多层陶瓷电容器(MLCC)介质材料研究进展
- 格式:pptx
- 大小:304.40 KB
- 文档页数:15
半导体陶瓷的研究现状与发展前景摘要:半导体陶瓷是当今世界迅速发展的一项高新技术领域。
随着电子工业的高速发展, 发展半导体陶瓷正面临着许多急待解决的重要问题。
本文对热敏、气敏、湿敏、压敏、光敏等五类半导体陶瓷的基本原理, 主要陶瓷材料以及优越特性的应用进行了简要叙述, 对半导体陶瓷现状及发展趋势进行了分析探讨, 并针对共性问题提出了某些看法和建议。
关键词:半导体陶瓷; 现状; 发展前景引言:半导体陶瓷是敏感元器件及传感器技术的关键材料, 是当今世界迅速发展的一项高新技术领域, 它与现代信息技术、通讯技术、计算机技术密切相关,它的研究开发乃至生产, 涉及到物理、化学、材料科学与工程等多种学科,因此,半导体陶瓷属技术密集和知识密集型产业。
日本产品在世界市场上占绝对优势地位。
美国, 欧洲也占有相当数量。
相比之下我国半导体陶瓷起步较晚,产品性能、生产水平和国际先进水平相比还有明显差距。
改革开放以来, 随着电子工业的高速发展, 对半导体陶瓷的要求愈来愈高,发展半导体陶瓷正面临着许多急待解决的重要问题, 本文就半导体陶瓷国内外现状及发展趋势进行探讨, 提出一些粗浅的看法进行商榷, 以期推动我国半导体陶瓷产业进一步发展。
1 现状及发展前景半导体陶瓷品种繁多, 具有产业规模生产的主要有: 热敏、气敏、湿敏、压敏及光敏电阻器等。
1. 1 热敏热敏电阻器一般可分为正温度系数( PTC) , 负温度系数(NTC) 和临界温度电阻器(CTR) 三类。
PTC 热敏电阻器以BaTiO3或BaT iO3固溶体为主晶相的半导体陶瓷元件。
在一定的温度范围内,其阻值随温度的增加而增加, 表现出所谓的PTC 效应。
按材料居里点(T c) 可分为低温、高温, 按阻值可分为低阻、高阻, 按使用电压可分为低压、常压和高压, 按曲线陡度可分为缓变型和开关型。
PTC 热敏电阻器的实用化基本上是从20 世纪60 年代开始的, 到70 年代中期得到了很大的发展, 各种不同用途的PTC 热敏电阻元件相继出现。
详解MLCC技术及材料未来发展
一、什么是MLCC技术?
MLCC(Multilayer Ceramic Capacitors),是指由多层陶瓷层压而成的陶瓷电容器,具有高频率及高功率的优势,是电子产品中最常应用的一种电容器。
目前,其主要用于固定频率、宽带滤波电路、串行存储器、高抗干扰和减少电磁干扰等应用之中。
二、MLCC技术的优势
1、体积小:MLCC电容器可以制成很小的尺寸,有助于更有效的利用芯片的空间。
2、高频率:MLCC电容器可以支持高频率的电路,因此可以实现更快的数据处理。
3、高功率:MLCC电容器可以支持高功率的电路,因此可以实现更高的电压稳定性。
4、低噪声:MLCC电容器容阻较低,因此可以减少电磁干扰,从而降低电子产品的噪音。
三、MLCC材料的未来发展
1、增强阻容特性:由于现有的MLCC电容器存在着温度老化现象,因此将采取措施增强其耐热抗衰老阻容特性,以满足更高耐压稳定和更高温度的要求。
2、改善制备工艺:MLCC是一种多层结构,因此制备工艺要求较为复杂。
为了提升其制备效率,将针对其各制备步骤,进行改进,以实现更低的成本和更高的制备速度。
3、提升尺寸:为了满足更多的设计需求,未来将会研究研发出更大尺寸的MLCC电容器,以满足更大容量的需求。
陶瓷积层电容(mlcc) 极化效应陶瓷积层电容(MLCC)是一种非极性电容器,它具有很多优点,如体积小、容量大、精度高等。
然而,在实际应用中,MLCC也存在一些极化效应的问题。
本文将从不同角度探讨MLCC的极化效应及其对电路性能的影响。
我们需要了解什么是极化效应。
在电容器中,极化效应是指在电场作用下,电容器内部发生电荷分布不均匀,导致电容器两端产生电压差的现象。
对于极性电容器来说,极化效应是正常现象,但对于非极性电容器如MLCC来说,极化效应则属于异常情况。
MLCC的极化效应主要来源于材料本身的极化特性。
陶瓷材料具有铁电性质,即在电场作用下会发生极化,产生极化电荷。
这种极化电荷会在电场消失后仍存在一段时间,导致MLCC两端产生残余电压。
