重复压裂介绍教材
- 格式:ppt
- 大小:1.09 MB
- 文档页数:8
一、重复压裂技术的基本原理与主要问题对低产油气井实施压裂改造可提升产能,但初次压裂完成后,外界环境和地层压力等因素会破坏储层原有的地应力环境,特别是在重复压裂作业中,首次压裂的裂缝周边会出现程度不一的诱导应力场,加上之前的储层地应力共同作用,造成储层压裂区域内形成协同应力场。
在协同应力场中,井筒会再次定向,随着地层压力逐步减小,应力方向也会相应改变,特别是原来水平地应力较大储层压力的会出现明显下降。
地应力环境改变后,初期水平方向最小的主应力不断增大,会进一步改变重复压裂裂缝的方向,反复实施压裂作业后强制性的裂缝会逐步向重复裂缝方向发展。
面对这种情况,对初期裂缝的最佳处理方式就是借助化学转向剂辅助作业,在裂缝内静压高于水平方向压力值后,裂缝方向会发生偏移而形成一条新的裂缝,从而在储层中打开一条新的油气流通道。
为持续提升油井产能,在新裂缝的压裂中,可以有效利用油气富集区进行裂缝转向压裂作业,促使形成新的有效产能接替区。
当前,随着压裂作业技术的进步,裂缝转向技术也得到长足发展,特别是多缝转向压裂、暂堵体积压裂和暂堵酸压裂等,均能实现低产油井增产的目的。
但是,裂缝转向压裂对加入转向剂的时间要求较高,不能过快或过慢的加入,否则均会对压裂作业产生不良影响。
二、强制裂缝转向压裂技术1.压裂原理根据岩石力学原理,人工裂缝是沿着水平方向上的最大主应力方向延伸的,因为压裂中储层存在着首次压裂裂缝、邻井裂缝影响以及地层的压力的复杂性,都对压裂裂缝的方向产生不同影响。
重复压裂有利于通过开启新的油气流通道提升产能,通过裂缝转向达到增加压裂改造体积和延伸到储层更大面积的目的,能更好地疏导储层、增加油气流导流性。
对强制性裂缝实施压裂转向中,为确保压裂作业顺利实施并达到裂缝转向的最高限压,必须在压裂作业前分析重复压裂的作业目的,坚持目标导向对重复压裂层的最大和最小主应力差值进行科学计算。
压裂作业中,前置液环节中第一次压裂作业时,必须确保及时将水溶性转向剂添加到裂缝中,辅助裂缝周边出现升压状况,井口压力无法承担后会出现停泵,重启压裂泵后就能明显增强裂缝内部压力,在达到新裂缝产生的压力条件后,强制裂缝就会出现转向,也就压裂出了新的油气通道。
重复压裂技术
重复压裂技术是指在初始压裂无效,或者现有支撑剂性能下降情况下,在同层不同方向上进行2次或者2 次以上的压裂,诱导产生新的裂缝,从而增加裂缝网格,提高生产能力。
要使重复压裂获得成功,必须评估重复压裂前后的平均储层压力、渗透率厚度乘积和有效裂缝长度与导流能力等,以确定初始压裂产能不好的原因以及影响重复压裂效果的因素。
重复压裂的另一个重要因素是裂缝转向。
在Barnett 页岩气重复压裂历史中,通过对远近地应力研究,了解到重复压裂裂缝刚开始沿着原先的裂缝延伸,很短的一段距离后裂缝开始转向。
这是因为初始压裂后的井,由于多年生产,会引起初始裂缝椭圆形区域的局部空间应力重新分布,储层压力减小,储层应力状态改变。
由于裂缝周围应力干扰区域延伸形状,最大和最小水平主应力有时会发生倒转,如果水平应力的倒转足够大或初始压裂产生的裂缝被有效封堵了,就形成重复压裂在转向上的适宜条件。
此时,新裂缝可在90°方向传播到初始裂缝,直到达到应力紊乱区。
在水平应力相等以外部分,新裂缝的方向与原始裂缝方向相同或在其原始裂缝平面上发展。
如果渗透性是各向异性的,那么裂缝附近的区域,应力的衰减规律将更加复杂。
图7 显示了重复压裂的再取向过程。
