解三角形常见类型及解法
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
《解三角形》常见题型总结1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1 在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:::1:2:3,A .,,,6321::sin :sin :sin sin:sin:sin:1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC 中,已知C=30°,求a+b 的取值范围。
【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。
解:∵C=30°,sin sin sin sin 30a b c A B C ===︒∴(150°-A ).∴°·2sin75°·cos(75°-A)=2cos(75°-A)① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2cos75°=2×4综合①②可得a+b 的取值范围为考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
解三角形的实用方法在几何学中,解三角形是一项重要的任务,它涉及到通过给定的边长或角度来确定三角形的其他未知量。
本文将介绍几种常见的实用方法来解决三角形问题。
一、已知边长解三角形当我们已知三角形的三条边长时,可以使用余弦定理和正弦定理来求解三个内角。
接下来以边长分别为a、b、c,内角为A、B、C的三角形为例进行说明。
1. 余弦定理余弦定理给出了两边和夹角余弦之间的关系:c² = a² + b² - 2abcosC,b² = a² + c² - 2accosB,a² = b² + c² - 2bccosA。
根据这些公式,我们可以计算出三个内角的余弦值,然后使用反余弦函数得出最终结果。
2. 正弦定理正弦定理描述了三角形的边与其对应角的正弦之间的关系:sinA/a= sinB/b = sinC/c。
根据这个公式,我们可以计算出三个内角的正弦值,然后使用反正弦函数得出最终结果。
通过以上两个定理,我们可以根据已知的边长求解三角形的内角。
二、已知角度解三角形当我们已知三角形的一个内角以及与该角相对应的两个边长时,可以使用正弦定理和余弦定理求解三角形的其他未知量。
1. 正弦定理根据正弦定理,我们可以得到一个方程,用于计算三角形的边长:a/sinA = b/sinB = c/sinC。
通过已知的内角和两个边长,可以解出第三边的长度。
2. 余弦定理如果我们已知一个角和两个边长,可以使用余弦定理求解三角形的一条边:c² = a² + b² - 2abcosC,b² = a² + c² - 2accosB,a² = b² + c² -2bccosA。
通过以上两个定理,我们可以根据已知的角度和边长求解三角形的其他未知量。
三、特殊三角形的解法除了上述方法外,特殊三角形也有一些独特的解法。
解题宝典解三角形是高中数学中的重要内容,也是高考数学必考的知识.通过对近几年高考试题的分析,可发现解三角形问题主要有:三角形的解的个数问题、三角形的面积问题以及三角形的边长问题,且不同题目的考查形式和考查知识点均有所不同,同学们应注意区分与鉴别.本文结合例题,对这三类解三角形问题的特点和解法进行介绍,希望对同学们有所帮助.一、三角形的解的个数问题解三角形是指已知三角形的某些边、角,求其他边、角.三角形的解有一个、二个或者无数个.在解答三角形的解的个数问题时,先要仔细审题,明确哪些边、角是已知的,哪些是未知的;然后灵活运用正余弦定理、勾股定理、三角函数的定义来解三角形.一般地,若已知的角较多,则运用正弦定理来建立关系式;若已知的边较多,则运用余弦定理进行求解;若三角形为直角三角形,可直接运用勾股定理和三角函数的定义解题.例1.根据下列条件判断三角形的解的情况,正确的个数是().①a=8,b=16,A=30°,该三角形有2个解②b=18,c=20,B=60°,该三角形有1个解③a=15,b=2,A=90°,该三角形无解④a=40,b=30,A=120°,该三角形有1个解A.1B.2C.3D.4解:对于①,由正弦定理asin A=b sin B可得sin B=16×sin30o8=1,而B∈()0,π,所以B只有1个解,故三角形只有1个解,所以①错误;对于②,由正弦定理bsin B=c sin C可得sin C=20sin60°18=539,因为b<c,所以C>B=60°,则C有2个解,故三角形有2个解,所以②错误;对于③,由正弦定理asin A=b sin B可得sin B=2sin90°15=215,因为B∈()0,π,所以A=π2,则B有1个解,故三角形只有1个解,所以③错误;对于④,由正弦定理asin A=b sin B可得sin B=30×sin120°40=338,因为B∈()0,π,所以A=2π3,则B有1个解,故三角形只有1个解,所以④正确;综上可知,本题的正确答案为A项.