,则点'A的坐标为()A.(3,-5)B.(3,5)C.(5,-3)D.(-5,-3)【答案】A【解析】∵线段OA绕原点O顺时针旋转180°,得到OA′,∴点A与点A′关于原点对称,而点A的坐标为(-3,5),∴点A′的坐标为(3,-5).故选A.4.如图,△ABC中,∠BAC=30°,△ABC绕点A逆时针旋转至△AED,连接对应点CD,AE垂直平分CD 于点F,则旋转角度是()A.30°B.45°C.50°D.60°【答案】D【解析】∵△ABC绕点A逆时针旋转至△AED,∠BAC=30°,∴AD=AC,∠DAE=∠BAC=30°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=30°,∴∠DAC=30°+30°=60°,即旋转角度数是60°,故选:D.5.在如图的四个三角形中,由△ABC既不能经过旋转也不能经过平移得到的三角形是()A.B.C.D.【答案】B【解析】A、图形是由△ABC经过旋转或平移得到,故A正确;B、图形不能由△ABC经过旋转或平移得到,需要经过翻折,故B错误;C、图形由△ABC经过旋转得到,故C正确;D、图形由△ABC经过旋转或平移得到,故D正确;故选:B.6.时钟上的分针匀速旋转一周需要60min,则经过5min,分针旋转了()A.10°B.20°C.30°D.60°【答案】C【解析】根据题意知,分针旋转一周(360°)需要60min,则分针每分钟旋转36060=6°,∴经过5min,分针旋转了5×6=30°,故选:C.7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为()A.B.5 C.7 D.【答案】A【解析】∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,,∴在Rt△FAC中,故选A.8.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为()A.(2,4)B.(-2,4)C.(4,2)D.(2,-4)【答案】C【解析】如图,矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.9.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′.连接B'C,则△AB'C 的面积为()A.4 B.6 C.8 D.10【答案】C【解析】如图:过点B'作B'E⊥AC于点E∵旋转∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S △AB 'C =12×AC ×B 'E =12×4×4=8 故选C . 10.关于某一点成中心对称的两个图形,下列说法中,正确的个数有( )①这两个图形完全重合;②对称点的连线互相平行③对称点所连的线段相等;④对称点的连线相交于一点;⑤对称点所连的线段被同一点平分⑥对应线段互相平行或在同一直线上,且一定相等.A .3个B .4个C .5个D .6个【答案】A【解析】①这两个图形能够完全重合,此选项错误;②对称点的连线应相交于一点,故此选项错误;③对称点所连的线段不一定相等,此选项错误;④对称点的连线相交于一点,此选项正确;⑤对称点所连的线段被同一点平分,此选项正确;⑥对应线段互相平行或在同一直线上,且一定相等,此选项正确.故正确的有3个.故选:A .11.如图,AOB 是等边三角形,()2,0B ,将AOB 绕O 点逆时针方向旋转90到''A OB 位置,则'A 坐标是( )A .(-B .()C .)1-D .(1, 【答案】B 【解析】如图,过点A′作A′C ⊥x 轴于C ,∵B (2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°-60°=30°,∴OC=2×2,A′C=2×12=1,∵点A′在第二象限,∴点A′(1).故选:B.12.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A B.5 C.8 D.4【答案】A【解析】把ADE顺时针旋转ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,AD DC5∴==,DE3=,Rt ADE∴中,AE===.故选:A.13.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以点A为中心()A.逆时针旋转120°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.顺时针旋转60°得到【答案】A【解析】根据旋转的意义,观察图片可知,菱形AEFG可以看成是把菱形ABCD以A为中心逆时针旋转120°得到.故选:A.14.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定【答案】B【解析】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D以顺时针方向旋转,齿轮E以逆时针方向旋转,故选:B.15.正方形ABCD 在直角坐标系中的位置如图表示,将正方形ABCD 绕点A 顺时针方向旋转180°后,B 点的坐标是()A.(2,0)B.+1,-1)C.(2,﹣1)D.(2,1)【答案】C【解析】解:如图所示:过点B′作B′E⊥x轴,垂足为E.由旋转的性质可知:OA=AE=1,OB=BE′=1,∴点B′的坐标为(2,-1).∴旋转后B点的坐标是(2,-1).故选:C.16.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,)B.