信号与系统第9次课(卷积和)
- 格式:ppt
- 大小:822.00 KB
- 文档页数:29
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
产品详细技术方案信号系统与语音信号处理实验平台 RZ8664 型简述:RZ8664根据《信号与系统》和《数字信号处理》两门课相互关联的特点,在总结信号与系统实验教学经验,并结合数字信号处理技术、DDS技术、虚拟仪器技术、语音处理技术,开发出的新型“信号与系统”实验箱。
它既可完成传统实验箱的实验内容,又能完成原有实验箱难以完成或结果不理想的任意信号分解、信号与系统卷积、数字滤波器、任意信号时域频域分析、语音信号分析等实验;同时也能做“数字信号处理”、“DSP应用”、“虚拟仪器技术”、“语音处理”实验;实验箱采用了正面贴膜工艺,增加了USB通信接口和语音接口。
系统既美观又稳定可靠,方便管理。
适合专科、本科、研究生和研发人员使用。
一、产品图片注:产品以实物为准!RZ-VSlab虚拟实体仿真软件二、技术指标1.基于STM32的DDS信号源,可产生:正弦波、三角波、占空比可变的脉冲信号、扫频信号、半波、全波、AM、DSB、SSB、FM等信号,便于学生对不同信号进行时域频域分析;2.内置数字频率计:0HZ~250KHZ;数字豪伏表:0V~10V;3.能完成各种卷积实验,输入信号和系统函数可由PC机设定;4.各种无源、有源模拟滤波器设计、仿真、验证;复杂信号的抽样与恢复,恢复滤波器可开发;5.能完成数字滤波器的在线设计、冲激与频响仿真、实现(提供整套在线设计、下载软件),学生可基于该功能研究复杂信号中谐波分量的位置与大小;6.基于数字信号处理技术,能完成:任意信号的卷积、任意信号的分解与合成;(三角波、正弦波、半波、全波等信号、各种调制信号),可研究谐波幅度、谐波相位对信号合成的影响;7.内置USB接口和高速数据采集模块,可实现基于LABVIEW虚拟示波器、虚拟频谱仪、虚拟选频表功能。
在PC机上进行实时的信号时域频域分析;演示实时信号合成原理及吉布斯效应。
采集数据可以存贮,在PC机后台分析处理各种信号:如带宽分析、频谱分析、能量分析等。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统教学大纲一、课程基本信息课程名称:信号与系统课程类别:专业基础课课程学时:XX 学时课程学分:XX 学分二、课程性质与目标(一)课程性质信号与系统是电子信息类专业的一门重要的专业基础课程,是通信工程、电子信息工程、自动化等专业的必修课。
它主要研究信号与系统的基本概念、基本理论和基本分析方法,为后续的专业课程如通信原理、数字信号处理等提供必要的理论基础。
(二)课程目标1、使学生掌握信号与系统的基本概念和基本理论,包括信号的分类、描述和运算,系统的分类、描述和特性等。
2、让学生熟练掌握连续时间信号与系统和离散时间信号与系统的时域分析方法,包括卷积积分和卷积和的计算。
3、使学生掌握连续时间信号与系统和离散时间信号与系统的频域分析方法,包括傅里叶级数、傅里叶变换、离散傅里叶变换等。
4、培养学生运用信号与系统的基本理论和方法分析和解决实际问题的能力。
5、为学生进一步学习后续专业课程和从事相关领域的工作打下坚实的基础。
三、课程内容与教学要求(一)信号与系统的基本概念1、信号的定义、分类和描述(1)理解信号的概念,掌握信号的分类方法,如确定性信号与随机信号、连续时间信号与离散时间信号、周期信号与非周期信号等。
(2)掌握信号的描述方法,包括时域描述、频域描述和复频域描述等。
2、系统的定义、分类和描述(1)理解系统的概念,掌握系统的分类方法,如线性系统与非线性系统、时不变系统与时变系统、因果系统与非因果系统等。
(2)掌握系统的描述方法,包括输入输出描述法、状态变量描述法等。
(二)连续时间信号与系统的时域分析1、连续时间信号的时域表示和运算(1)掌握连续时间信号的时域表示方法,如函数表达式、波形图等。
(2)熟练掌握连续时间信号的基本运算,如相加、相乘、平移、反褶、尺度变换等。
2、连续时间系统的时域描述和响应(1)掌握连续时间系统的时域描述方法,如微分方程。
(2)熟练掌握连续时间系统的零输入响应、零状态响应和全响应的求解方法。
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
1引言信号的卷积是针对时域信号处理的一种分析方法,信号的卷积一般用于求取信号通过某系统后的响应。
在信号与系统中,我们通常求取某系统的单位冲激响应,所求得的h(k)可作为系统的时域表征。
任意系统的系统响应可用卷积的方法求得。
离散时间信号是时间上不连续的“序列”,因此,激励信号分解为脉冲序列的工作就很容易完成,对应每个样值激励,系统得到对此样值的响应。
每一响应也是一个离散时间序列,把这些序列叠加既得零状态响应。