重复压裂技术综述一重复压裂技术的发展历程1.1 20实际50年代受当时技术与认识水平的限制,一般认为,重复压裂是原有水力裂缝的进一步延伸或重新张开已经闭合的水力裂缝,且施工规模必须大于第一次压裂作业的2-4 倍,才能获得与前次持平的产量,否则重复压裂是无效的。
这一时期重复压裂只是简单的增加施工规模,并未从机理方面深入研究,而且开展的并不多。
1.2 20实际80年代随着油气价格的变化和现代水力压裂技术的发展,国外( 主要是美国) 又将重复压裂作为一项重要的技术研究课题,从重复压裂机制、油藏数值模拟、压裂材料、压裂设计、施工等方面进行研究攻关,获得的主要认识有:重复压裂的水力裂缝方位可能与第一次形成的裂缝方位有所不同,即重复压裂可能产生出新的水力裂缝;重复压裂应重新优选压裂材料;对于致密油气藏,重复压裂设计的原则是增加裂缝长度;对于高渗透性油气藏,则应提高裂缝的导流能力。
1.3 20实际90年代因认识到转向重复压裂会接触到储层的剩余油区或未衰竭区而极大地提高产量和可采储量,这就更加激发了各国学者对转向重复压裂的研究。
因为重复压裂裂缝延伸方式依然取决于储层应力状态,不以人们的主观意志为转移而受客观应力条件控制,因此最先发展起来的是重复压裂前储层就地应力场变化的预测技术,在这时期国外研制出可预测在多井( 包括油井和水井) 和变产量条件下就地应力场的变化模型。
研究结果表明,就地应力场的变化主要取决于距油水井的距离、整个油气田投人开发的时间、注采井别、原始水平主应力差、渗透率的各向异性和产注量等。
距井的距离越小、投产投注的时间越长、原始水平主应力差越小、渗透率各向异性程度越小、产注量越大,则越容易发生就地应力方位的变化。
1.4 21世纪至今进人21 世纪转向重复压裂技术进一步发展,有人提出了一种迫使裂缝转向的新技术,即堵老裂缝压新裂缝重复压裂技术:经过一段时间的开采,油田的低渗透层已处于高含水期,原有裂缝控制的原油产量已接近全部采出,裂缝成了水的主要通道,但某些井在现有采出条件下尚控制有一定的剩余可采储量,这时如果采取延伸原有裂缝的常规重复压裂肯定不会有好的效果。
179通过实际调查发现,当改造一段时间低产油气井压裂后,会导致压裂裂缝明显失效,一定程度上不仅会影响到油气井产量的明显上升,而且也不利于企业今后的可持续发展道路。
大多数低产油气井企业为了促使单井产量实现不断提高,在储层盖改造过程中,可以借助重复压裂技术。
文章针对低产油气井重复压裂技术方面进行了详细分析,希望能给相关人士提供必要的参考。
1 重复压裂技术原理及存在问题基于低产油气井初次压裂问题之后,不管是外界因素还是压力因素等方面,都会导致地应力状态受到严重的破坏。
在企业反复进行压裂操作工序中,第一次的裂缝周边会有不同程度的诱导应力场,结合之前的应力场影响,会在该区域范围内构成协同应力场。
基于应力场当中,不管是井筒还是第一次裂缝的周边范围,都回形成再次的定向,伴随着地层压力的不断减小,应力方向也会出现相应的变化,相比较于较小的水平主应力,有着较大水平的主应力下降的幅度明显较大。
与此同时,在地应力出现改变之后,当初期最小水平主应力不断增大的基础上,就会导致重复压裂裂缝的方向出现改变。
在重复压裂的作用下,强制性的裂缝会像重复裂缝方向发展,此时,最合理的处理初期裂缝的形式,就是利用化学转向剂的作用,当裂缝内部的静压力值超出水平方向的压力值时,裂缝方向出现偏移,进而产生又一全新的裂缝,最终在整个的油气层当中,会存在一条油气流通道。
为了能够促使低产油气井企业实现产量不断提高的目的,在改造新裂缝过程中,相关工作人员可以将油气富集区的油气进行有效的利用,加以形成油气储层。
