2 k Fp 3l
1k 3
1 k
3 0 2 k Fp 3l
解得:
Fpcr1
1 3
kl
,
Fpcr2 kl
位移有无穷多个解,该状态下的体系为临界平衡状态
问题:荷载大于临界荷载时位移y1,y2也只有0解
16.3 有限自由度体系的稳定—能量法
总势能驻值原理(stationary principle of total potential energy) 体系静稳定平衡条件:
单自由度体系静力法求临界荷载(P216)
x
Δ Fp
B
θ
A y
MAB= kθ
l
解:设转角,位移 l
平衡方程: M A 0 Fpl M AB 0
M AB k 代入得: Fpl k 0
有非0解的条件
Fp
k l
临界荷载:
Fpcr
k l
问题:荷载大于临界荷载时角位移也只有0解
单自由度体系静力法求临界荷载例
对于完善体系的分支点失稳,无论采用小挠度理 论,还是大挠度理论,所得临界荷载值是相同的。
16.3 有限自由度体系的稳定—静力法
讨论分支点失稳问题,按小挠度理论求临界荷载
1、静力法
计算思路 假定体系处于微变形的临界状态,列出相应的平衡方程, 进而求解临界荷载。
计算步骤 (1)确定基本未知位移,取隔离体、建立静力平衡方程。 (2)建立平衡方程中位移有非0解条件的稳定方程(特征方 程)。 (3)求解稳定方程的临界荷载。 (4)求解稳定方程的特征向量, 绘失稳形式图(buckling mode)。
了性质上的突变,带有突然性。
临界状态
P
P>Pc r
分支点