这种残余电压对于某些电路设计来说可能会造成问题。
MLCC的极化效应对电路性能的影响主要体现在以下几个方面:1. 电容值漂移:由于极化效应的存在,MLCC的电容值会随时间发生变化,即电容值漂移。
这对一些要求精度和稳定性的电路来说是不可忽视的。
特别是在高温环境下,电容值漂移会更加明显。
2. 温度特性:极化效应还会导致MLCC的温度特性变差。
在高温环境下,极化电荷的释放速度加快,导致残余电压更大,从而使得MLCC的电容值变小。
这对于一些工作在高温环境下的电路来说是非常不利的。
3. 电压变化:极化效应还会导致MLCC的电压变化。
当电场发生变化时,极化电荷的释放速度也会发生变化,导致MLCC两端的电压变化。
这对于一些对电压稳定性要求较高的电路来说是一个重要的考虑因素。
为了减小MLCC的极化效应,可以采取以下措施:1. 选择合适的电容器:在设计电路时,根据实际需求选择合适的MLCC。
一些对电容值漂移和温度特性要求较高的电路,可以选择具有低极化特性的MLCC。
同时,还可以考虑使用其他类型的电容器来替代MLCC,如钽电容、铝电解电容等。
2. 降低工作温度:由于极化效应与温度密切相关,降低工作温度可以有效减小极化效应对MLCC的影响。
2021年3月电子工艺技术Electronics Process Technology第42卷第2期93摘 要:对多层陶瓷电容器的一种典型失效形式进行研究。
将多层陶瓷电容器焊后进行极限高低温冲击试验,试验发现焊接端头会出现微裂纹。
微裂纹底部与外电极金属边缘重合,裂纹斜向上延伸,与焊接面之间呈锐角。
裂纹贯穿交叠电极时会导致陶瓷电容器的电性能失效。
后续可以根据实际情况为多层陶瓷电容器设计适宜的上下护片厚度、外电极端头宽度及单侧电极宽度,以保证其承受温冲后电性能不受影响,也可通过优化多层陶瓷电容器的结构设计和材料选型,进一步提高多层陶瓷电容器的抗极限温冲的能力。
关键词:多层陶瓷电容器;高低温冲击试验;微裂纹;电极;护片厚度中图分类号:TN605 文献标识码:A 文章编号:1001-3474(2021)02-0093-03Abstract: A kind of typical failure mode of the multilayer ceramic capacitor is studied. The extreme high and low temperature impact test of multilayer ceramic capacitor is carried out after soldering, it is found that micro cracks would appear at the soldering end. The bottom of the micro crack coincides with the metal electrode edge, the micro crack extends obliquely upward with an acute angle to the soldering surface. The micro cracks affect the electrical properties when the cracks run through the overlapping electrodes. The thickness of suitable protective sheet, the width of outer electrode end and the width of one side electrode can be designed for multilayer ceramic capacitors according to the actual situation to ensure that their electrical properties is not affected after high and low temperature impact. However, the structure design and material selection of multilayer ceramic