因为离散量的叠加无需进行积分,因此,叠加过程表现为求“卷积和”。
LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。
本课程设计就是利用LabVIEW软件来实现方波序列卷积的过程,然后对方波序列移位过程进行演示,通过卷积过程演示和卷积和的波形图可以看出,方波序列的幅值大小不会影响卷积和的宽度而方波序列的宽度大小就会影响卷积序列相交部分的范围宽度即卷积宽度。
通过labview你能直观清晰地观察卷积的过程。
2虚拟仪器开发软件LabVIEW8.2入门2.1 LabVIEW介绍LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。
传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。
VI指虚拟仪器,是 LabVIEW]的程序模块。
LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。
用户界面在 LabVIEW中被称为前面板。
使用图标和连线,可以通过编程对前面板上的对象进行控制。
912信号与系统考试大纲
信号与系统是电子工程、通信工程、自动控制等专业中的重要
课程,涉及到信号的分析、处理和系统的特性等内容。
在考试大纲中,一般会包括以下内容:
1. 信号与系统的基本概念,包括信号、系统、线性系统、时不
变系统等基本概念的定义和特性。
2. 连续时间信号与系统,包括连续时间信号的表示与性质、连
续时间系统的表示与性质、连续时间信号与系统的时域分析等内容。
3. 离散时间信号与系统,包括离散时间信号的表示与性质、离
散时间系统的表示与性质、离散时间信号与系统的时域分析等内容。
4. 信号与系统的频域分析,包括傅里叶变换、拉普拉斯变换、
Z变换等频域分析方法及其在信号与系统分析中的应用。
5. 信号与系统的系统特性,包括系统的稳定性、因果性、线性性、时不变性等系统特性的定义和分析方法。
6. 信号与系统的滤波器设计,包括滤波器的基本概念、滤波器的设计方法、滤波器的频率响应等内容。
7. 信号与系统的应用,包括信号与系统在通信、控制、信号处理等领域中的应用案例和实际问题分析。
在考试中,一般会要求学生掌握以上内容,并能够灵活运用相关知识解决问题。
同时,考试大纲也可能会强调对于理论知识的理解和应用能力的考察,包括对于信号与系统的数学描述、图形表示和实际应用的综合能力。
希望这些内容对你有所帮助。
课程设计任务书目录1引言 (1)2 MATLAB7.0入门 (2)3利用MATLAB7.0实现方波和三角波信号的卷积及卷积过程演示的设计 (3)3.1方波和三角波信号的卷积及卷积过程演示的基本原理: (3)3.2方波和三角波信号的卷积及卷积过程演示的编程设计及实现 (3)3.3运行结果及分析 (5)结论 (6)参考文献. (7)1 引言信号的卷积是针对时域信号处理的一种分析方法,信号的卷积一般用于求取信号通过某系统后的响应。
在信号与系统中,我们通常求取某系统的单位冲激响应,所求得的h(k)可作为系统的时域表征。
任意系统的系统响应可用卷积的方法求得。
MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks 公司出品的商业数学软件。
MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。
本课程设计就是利用MATLAB软件来实现方波与三角波信号卷积的过程,然后对三角波信号移位过程进行演示,通过卷积过程演示和卷积和的波形图可以看出,三角波的幅值大小不会影响卷积和的宽度而三角波信号的宽度大小就会影响卷积序列相交部分的范围宽度即卷积宽度。
通过MATLAB你能直观清晰地观察卷积的过程。
2 Matlab7.0入门Matlab作为一种功能强大的工程软件,其重要功能包括数值处理、程序设计、可视化显示、图形用户界面和与外部软件的融合应用等方面。
Matlab软件由美国MathWorks公司于1984年推出,经过不断的发展和完善,如今己成为覆盖多个学科的国际公认的最优秀的数值计算仿真软件。
MATLAB具备强大的数值计算能力,许多复杂的计算问题只需短短几行代码就可在MATLAB中实现。
作为一个跨平台的软件,Matlab已推出Unix、Windows、Linux和Mac等十多种操作系统下的版本,大大方便了在不同操作系统平台下的研究工作。
信号与线性系统-9(总分:100.00,做题时间:90分钟)一、计算题(总题数:17,分数:100.00)求下列序列的卷积和。