①②③④中都给出了三角形的两边长和其中一个角的度数,只需根据正弦定理建立关系式,再结合正弦函数的值域和三角形内角的取值范围,判断角的可能取值,即可确定三角形的解的个数.二、三角形的面积问题三角形的面积问题比较常见,通常要根据题目中给出的条件选择合适的面积公式解题.常用的三角形面积公式主要有三种:S=12ah、S=12ab sin C、S=p(p-a)(p-b)(p-c),其中a、b、c为三角形的三条边长,h为三角形的高线长,p=a+b+c2.一般地,若已知或容易求得三角形的一个角,则运用S=12ab sin C求三角形的面积;若已知三角形的高线长,则用S=12ah求三角形的面积;若已知三角形的三边长,往往用S=p()p-a()p-b()p-c求三角形的面积.在解题时,要注意灵活运用正余弦定理、勾股定理、三角函数的定义进行边角互化.例2.已知△ABC的内角A,B,C的对边分别为a,b,c,若sin A+3cos A=0,a=2,b=27.设D为BC边上的一点,且AD⊥AC,求△ABD的面积.解:(1)由sin A+3cos A=0可得:tan A=-3,所以A=2π3.在△ABC中,由余弦定理得28=4+c2-4c cos2π3,即c2+2c-24=0,解得c=4.由AD⊥AC可得∠CAD=π2,37所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ⋅AD ⋅sin π612AC ⋅AD =1.又△ABC 的面积为12×4×2×sin2π3=23,所以△ABD 的面积为3.解答本题,需先根据余弦定理和特殊角的正弦函数值求得边长c ;然后根据直角三角形中的边角关系求得∠BAD 的大小,即可根据三角形的面积公式S =12ah 、S =12ab sin C 求得△ABD 的面积、△ACD 的面积、△ABC 的面积.例3.设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a ()sin A -sin C =b sin B -c sin C ,且b ()sin A +sin C sin B=8,b =4,求△ABC 的面积.解:由余弦定理可得b 22+c 2-2ac cos B ,则cos B =12,即sin B 因为a ()sin A -sin C =b sin B -c sin C ,由正弦定理可得a 2-ac =b 2-c 2,整理得a 2+c 2-ac =b 2,所以b ()a +c b=8,可得a 2+c 2-b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B =()a +c 2-2ac -2ac cos B ,则16=64-3ac ,解得ac =16,所以S △ABC =12ac sin B =1243.首先根据正余弦定理将已知条件转化为三角形的边的关系,得到a 2+c 2-ac =b 2和b ()a +c b=8;然后再次运用余弦定理求出sin B 和ac 的值,并将其代入面积公式S =12ab sin C 中,即可得到△ABC 的面积.三、三角形的边长问题解答三角形的边长问题,需灵活运用正弦定理:a sin A =b sin B =c sin C=2R 、余弦定理:b 2=a 2+c 2-2ac cos B 、勾股定理:a 2+b 2=c 2.在解答三角形的边长问题时,可先根据题意画出图形,以确定三角形的边、角的位置,以及对边、对角;然后根据题意明确哪些边长、角度是已知的,哪些是要求的;再根据正弦定理、余弦定理列式,通过计算,求得边长.例4.如图,在锐角△ABC 中,sin∠BAC =2425,sin∠ABC =45,BC =6,点D 在边BC 上,且BD =2DC ,点E 在边AC 上,且BE ⊥AC ,BE 交AD 于点F .求AC 和AF 的长.解:在锐角△ABC 中,sin∠BAC=2425,sin∠ABC =45,BC =6,由正弦定理可得:AC sin ∠ABC =BCsin ∠BAC,所以AC =BC sin ∠ABCsin ∠BAC=6×452425=5.因为sin ∠BAC =2425,sin ∠ABC =45,所以cos ∠BAC =725,cos ∠ABC =35,所以cos C =-cos (∠BAC +∠ABC )=-cos ∠BAC cos ∠ABC +sin ∠BAC sin ∠ABC =35.因为BE ⊥AC ,所以CE =BC cos C =6×35=185,AE =AC -CE =75.在△ACD 中,AC =5,CD =13BC =2,cos C =35,由余弦定理可得AD =AC 2+DC 2-2AC ⋅DC cos C=25+4-12=17,所以cos ∠DAC =AD 2+AC 2-CD 22AD ⋅AC =17+25-41017=191785.由BE ⊥AC ,得AF cos ∠DAC =AE ,所以AF =75191785=71719.解答本题,要先在锐角△ABC 中,根据正弦定理求得AC 的长以及cos C ;然后在△ACD 中,根据余弦定理求得AD 的长和cos∠DAC ,即可在Rt△AFE 中,根据勾股定理求得AF 的长.解答三角形问题,要注意:(1)要灵活运用正余弦定理、勾股定理进行边角互化;(2)挖掘有关三角形的边、角的隐含条件;(3)选用合适的公式、定理进行求解;(4)学会借助图形来辅助解题.(作者单位:贵州省岑巩县第一中学)解题宝典38。