capacitor can be also optimized to improve the ability to resist high and low temperature impact.Keywords: multilayer ceramic capacitor; high and low temperature impact test; micro crack; electrode; protective sheet thicknessDocument Code: A Article ID: 1001-3474 (2021) 02-0093-03MLCC的一种典型失效形式及优化方式A Typical Failure Mode and Optimization Method of MLCC吕晓云,黄栋,叶晓飞,席亚莉,李敏娟LV Xiaoyun, HUANG Dong, YE Xiaofei, XI Yali, LI Minjuan(中国航天科技集团公司第七七一研究所,陕西 西安 710100)( The 771st Research Institute of CASC, Xi’an 710100, China )多层陶瓷电容器(Multilayer Ceramic Capacitor, MLCC)又称为独石电容器(Monolithic Capacitor, MLC),是由陶瓷介质薄膜和金属电极水平交互叠制而成。
片式多层陶瓷电容器(Multi-layer Ceramic Capacitor简称MLCC)是电子整机中主要的被动贴片元件之一,它诞生于上世纪60年代,最先由美国公司研制成功,后来在日本公司(如Murata、TKD、太阳诱电等)迅速发展及产业化,至今依然在全球MLCC领域保持优势,主要表现为生产出MLCC具有高可靠、高精度、高集成、高频率、智能化、低功耗、大容量、小型化和低成本等特点。
由于MLCC标称电容量已达到10μF-100μF,尺寸已达到0201-01005(即长×宽为0.01英寸×0.005英寸,以下均为英寸表示),是蚂蚁的十分之一大小,所以它已经部分取代片式铝电解电容和片式钽电容器,且比它们具有更低的损耗值和更好的可靠性。
什么是MLCC技术?简而言之,MLCC技术是一门综合性应用技术,它包括新材料技术,设计工艺制作技术、设备技术和关联技术(如质量控制技术中的电子元件可靠性测试、失效分析技术等)。
MLCC技术涉及材料、机械、电子、化工、自动化、统计学等各学科先进理论知识,是多科学理论和实践交叉的系统集成,属于典型的高新技术范畴。
核心技术待提高在MLCC技术中,最核心的技术是材料技术(如陶瓷粉料的制备)、介质叠层印刷技术(多层介质薄膜叠层印刷)和共烧技术(陶瓷粉料和金属电极共烧)。
1.材料技术(陶瓷粉料的制备)现在MLCC用陶瓷粉料主要分为三大类(Y5V、X7R和COG)。
其中X7R 材料是各国竞争最激烈的规格,也是市场需求、电子整机用量最大的品种之一,其制造原理是基于纳米级的钛酸钡陶瓷料(BaTiO3)改性。
日本厂家根据大容量(10μF以上)的需求,在D50为100纳米的湿法BaTiO3基础上添加稀土金属氧化物改性,制造成高可靠性的X7R陶瓷粉料,最终制作出10μF-100μF小尺寸(如0402、0201等)MLCC。
国内厂家则在D50为300-500纳米的BaTiO3基础上添加稀土金属氧化物改性制作X7R 陶瓷粉料,跟国外先进粉体技术还有一段差距。
片式多层陶瓷电容器(MLCC)项目可行性研究报告-5G推动下游需求持续增加,MLCC迎来新一轮成长编制单位:北京智博睿投资咨询有限公司规格分高端和普通规格,面向不同应用领域。
MLCC 由内部电极、涂层、端电极和陶瓷介质构成,因材料、工艺、性能的不同,可分为高端规格和普通规格。
高端规格的堆叠层数一般大于 500,与普通规格相比具有高容值、高耐压、高温稳定及体积更小等特质,主要应用于手机等超小型领域(常见尺寸有 0201、01005 和 008004)或者材料要求较高的汽车、航空航天等高压高容领域;普通规格常见尺寸有0402、0603 等,主要应用在消费类电子及一般工业领域中。
MLCC 结构MLCC 高低端规格对比MLCC 未来将向“五高一小”方向发展。