(分数:8.00)(1).ε(k)*ε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解由卷积和的定义有(2).0.5 kε(k)*ε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解由卷积和的定义有(3).2 kε(k)*3 kε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解由卷积和的定义有(4).kε(k)*δ(k-1)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解由卷积和的定义有1.证明卷积和的移序特性,即若e(k)*h(k)=y(k),则e(k-k 1 )*h(k-k 2 )=y(k-k 1 -k 2 )(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:证由卷积和的定义得令j-k 1 =x,则求下列差分方程所示系统的零状态响应。
第一章习题1.函数式x(t)=(1-)[u(t+2)-u(t-2)]cos所表示信号的波形图如图()(A) (B) (C) (D)2 .函数式的值为()( A )0 ( B ) 1 ( C ) 2 ( D )3 .已知x(3-2) 的波形如图1 所示,则x (t )的波形应为图()图1 (A)(B)(C)(D)4.已知信号x[n]波形如图2,信号的波形如图()图2 (A)(B)(C) (D)5 .卷积积分等于()(A)(B)-2 (C)(D)-2 (E)-26 .卷积和x[n] u[n-2] 等于()( A )( B )( C )( D )( E )7 .计算卷积的结果为()( A )( B )( C )( D )8 .已知信号x(t) 的波形如图3 所示,则信号的波形如图()图3 (A)(B)(C) (D) 题九图9 .已知信号x (t )如图所示,其表达式为()(A) (B)(C) (D)10 .已知x(t)为原始信号,y(t)为变换后的信号,y(t) 的表达式为()( A )( B )( C )( D )11 .下列函数中()是周期信号( A )( B )( C )( D )( E )12 .函数的基波周期为()。
( A )8 ( B )12 ( C )16 ( D )2413 .某系统输入—输出关系可表示为,则该系统是()系统。
( A )线性( B )时不变( C )无记忆( D )因果( E )稳定14 .某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆( D )因果( E )稳定15.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆( D )因果( E )稳定16.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆( D )因果( E )稳定17 .某系统输入—输出关系可表示为,则系统为()系统( A )线性( B )时不变( C )无记忆( D )因果()稳定18 .下列系统中,()是可逆系统(A)y[n]=nx[n] (B)y[n]=x[n]x[n-1] (C)y(t)=x(t-4) (D)y(t)=cos[x(t)] ( E )y[n]=19 .如图系统的冲激响应为()( A )( B )( C )( D )20 .某系统的输入x (t )与输出y (t )之间有如下关系,则该系统为()(A)线性时变系统(B)线性非时变系统(C)非线性时变系统(D)非线性非时变系统21 .一个LTI 系统在零状态条件下激励与响应的波形如图,则对激励的响应的波形()(A) (B) (C) (D)22. 线形非时变系统的自然(固有)响应就是系统的()( A )零输入响应( B )原有的储能作用引起的响应( C )零状态响应( D )完全的响应中去掉受迫(强制)响应分量后剩余各项之和23 .零输入响应是()( A )全部自由响应( B )部分零状态响应( C )部分自由响应( D )全响应与强迫响应之差24 .下列叙述或等式正确的是()(A) (B)(C)若,则(D)x(t) 和h(t) 是奇函数,则是偶函数25.设是一离散信号,,,则下列说法( )是正确的(A) 若是周期的,则也是周期的(B) 若是周期的,则也是周期的(C) 若是周期的,则也是周期的(D) 若是周期的,则也是周期的26 .有限长序列经过一个单位序列响应为的离散系统,则零状态响应为()(A) (B)(C) (D)第二章习题1. 某LTI 连续时间系统具有一定的起始状态,已知激励为x (t )时全响应,t 0 ,起始状态不变,激励为时,全响应y (t )=7e +2e ,t 0 ,则系统的零输入响应为()( A )( B )( C )( D )2 .微分方程的解是连续时间系统的()(A) 零输入响应(B) 零状态响应(C) 自由响应(D) 瞬态响应(E)全响应3 .单位阶跃响应是()(A) 零状态响应(B) 瞬态响应(C) 稳态响应(D) 自由响应(E) 强迫响应4 .