解三角形题型及解题方法(初中)在初中数学中,解三角形是一个重要的知识点,它涉及到三角形的性质、定义、概念、特点和规律等多个方面。
解三角形题型多样,解法灵活,需要掌握一定的方法和技巧。
下面我们将详细探讨解三角形的题型及解题方法,并通过具体的例子来加深理解。
一、三角形的概念与性质1. 三角形的概念三角形是由三条线段首尾顺次连接围成的平面图形。
这三条线段被称为三角形的边,相邻两边所夹的角被称为三角形的角。
2. 三角形的性质(1)三角形具有稳定性,即三角形的形状和大小在不受外力作用时保持不变。
(2)三角形的内角和为180°。
(3)三角形具有边边边(SSS)、边角边(SAS)、角边角(ASA)和角角边(AAS)等全等判定条件。
(4)三角形具有中线、高线、角平分线等重要的线段。
二、解三角形的常见题型1. 已知两边及夹角求第三边例1:在△ABC中,已知AB=5cm,AC=3cm,∠BAC=60°,求BC的长。
解法:利用余弦定理,有BC²= AB²+ AC²- 2 ×AB ×AC ×cos∠BAC= 5² + 3² - 2 × 5 × 3 × cos60°= 25 + 9 - 30 × 0.5= 34 - 15= 19所以,BC = √19cm。
技巧:当已知两边及夹角时,通常使用余弦定理求解第三边。
2. 已知三边求角例2:在△ABC中,已知AB=5cm,AC=3cm,BC=4cm,求∠BAC的度数。
解法:利用余弦定理,有cos∠BAC = (AB²+ AC²- BC²) / (2 ×AB ×AC)= (5² + 3² - 4²) / (2 × 5 × 3)= (25 + 9 - 16) / 30= 18 / 30= 0.6所以,∠BAC = arccos(0.6)。
解直角三角形的基本类型及解法解直角三角形是初中数学中的重要内容之一,也是后续高中数学和物理学的基础。
解直角三角形的基本类型及解法是学习这一内容的关键。
下面将为大家介绍关于“解直角三角形的基本类型及解法”的相关内容。
一、基本类型1. 已知两边求斜边在直角三角形中,如果已知其中两条边的长度,那么通过勾股定理可以求出第三条边(即斜边)的长度。
勾股定理是一种用勾股定理求斜边的基本方法,即a²+b²=c²。
其中a、b分别为直角三角形的两个直角边,c为斜边的长度。
2. 已知斜边求直角边如果已知斜边和另一条直角边的长度,那么可以使用直角三角形定理来求出另外一条直角边的长度。
这个定理是勾股定理的一个特例,即c²=a²+b²。
其中c为斜边的长度,a、b为直角三角形的两条直角边的长度。
3. 已知三角形内角求其它角的大小在直角三角形中,根据三角形内角的和为180°,其中一个直角角度已知,另外一个角度可以用90°来计算,从而可以求出第三个角度的值。
因为在直角三角形中,除直角外的另外两个内角一定是锐角或钝角,所以得到的答案只能是其中一个锐角或一个钝角的大小。
二、解法1. 勾股定理解法勾股定理是解直角三角形的基本公式,在题目中如果已知两条边中的任何一条边和直角,则可以使用勾股定理求出第三边的长度。
此方法适用于已知两个边长,求第三条边长的情况。
2. 直角三角形定理解法在已知直角和一条直角边的情况下,可以利用直角三角形定理来确定另外一个边的长度。
在这种情况下,直角三角形定理c²=a²+b²可以用来求解问题。
如果仅知道斜边和其中一个直角边,则可以利用直角三角形定理求解另一个直角边的长度。
3. 正弦定理及余弦定理解法在某些情况下,可能需要求解一个已知的直角三角形内的其它角度,此时可以使用正弦定理或余弦定理。
正弦定理是指sinA/a=sinB/b=sinC/c,其中A、B、C为任意三角形的角度,a、b、c为对应边的长度。
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