目前 MLCC 主要朝着小型化、高容量化、高频化、耐高温、耐高电压、高可靠性的方向发展。
1)小型化:电子产品朝着小型化的方向发展,促使 0402M(01005)等小尺寸 MLCC 产品占比逐年升高。
2)高容量化:MLCC具备稳定的电性能、无极性、高可靠性等优点,其材料和加工技术朝着高容量化的方向发展,有助于推动 MLCC 替代钽电解电容。
3)高频化、耐高温:MLCC 的工作频率已进入到毫米波频段范围。
常用 MLCC 的最高工作温度是 125℃,满足特种电子设备极限工作环境的 MLCC 工作温度也逐步提高至 260℃。
4)耐高电压、高可靠性:军民用电源系统以及汽车电子系统,都需要高可靠的耐高电压、耐大电流的多层陶瓷电容器。
MLCC 性能优异,市场份额一骑绝尘。
与单层陶瓷电容器相比,多层陶瓷电容器采用多层堆叠工艺,在元件个数与体积基本保持不变的条件下,能满足电子产品的更高容量要求。
此外,陶瓷高温烧结等工艺使得 MLCC 结构更为致密,耐电性能更加出色。
随着材料更新换代,MLCC 的低等效串联电阻(ESR)能够加速实现,减少元件由于自身发热而产生的热能浪费,将更多的能量集中到电子设备中,从而提高运行效率,使得 MLCC 高频性能逐渐凸显。
2024年MLCC产品市场发展现状引言多层陶瓷电容器(Multi-Layer Ceramic Capacitors,简称MLCC)是一种重要的电子元器件,广泛应用于电子设备中。
本文将对MLCC产品市场的发展现状进行详细分析,并探讨未来的趋势和挑战。
市场概述MLCC作为电子设备的重要组成部分,其市场需求受到电子设备市场的影响。
过去几年中,电子设备市场保持了稳定增长的态势,推动了MLCC市场的发展。
尤其是智能手机、平板电脑和电子游戏设备等消费类电子产品的普及,对MLCC市场需求的增长起到了重要的推动作用。
市场规模根据市场调研机构的报告,目前MLCC市场规模巨大,全球市场价值超过50亿美元。
其中,亚太地区是MLCC产品的最大市场,占据了总市场份额的三分之二。
北美和欧洲市场也有相当规模的需求。
随着电子设备市场的扩大,MLCC市场有望在未来几年继续保持增长。
市场驱动因素1.电子设备的普及和升级:随着可穿戴设备、物联网和人工智能等新兴技术的快速发展,人们对电子设备功能和性能的要求越来越高,这促使了MLCC产品的广泛应用。
2.电子设备的小型化和轻量化:MLCC具有体积小、重量轻的特点,适用于各种小型电子设备,如智能手表、无人机等。
这种趋势进一步推动了MLCC市场的发展。
3.新兴产业的崛起:新兴产业如5G通信、人工智能和新能源汽车等,对MLCC产品有巨大需求。
随着这些产业的发展,MLCC市场有望迎来更大的增长空间。
市场竞争格局MLCC市场竞争激烈,主要由日本、韩国、中国等亚洲国家的企业主导。
这些企业在技术研发和生产能力上具有明显优势,在全球市场上占据主导地位。
然而,近年来中国企业在MLCC市场上的崛起引起了全球企业的关注。
中国企业凭借低成本优势和技术突破,逐渐在市场中占据一席之地。
挑战与机遇1.供应链风险:MLCC市场供应链长且复杂,主要原材料供应不稳定、价格波动等问题可能对供应链造成影响。
这给市场参与者带来了一定的风险挑战。
多层片式陶瓷电容器(MLCC)的研究进展及发展趋势多层片式陶瓷电容器(MLCC)是片式元件的一个重要门类,由于具有结构紧凑、体积小、比容高、介电损耗低、价格便宜等诸多优点,被大量应用在计算机、移动电话、收音机、扫描仪、数码相机等电子产品中。
MLCC特别适合片式化表面组装,可大大提高电路组装密度,缩小整机体积,这一突出特性使MLCC成为当今世界上发展最快、用量最大的片式电子元件。
MLCC的应用领域决定了其介质材料必须具有以下性能:(1)高介电常数MLCC的比容与材料的介电常数关系如下:C为电容,V为体积,C/V为比电容,t为介电层厚度,ε为介电常数。
在介电层厚度确定的情况下,材料的介电常数越高,电容器比电容越大。
介电材料的介电常数越高,越易于实现电容器的小型化,这是目前电容器的一个发展方向,自从MLCC问世以来,其比容一直不断上升,介电层的厚度不断下降。
如图1所示。
(2)良好的介温特性介温特性用来描述电容随温度变化情况。