(,)C.(2,-2)D.(,)【答案】A【解析】连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′-∠AOB=105°-60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2×,∴点B′的坐标为:(,-).故选B.二、填空题17.如图,将△OAB绕着点O逆时针旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=________°.【答案】20°【解析】由旋转的性质可知,∠BOB′=∠B′OB″=50°.∵∠B″OA=120°,∴∠AOB=∠B″OA-∠BOB′-∠B′OB″=20°.18.如图,已知△ABC,D是AB上一点,E是BC延长线上一点,将△ABC绕点C顺时针方向旋转,恰好能与△EDC重合.若∠A=33°,则旋转角为_____°.【答案】82°【解析】解:设∠B=x,∵△ABC绕点C顺时针方向旋转,恰好能与△EDC重合,∴CB=CD,∠CDE=∠B=x,∠A=∠E=33°,∠BCD的度数等于旋转角的度数,∴∠BCD=∠CDE+∠E=x+33°,在△BCD中,∵CB=CD,∴∠CDB=x,∴x+x+33°+x=180°,解得x=49°,∴旋转角的度数为49°+33°=82°.故答案为82°.19.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2019的横坐标为_____.【答案】10096.【解析】由图象可知点2019B 在x 轴上,53OA =,4OB =,90AOB ∠=︒,∴133AB ===, ∴()210,4B ,()420,4B ,()630,4B ,…∴()201810090,4B ,∴点2019B 横坐标为513100*********++=. 故答案为:10096.20.等边三角形ABC 内有一点P ,连接AP 、BP 、CP ,若∠BPC =150°,BP =3,AP =5,则CP =_____.【答案】4【解析】如图,将△BCP 绕点C 顺时针旋转60°得到△ACP′,由旋转的性质得,BP=AP′=3,∠AP′C=∠BPC=150°,△PCP′是等边三角形,所以,∠PP′C=60°,所以,∠AP′P=∠AP′C﹣∠PP′C=150°﹣60°=90°,在Rt△APP′中,根据勾股定理得,PP′=4,∵△PCP′是等边三角形,∴CP=PP′=4.故答案为:4.三、解答题21.如图所示的两个图形成中心对称,请找出它的对称中点.【答案】见解析.【解析】连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.【答案】(1)详见解析;(2)60,是;72,不是;72,不是;120,不是;90,是.【解析】解:(1)如图所示,(2)图形A的最小旋转角是60°,它是中心对称图形.图形B的最小旋转角是72°,它不是中心对称图形.图形C的最小旋转角是72°,它不是中心对称图形.图形D的最小旋转角是120°,它不是中心对称图形.图形E的最小旋转角是90°,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.23.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.【答案】答案见解析【解析】如图所示,有三种思路:24.如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.【答案】(1)详见解析;(2)50°【解析】解:(1)如图,△OA′B′为所作.(2)∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠AOC=80°,∠C=∠A=110°,∴∠COD=180°﹣110°﹣40°=30°,∴∠AOD=∠AOC﹣∠COD=80°﹣30°=50°.25.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC 绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.【答案】(1)画图见解析;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣b,a);P2(﹣b+6,a+2)【解析】(1)如图,△A1B1C1和△A2B2C2为所作;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P 1(﹣b ,a );P 2(﹣b+6,a+2).26.在Rt △ABC 中,∠ACB=90°,,点D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE . (1)求△ADE 的周长的最小值;(2)若CD=4,求AE 的长度.【答案】(1)6+(2)3或【解析】解:(1)∵在Rt △ABC 中,∠ACB=90°,∴AC=6,∵∠ECD=∠ACB=90°,∴∠ACE=∠BCD ,在△ACE 与△BCD 中,=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∴△ADE 的周长=AE+AD+DE=AB+DE ,∴当DE 最小时,△ADE 的周长最小,过点C 作CF ⊥AB 于点F ,当CD⊥AB时,CD最短,等于3,此时,∴△ADE的周长的最小值是;(2)当点D在CF的右侧,∵CF=12AB=3,CD=4,∴∴AE=BD=BF﹣DF=3;当点D在CF的左侧,同理可得,综上所述:AE的长度为3或。