第11关 解直角三角形(讲义部分)知识点1 解直角三角形1.已知一边一角(1)已知斜边和一锐角分别为A c ,,解法:,90A B ∠-=∠,sin A c a =A c B c b cos sin ==(2)已知一直角边和一锐角分别为A a ,,解法:,90A B ∠-=∠,tan B a b =A a c sin =2.已知两边(1)已知两直角边b a ,,解法:由baA =tan 求出A ∠,,90A B ∠-=∠ A bA a c cos sin ==(2)已知一直角边和斜边分别为c a ,,解法:由c aA =sin 求出A ∠,,90AB ∠-=∠A cB c b cos sin ==解直角三角形的关键是合理的选用边角关系,包括勾股定理、直角三角形的两个直角互余及锐角三角函数的概念.题型1 解直角三角形【例1】如图,AD 是ABC ∆的中线,1tan 3B =,cosC =,AC =(1)BC 的长; (2)sin ADC ∠的值.【解答】解:(1)过点A 作AE BC ⊥于点E ,cos C =, 45C ∴∠=︒,在Rt ACE ∆中,cos 1CE AC C ==, 1AE CE ∴==,在Rt ABE ∆中,1tan 3B =,即13AE BE =,33BE AE ∴==, 4BC BE CE ∴=+=;(2)AD 是ABC ∆的中线,122CD BC ∴==,1DE CD CE ∴=-=, AE BC ⊥,DE AE =, 45ADC ∴∠=︒,sin ADC ∴∠.【点评】本题考查的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注 意锐角三角函数的概念的正确应用.【例2】如图,在四边形ABCD 中,90ABC ∠=︒,45C ∠=︒,CD =,3BD =. (1)求sin CBD ∠的值; (2)若3AB =,求AD 的长.【解答】解:(1)如图,过点D 作DE BC ⊥于点E ,在Rt CED ∆中,45,C CD ∠=︒,1CE DE ∴==,在Rt BDE ∆中,1sin 3DE CBD BD ∠==; (2)过点D 作DF AB ⊥于点F , 则90BFD BED ABC ∠=∠=∠=︒, ∴四边形BEDF 是矩形,1DE BF ∴==, 3BD =,∴DF =2AF AB BF ∴=-=,∴AD =【点评】本题考查了锐角三角函数及矩形、等腰三角形的知识.构造直角三角形和矩形,利用锐角三角函数是解决本题的关键.【例3】如图,在等腰Rt ABC ∆中,90C ∠=︒,8AC =,D 是AC 上一点,若1tan 3DBA ∠=. (1)求AD 的长; (2)求sin DBC ∠的值.【解答】解:(1)过点D 作DH AB ⊥于点H ,ABC ∆为等腰直角三角形,90C ∠=︒,45A ∴∠=︒,8AC BC ==, AH DH ∴=,设AH x =,则DH x =1tan 3DBA ∠=, 3BH x ∴=, 4AB x ∴=,由勾股定理可知:ABx ∴=由勾股定理可得,4AD ==;(2)4AD =,4DC AC AD ∴=-=,由勾股定理得,DB =sinCD DBC BD ∴∠===【点评】本题考查的是解直角三角形,掌握锐角三角函数的定义、勾股定理是解题的关键.【例4】如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知36α∠=︒,求长方形卡片的周长.(精确到1)mm (参考数据:sin360.60︒≈,cos360.80︒≈,tan360.75)︒≈【解答】解:作BE l ⊥于点E ,DF l ⊥于点F .1801809090,90,36.DAF BAD ADF DAF ADF αα+∠=︒-∠=︒-︒=︒∠+∠=︒∴∠==︒根据题意,得24BE mm =,48DF mm =. 在Rt ABE ∆中,sin BEABα=, ∴2440sin360.60BE AB mm ===︒在Rt ADF ∆中,cos DFADF AD∠=, ∴4860cos360.80DF AD mm ===︒.∴矩形ABCD 的周长2(4060)200mm =+=.【点评】本题考查矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.【例5】阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD 中,90A C ∠=∠=︒,60D ∠=︒,AB =BC AD 的长.小红发现,延长AB 与DC 相交于点E ,通过构造Rt ADE ∆,经过推理和计算能够使问题得到解决(如图2). 请回答:AD 的长为 . 参考小红思考问题的方法,解决问题: 如图3,四边形ABCD 中,1tan 2A =,135B C ∠=∠=︒,9AB =,3CD =,求BC 和AD 的长.【解答】解:(1)延长AB 与DC 相交于点E ,在ADE ∆中,90A ∠=︒,60D ∠=︒,30E ∴∠=︒.在Rt BEC ∆中,90BCE ∠=︒,30E ∠=︒,BC =2BE BC ∴==AE AB BE ∴=+==在Rt ADE ∆中,90A ∠=︒,30E ∠=︒,AE =tan 6AD AE E ∴=∠==. 故答案为6;(2)如图,延长AB 与DC 相交于点E .135ABC BCD ∠=∠=︒, 45EBC ECB ∴∠=∠=︒, BE CE ∴=,90E ∠=︒.设BE CE x ==,则BC =,9AE x =+,3DE x =+. 