一般来说,在工作状态下,电容器的电容随温度的变化越小越好。
由于电容随温度发生变化来源于介质材料介电常数的变化,因此要求节电材料具有良好的介温特性。
(3)高绝缘电阻率(4)介电损耗小,抗老化1.研究进展MLCC用高介电常数的介电材料可以归结为以下三个体系:BaTiO3系材料;(Ba,Ca)(Ti,Zr)O3系材料;复合含Pb 钙钛矿系材料。
1.1BaTiO3系材料BaTiO3系材料是最早研究的用于MLCC的介电材料,也是最早实现商业化的MLCC用介电材料。
从20世纪60年代初期到70年代末,为了实现MLCC贱金属化,降低电容器的成本,人们对BaTiO3系材料的研究多集中在抗还原方面。
常用的手段是向BaTiO3中添加过渡元素的氧化物,这些元素的离子在还原气氛下俘获电子发生变价,从而提高还原烧结BaTiO3材料的绝缘电阻。
但是由于受主掺杂BaTiO3材料中氧空位的迁移,使用后不久,材料的绝缘电阻就大幅下降,MLCC的性能严重劣化。
中国MLCC的发展史1.导言MLCC(Multi-layer Ceramic Capacitor,多层陶瓷电容器)是一种常见的电子元件,用于存储和释放电能。
它在电子设备中广泛应用,包括手机、电视、电脑、汽车电子等领域。
本文将介绍中国MLCC的发展史。
2.早期阶段在20世纪50年代,中国开始研究和开发陶瓷电容器。
当时的技术水平相对较低,主要是手工制作,生产规模有限,产品性能也较为一般。
随着技术的进步,中国的陶瓷电容器逐渐发展起来。
3.20世纪70年代-80年代在20世纪70年代和80年代,中国的陶瓷电容器开始进入工业化阶段。
当时,由于技术和资金的限制,中国主要生产低压陶瓷电容器。
然而,在技术人才培养和科研投入方面,中国取得了一些进展。
一些大型电子公司纷纷涌入陶瓷电容器市场,投资兴办生产线,提高了陶瓷电容器的生产能力和质量。
4.20世纪90年代-2000年代20世纪90年代至2000年代初,MLCC生产技术和产量在中国取得了显著进展。
中国的陶瓷电容器产量位居世界前列,质量也得到了显著提升。
中国的MLCC产业开始向国际市场扩张,出口额逐年增加。
5.2000年代中期至今进入21世纪,中国MLCC产业持续快速发展。
中国的陶瓷电容器生产技术不断创新,产品质量进一步提高。
中国的MLCC企业纷纷采用先进的生产设备和自动化生产工艺,提高了生产效率和产品一致性。
同时,在环保和节能方面也做出了许多努力。
6.近年来的发展趋势近年来,中国MLCC产业进一步发展壮大。
一方面,中国的MLCC企业积极推动技术升级,提高产品的性能和可靠性。
另一方面,MLCC在新兴领域的应用不断拓展,如新能源汽车、5G通信、智能家居等。
中国的MLCC产业正朝着规模化、专业化和高端化的方向发展。
7.挑战与机遇中国MLCC产业在快速发展的同时面临着一些挑战。
首先,国际市场竞争激烈,中国的MLCC企业需要提高核心竞争力。
其次,MLCC市场需求不稳定,产品结构和技术要求不断变化,企业需要及时调整产业结构和技术布局。
mlcc的烧结再氧化阶段
MLCC(多层陶瓷电容器)的烧结再氧化阶段是制造MLCC的关键
步骤之一。
在烧结再氧化阶段,陶瓷粉末和电极材料被烧结在一起,形成多层结构,然后再进行氧化处理,以确保电容器的性能和稳定性。
首先,在烧结阶段,陶瓷粉末和电极材料被压制成片状,然后
在高温下进行烧结,使其结合成坚固的陶瓷多层结构。
这个过程中,需要严格控制温度、压力和时间,以确保陶瓷的致密性和均匀性,
从而影响电容器的介电性能和稳定性。
接下来是氧化阶段,烧结后的多层结构需要进行氧化处理,以
提高其介电常数和绝缘性能。
氧化过程通常在高温下进行,可以改
善陶瓷的晶体结构,增强其绝缘性能,同时提高电容器的介电常数,从而提高电容器的性能和稳定性。
在整个烧结再氧化阶段,工艺参数的控制非常重要,包括烧结
温度、时间、氧化气氛等,这些参数的合理控制可以影响到电容器
的电性能、稳定性和可靠性。
此外,材料的选择和制备工艺也对烧
结再氧化阶段的效果有着重要影响。
总的来说,烧结再氧化阶段是MLCC制造过程中至关重要的一步,通过严格控制工艺参数和材料特性,可以确保电容器具有优良的电
性能和稳定性。