已知系统如图所示,其中h (t) 为积分器,为单位延时器,h (t) 为倒相器,则总系统的冲激响应h (t) 为()( A )( B )( C )( D )5 .如图所示电路以为响应,其冲激响应h (t) 为()(A) (B)(C) (D)6. 某LTI 系统如图所示,该系统的微分方程为()(A ) (B)(C) (D)7 .已知系统的微分方程, 则求系统单位冲激响应的边界条件h(0 ) 等于()(A) -1 (B) 0 (C) 2 (D) +18 .已知系统的微分方程则系统的单位冲激响应为()(A) (B) (C) (D)9 .已知描述系统的微分方程和初始状态0 值如下;y (0 ) =2 ,, , ,则初始条件0 值为()(A) (B)(C) (D)10 .已知描述系统的微分方程和初始状态0 值如y(t) +6 y (t) +8 y (t) =x (t) +2x (t) ,y (0 ) =1 ,y (0 ) =2 ,x (t) =(t )则初始条件0 值为()。
信号与系统信号与系统作者:徐守时--普通高等教育"十一五"国家级规划教材--图书详细信息:ISBN:9787302174813定价:59元印次:1-1装帧:平装印刷日期:2008-9-27 --图书简介:本书采用先时域后变换域的顺序,以对偶和类比的方式逐章逐节、完全并行地讲述连续时间和离散时间信号与系统的一系列基本概念、理论和方法,以及它们在通信、信号处理和反馈与控制等领域中的主要应用,还包含数字信号处理和系统的状态变量描述的基本概念和方法,形成了一个"系统分析和综合"与"信号分析和处理"两方面知识并重、较为完整的、具有鲜明特色的信号与系统课程内容体系。
全书共十一章,按次序先后为:绪论;信号和系统的数学描述及性质;LTI系统的时域分析和信号卷积运算;用微分方程和差分方程描述的系统;信号和系统的频域表示法;傅里叶变换和傅里叶级数的性质及其揭示的时域和频域间的关系;在通信系统和技术中的应用;信号和系统的复频域表示法;系统的变换域分析和综合;在信号分析和处理中的应用;在反馈和控制中的应用。
各章都有足够数量的精选例题,兼顾基本练习和解题的分析技巧,章末配有相当数量丰富多彩的习题,书末还附有大部分习题的答案。
本书可作为高等院校通信和电子工程、自动化、计算机等电子信息类专业"信号与系统"课程的教材。
本书内容符合国内研究生入学考试"信号与系统"科目的考试内容的范围和要求,可作为该科目的考研参考书。
本书也可供任何从事信息获取、转换、传输和处理等工作的其他专业研究生、教师和广大科技工作者参考。
前言:024246-01.txt信号与系统问题的研究可以追溯到公元17世纪牛顿时代,但发展成为专门的信号与系统学科,形成一整套理论和方法,并作为高等学校电子信息类大部分专业必修的一门基本课程,还不到半个世纪。
在此期间,随着技术的发展,"信号与系统"课程内容和教材经历了几次不同程度的改革。
信号与系统教案第1次课2学时授课时间课题(章节)第一章绪论引言信号概述教学目的与要求:了解信号与常用信号,熟练掌握信号描述的各种方法。
教学重点、难点:对该课程的认识,强调该课的研究方法和要求,以及该课程在今后课程中的作用。
信号的表示方法。
教学方法及师生互动设计:以通信系统为例,导入信号与系统的教学任务,简单介绍通信系统的知识,让学生逐渐进入专业研究,领会该课程在今后专业研究中所发挥的作用。
板书与PPT演示相结合介绍常见信号,并通过若干例子进一步阐述所讲内容,深化理解信号的表示方法。
课堂练、作业:课后小结:按计划完成内容,通过通信系统实例讲解信号与系统课程作用,使学生对专业有进一步了解。
讲解常见信号,使学生能运用表达式、图形等来描述信号。
第2次课2学时授课时间课题(章节)2信号运算教学目的与要求:熟练掌握信号描述的各种方法,及信号的基本变换,能熟练进行信号的运算。
教学重点、难点:信号的变换及计算。
教学方法及师生互动设计:板书与PPT演示相结合渐渐引见信号的加、减、乘、除,和时移、反转等变更。
通过部分题例子来讲解信号是如何变更及计算的,最后布置题,让学生进一步加强对知识的理解,并通过题对其加深理解。
课堂练、作业:补充题课后小结:本节是重点内容,讲解稍慢。
通过多举题,提高学生解题能力。
与学生互动发现学生接收过程偏慢,其缘故原由是学生的基本计算能力还需求提高,应讲解更详尽更慢。
第3次课2学时授课时间课题(章节)3系统概述教学目的与要求:了解系统分类的思路,熟练掌握连续﹑动态﹑时不变线性系统的描述方法和数学模型,对算子法表示系统应能正确运用。
教学重点、难点:掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立。
教学方法及师生互动设计:先列举部分系统,导入LTI系统,然后列举题,让学生判别LTI系统。
板书与PPT演示相结合介绍其系统的描述方法和数学模型。
课堂练、作业:课后小结:此部分内容稍易,大多数同学在研究过程中思路清晰,理解较为容易。