在Rt ADE ∆中,90E ∠=︒,1tan 2A =,∴12DE AE =,即3192x x +=+, 3x ∴=.经检验3x =是所列方程的解,且符合题意,BC ∴=12AE =,6DE =,AD ∴=【点评】本题考查的是解直角三角形,勾股定理,根据题意作出辅助线,构造出直角三角形是解 答此题的关键.【例6】如图,在Rt ABC ∆中,90C ∠=︒,斜边AB 的垂直平分线分别交AB 、BC 于点E 和点D ,已知:2BD CD =(1)求ADC ∠的度数;(2)利用已知条件和第(1)小题的结论求tan15︒的值(结果保留根号).【解答】解:(1)连接AD ,如图.设2BD k =,则CD =.DE 垂直平分AB , 2AD BD k ∴==. 在Rt ACD ∆中, 90C ∠=︒,cos CD ADC AD ∴∠===, 30ADC ∴∠=︒;(2)AD BD =, B DAB ∴∠=∠.30ADC ∠=︒,B DAB ADC ∠+∠=∠, 15B DAB ∴∠=∠=︒. 在Rt ACD ∆中, 90C ∠=︒,∴AC k .在Rt ABC ∆中90C ∠=︒,∴tan 2AC B BC ===-∴tan152︒=-【点评】本题主要考查了三角函数的定义、特殊角的三角函数值、勾股定理等知识,利用已知条 件和第(1)小题的结论是解决第(2)小题的关键.知识点2 解直角三角形综合题型2 解直角三角形综合【例7】如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30︒角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).【解答】解:过B 点作1BE l ⊥,交1l 于E ,CD 于F ,2l 于G .在Rt ABE ∆中,1sin302010BE AB km =︒=⨯=,在Rt BCF ∆中,cos3010BF BC =÷︒=,201sin30CF BF =︒==,(30DF CD CF km =-=,在Rt DFG ∆中,1sin30(30(152FG DF km =︒=⨯=,(25EG BE BF FG km ∴=++=+.故两高速公路间的距离为(25km +.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题 转化为数学问题加以计算.【例8】如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离75OA =厘米.展开小桌板使桌面保持水平,此时CB AO ⊥,37AOB ACB ∠=∠=︒,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈【解答】解:延长CB 交AO 于点D .CD OA ∴⊥,设BC x =,则75OB x =-,在Rt OBD ∆中,cos OD OB AOB =∠,sin BD OB AOB =∠, (75)cos370.8(75)600.8OD x x x ∴=-︒=-=-,(75)sin370.6(75)450.6BD x x x =-︒=-=-, 在Rt ACD ∆中,tan AD DC ACB =∠,(450.6)tan370.75(0.445)0.333.75AD x x x x ∴=+-︒=+=+, 75AD OD OA +==,0.333.75600.875x x ∴++-=, 解得37.5x =. 37.5BC ∴=;故小桌板桌面的宽度BC 约为37.5cm .【点评】本题考查了解直角三角形的应用,解题的关键是正确构造直角三角形并求解.【例9】如图, 望湖公园装有新型路灯, 路灯设备由灯柱AC 与支架BD 共同组成 (点C 处装有安全监控, 点D 处装有照明灯) ,AC 与地面垂直,BC 为 1.5 米,BD 为 2 米,AB 为 7 米,60CBD ∠=︒,某一时刻, 太阳光与地面的夹角为37︒,求此时路灯设备整体在地面上的影长为多少?(参 考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈【解答】解: 如图, 过点D 作光线的平行线, 交地面于点G ,交射线AC 于点F ,过点D 作 DE AF ⊥于点E ,在Rt DBE ∆中, 60CBD ∠=︒, 30BDE ∴∠=︒, 2BD =,sin301BE BD ∴=︒=,cos30DE BD =︒, 在Rt FED ∆中, 37AGF ∠=︒, 37EDF ∴∠=︒,tan37EF ED ∴=︒=, 7AB =,718AF AB BE EF ∴=++=++=. 33874+>,∴此时的影长为AG .在Rt AFG ∆中,32tan373AF AG ==︒答: 此刻路灯设备在地面上的影长为32(3米 .【点评】此题考查了解直角三角形,用到的知识点是锐角三角函数、三角形内角和定理,关键是根据题意画出图形,构造直角三角形.