随着科学技术的不断进步,裂缝转向压裂技术也得到了很好的发展,通过实际调查发现,当前最常见的压裂技术有多缝转向压裂、暂堵体积压裂和暂堵酸压等,在企业实际运用过程中,完全可以满足企业增产的目的。
但是,传统过程中在加入转向剂过程中,相关工作人员往往评价之前自身的工作经验进行,但是,如果加入转向剂的速度过快或者是过慢,都会影响到压裂操作的质量。
2 强制裂缝转向压裂技术2.1 工艺原理在强制性裂缝实现转向压裂过程中,为了能够促使该项操作稳步进行的同时,确保能够满足裂缝转向需要的最高的限定压力,相关工作人员就必须先对重复压裂的目的进行分析,然后准确的计算出重复压裂层最小与最大水平主应力差。
重复压裂应力场变化规律研究与应用资料重复压裂是一种在油气井完井过程中常用的提高油气产量的技术手段。
重复压裂技术通过多次施工压裂,能够显著提高储层中的有效裂缝数量和长度,从而增加油气储层的渗透率,促进油气的流动和产出。
重复压裂应力场变化规律的研究与应用资料对于优化重复压裂设计和提高储层压裂效果至关重要。
重复压裂的应力场变化规律主要包括两个方面:首次压裂的应力重分布和后续压裂的应力补偿效应。
首次压裂的应力重分布是指在首次施工压裂后,原本平衡的地层应力分布发生了变化,形成了一个新的应力场。
后续压裂的应力补偿效应是指在后续施工压裂过程中,由于之前的压裂裂缝存在的影响,地层应力场会发生一定的变化。
重复压裂技术要求在后续施工中合理地利用首次压裂的应力重分布和后续压裂的应力补偿效应,以达到增加储层有效裂缝数量和长度的目的。
为了深入研究重复压裂的应力场变化规律,可以采用以下几种方法和途径:1.数值模拟仿真:利用地质和工程参数,在计算机上建立数学模型,采用有限元或有限差分方法等数值计算技术,模拟地层的应力变化及裂缝扩展过程。
通过对比不同条件下的模拟结果,可以分析重复压裂应力场变化规律。
2.现场观测实验:在实际压裂过程中,采集并记录压裂过程中的关键参数,如压力、位移、变形等数据。
通过对这些数据的分析和整理,可以获得不同压裂次数下的应力场变化规律。
3.监测技术应用:利用现代地震监测等技术手段,实时监测油气井周围的地下应力变化。
通过分析监测数据,可以获取重复压裂后地下应力场的变化情况,并验证数值模拟结果的准确性。
重复压裂应力场变化规律的研究对于优化重复压裂设计和提高储层压裂效果具有重要意义。
通过合理设计重复压裂参数和工艺流程,可以最大限度地利用首次压裂的应力重分布和后续压裂的应力补偿效应,增加储层的有效裂缝数量和长度,提高油气产量。
同时,重复压裂应力场变化规律的研究对于油气井工程实践也有重要的指导意义。
将研究成果应用于实际工程,可以指导工程师在施工过程中合理选择重复压裂的次数和间隔,从而提高工程的经济效益和产能效果。
重复压裂机理
经过初次压裂的油气田,在初次压裂后的一段时期内,初次支撑压裂裂缝、自然裂缝和储层区域流体的变化可能会导致油孔和压裂裂缝所形成的椭圆区域的压力分布产生相应的变化。
在最小诱导应力与裂缝平行时,由于石油的不断开采和重复压裂等原因,裂缝旁边的诱导应力区域将被拉长,从而导致最大和最小水平应力反向。
由于诱导应力的影响,重复压裂裂缝方向将垂直于主裂缝直到边界的椭圆区域。
在区域的边界上,两个水平应力是相同的,在椭圆形区域的外部,重复压裂裂缝的方向将扭转并且最终将与第一次产生的裂缝平行。
重复压裂过程中,在两个水平应力作用下产生诱导应力,在射孔孔眼附近,新的裂缝将在最小应力的方向上逐渐形成。
在射孔孔眼和第一次压裂的裂缝附近,如果最小水平应力和最大诱导应力之和比之前的椭圆区域要大,那么新产生的裂缝方向将与第一次产生的裂缝方向相垂直。