第11关 解直角三角形(题册部分)【课后练1】如图,在Rt ABC ∆中,设a ,b ,c 分别为A ∠,B ∠,C ∠的对边,90C ∠=︒,8b =,A ∠的平分线AD =B ∠,a ,c 的值.【解答】解:90C ∠=︒,8b =,A ∠的平分线ADcos AC CAD AD ∴∠===30CAD ∴∠=︒, 60CAB ∴∠=︒, 30B ∴∠=︒,216c b ∴==,tan30b a ===︒,即30B ∠=︒,a =16c =.【课后练2】如图,在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线与AB ,BC 分别交于点E 和点D ,且2BD AC =. (1)求B ∠的度数.(2)求tan BAC ∠(结果保留根号).【解答】解:(1)连接AD .DE 垂直平分线段AB , DA DB ∴=, B DAB ∴∠=∠, 2BD AC =, 2AD AC ∴=, 90C ∠=︒, 30ADC ∴∠=︒,ADC DAB B ∠=∠+∠, 15B ∴∠=︒.(2)设AC a =,则2AD BD a ==,CD =,2BC a =+,tan 2BC BAC AC ∴∠==【课后练3】如图,在ABC ∆中,45B ∠=︒,5AC =,3cos 5C =,AD 是BC 边上的高线. (1)求AD 的长;(2)求ABC ∆的面积.【解答】解:(1)AD BC ⊥,90ADC ADB ∴∠=∠=︒. 在Rt ACD ∆中,5AC =,3cos 5C =, cos 3CD AC C ∴==, 4AD AC ∴=-=.(2)45B ∠=︒,90ADB ∠=︒,9045BAD B ∴∠=︒-∠=︒,B BAD ∴∠=∠,4BD AD ∴==, 114(43)1422ABC S AD BC ∆∴==⨯⨯+=.【课后练4】如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH 上,除D 点外,其他顶点均在矩形EFGH 的边上.50AB cm =,40BC cm =,55BAE ∠=︒,求EF 的长.参考数据:sin550.82︒=,cos550.57︒=,tan55 1.43︒=.【解答】解:在直角三角形ABE 中,50AB cm =,55BAE ∠=︒,sin 50sin55500.8241BE AB BAE ∴=∠=︒=⨯=.ABCD 是矩形,55CBF BAE ∴∠=∠=︒,∴在直角三角形BCF 中,40BC cm =,55CBF ∠=︒,cos 40cos55400.5722.8BF BC CBF ∴=∠=︒=⨯=.4122.863.8EF BE BF ∴=+=+=.所以EF 的长为63.8cm .【课后练5】某片绿地形状如图所示,其中AB BC ⊥,CD AD ⊥,60A ∠=︒,200AB m =,100CD m =,求AD 、BC 的长.(精确到1m 1.732)≈【解答】解:如图,延长AD ,交BC 的延长线于点E ,在Rt ABE ∆中,200AB m =,60A ∠=︒,tan BE AB A ∴==,400cos60AB AE m ==︒, 在Rt CDE ∆中,100CD m =,9030CED A ∠=︒-∠=︒,2200CE CD m ∴==,tan CD DE CED==∠,400227AD AE DE m ∴=-=-≈,200146BC BE CE m =-=-≈.答:AD 的长约为227m ,BC 的长约为146m .【课后练6】如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点,某人在点A 处测得90CAB ∠=︒,30DAB ∠=︒,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得60DEB ∠=︒,求C 、D 两点间的距离.【解答】解:过点D 作1l 的垂线,垂足为F ,60DEB ∠=︒,30DAB ∠=︒,30ADE DEB DAB ∴∠=∠-∠=︒,ADE ∴∆为等腰三角形,20DE AE ∴==,在Rt DEF ∆中,1cos6020102EF DE =︒=⨯=, DF AF ⊥,90DFB ∴∠=︒,//AC DF ∴,由已知12//l l ,//CD AF ∴,∴四边形ACDF 为矩形,30CD AF AE EF ==+=,答:C 、D 两点间的距离为30m .。
解直角三角形的基本类型及解法直角三角形是一种特殊的三角形,其中一个内角为直角(即90度)。
解直角三角形的基本类型及解法是初中数学中非常重要的一部分。
本文将详细介绍直角三角形的基本类型和解法,并给出一些例题。
一、基本类型直角三角形的基本类型包括三种情况:已知两条直角边,已知直角边和一条锐角边,已知一个直角边和一条直角边上的中线(中线一端是直角边,另一端平分对边)。
情况一:已知两条直角边此时可以直接用勾股定理进行计算。
勾股定理又称毕达哥拉斯定理,它指出:直角三角形两条直角边的平方和等于斜边的平方。
即a² + b² = c²,其中a、b分别为直角边,c为斜边。
情况二:已知直角边和一条锐角边此时需要利用正弦定理、余弦定理或解直角三角形的“特殊三角形”。
正弦定理指出,对于任意三角形ABC,有sinA/a=sinB/b=sinC/c。
对于直角三角形ABC,可以得到sinA/a=sinB/b=1/c,即c=b/sinB。
余弦定理指出,对于任意三角形ABC,有a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC。
对于直角三角形ABC,可以得到a²=b²+c²,即代码中常见“a²+b²=c²” 的形式。
“特殊三角形”指的是30度-60度-90度和45度-45度-90度两种特殊情况。
这两种直角三角形的比例关系可以用解方程的方法求得。
30度-60度-90度三角形中,大边对应60度,小边对应30度,斜边对应90度。
而45度-45度-90度三角形中,两条直角边相等,斜边是直角边的根号二倍。
情况三:已知一个直角边和一条直角边上的中线因为中线是直角边的一半,此时可以利用勾股定理计算求出另一条直角边,然后按照情况一或情况二的方法来求解。
解直角三角形题型的解法
直角三角形是一个非常基础的三角形,但在初中数学中却是一
个非常重要的知识点。
解直角三角形问题并不难,下面我将分享几
种解法。
方法一:勾股定理
勾股定理是解直角三角形问题中最常用的方法,根据这个定理,直角三角形的两个直角边的平方和等于斜边的平方。
因此,我们可
以通过已知两条边求第三条边的长度。
例如,如果我们知道直角三
角形的一条直角边长为3,另一条直角边长为4,那么我们可以通
过勾股定理求得斜边长,即5。
方法二:正弦定理
正弦定理适用于已知一个角和两边,求另一边的长度。
正弦定
理公式为:a/sinA = b/sinB = c/sinC。
其中a、b、c分别为三角形中
的边,A、B、C为对应的角度。
例如,如果我们已知三角形的一
个角度为30度,其对边长为5,且斜边长为10,那么我们可以通
过正弦定理求得该直角三角形的另一直角边长为5根3。
方法三:余弦定理
余弦定理适用于已知三角形的任意两边及它们之间夹角,求第三边长度的情况。
余弦定理公式为:c²=a²+b²-2ab*cosC。
其中c为求解的第三边长度,a、b为已知边的长度,C为它们之间的夹角。
例如,如果我们已知直角三角形的两个直角边长分别为3和4,夹角为90度,那么我们可以通过余弦定理求得斜边长,即5。
通过上述三种方法,我们可以解决绝大多数直角三角形问题。
当然,在应用定理时,我们需要确保我们有足够的信息来求解。
学好这些方法,相信解直角三角形问题将变得非常简单明了。
解三角形判断有几个解解三角形判断有几个解:a小于b,sinA无解;a小于等于b,无解;a=b,sinA一解;a大于b,一解;其余的两解。
已知条件:一边和两角一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。
已知条件:两边和夹角一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。
已知条件:三边一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。
已知条件:两边和其中一边的对角一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。
(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;②若b>a,且b>a>bsinA有两解;③若a<bsinA则无解。
正弦定理a/sinA=b/sinB=c/sinC=2R2R在同一个三角形中是恒量,R是此三角形外接圆的半径。
变形公式1a=2RsinA,b=2RsinB,c=2RsinC2sinA:3asinB=bsinA,asinC=csinA,bsinC=csinB4sinA=a/2R,sinB=b/2R,sinC=c/2R面积公式5S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h原始公式余弦定理a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC注:勾股定理其实是余弦定理的一种特殊情况。
变形公式cosC=a2+b2-c2/2abcosB=a2+c2-b2/2accosA=c2+b2-a2/2bc感谢您的阅读,祝您生活愉快。
解直角三角形的常见模型及思路
1、直角三角形常见模型
直角三角形是最常见的几何图形,用于在特定的情况下进行计算,并且能够求出三角形内部和外部特征,如长度、面积等。
一、正弦定理
正弦定理是解决直角三角形的一种常见模型,用于求解三角形的面积,即有:
S=1/2×a×b×sinC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度。
二、勾股定理
勾股定理是一种经典的角三角形解模型,可以根据三条边的长度求出其它两边的长度,即:
a2+b2=c2
其中a和b分别表示直角三角形的两条直角边,而c表示其斜边的长度。
三、余弦定理
余弦定理是解直角三角形的一种常用方法,可以根据三角形已知的两边长度,求出其它一边的长度,即:
c2=a2+b2-2ab×cosC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度,c表示其斜边的长度。
2、解直角三角形的思路
解决直角三角形的一般思路为:
(1) 根据题目给出的信息,判断已知的三条边的长度;
(2) 根据已知的信息,选择合适的解法,运用正弦定理、勾股定理或余弦定理等,求出未知边及其他相关参数;
(3) 根据求出的参数,进一步判断直角三角形的形状及其它参数;
(4) 如果题目要求,调用各种函数,求出需要的参数,如面积、周长、外接圆半径等。
高三数学解三角形知识点在高三数学中,解三角形是一个重要的知识点。
解三角形的目的是根据已知条件求出三角形的各个边长和角度。
通过解三角形,我们可以更好地理解三角形的性质和关系,同时也为解决实际问题提供了基础。
一、三角形的基本定理解三角形的第一步是熟悉三角形的基本定理。
其中最重要的三个定理是正弦定理、余弦定理和正切定理。
1. 正弦定理:对于任意三角形ABC,设边长分别为a,b,c,而对应的角为A,B,C,则有以下公式成立:a/sinA=b/sinB=c/sinC2. 余弦定理:对于任意三角形ABC,设边长分别为a,b,c,而对应的角为A,B,C,则有以下公式成立:a^2=b^2+c^2-2bc*cosA3. 正切定理:对于任意三角形ABC,设边长分别为a,b,c,而对应的角为A,B,C,则有以下公式成立:tanA=(b-c)/(b+c)这三个基本定理是解三角形的基础,我们可以利用这些定理来解决各种不同类型的三角形问题。
二、特殊角度的解法在解三角形的过程中,我们会遇到一些特殊角度,如30度、45度和60度。
对于这些角度,我们可以使用特殊三角形的知识来求解。
1. 30度角:对于一个等边三角形,每个角都为60度,因此对于一个等边三角形ABC来说,如果角A为30度,那么边长关系为:AB=AC=BC。
2. 45度角:对于一个等腰直角三角形,其中一个角是45度,那么边长关系为:AB=AC=(1/√2)BC。
3. 60度角:对于一个等边三角形,每个角都为60度,因此对于一个等边三角形ABC来说,如果角A为60度,那么边长关系为:AB=AC=BC。
利用特殊三角形的知识,我们可以在解三角形的过程中更快速地得到结论。
三、解决实际问题解三角形的知识不仅可以帮助我们理解三角形的性质,还能帮助我们解决实际问题。
下面举几个例子来说明。
1. 高度问题: 在测量山的高度时,可以利用三角形的知识解决问题。
通过测量A点到山脚B点的距离和A点到山顶C点的高度,我们可以利用三角形的相似性定理,解算出山的高度。
解三角形题型总结ABC 中的常见结论和定理:一、内角和定理及诱导公式:1.因为A B C ,所以sin( A B) sin C, cos( A B) cosC , tan( A B) tan C ;sin( A C) sin B, cos( A C) cos B, tan( A C) tan B ;sin( B C) sin A, cos(B C) cos A, tan( B C) tan AA B C因为,2 2A B C 所以sin cos2 2 2.大边对大角A B C,cos sin2 2,⋯⋯⋯⋯3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ta·n B ·t anC;(2)A 、B、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A、B、C 成等差数列且a、b、c 成等比数列.二、正弦定理:文字:在ABC 中,各边与其所对角的正弦的比值都相等。
a b c符号:R2 sin A sin B sin C公式变形:①a2R s in A b 2R sin B c 2R s in C (边转化成角)②a b csin A sin B sin C (角转化成边)2R 2R 2R③a : b :c sin A :sin B : sin Ca b c a b c④2Rsin A sin B sin C sin A sin B sin C三、余弦定理:文字:在ABC 中,任意一边的平方,等于另外两边的平方和,减去这两边与它们夹角的余弦值的乘积的两倍。
符号:a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C变形:cos A2b2c2bc2 2a acos B2c2ac2b cos C2a2b2ab2c四、面积公式:(1)S 1 ah (2) 1 ( )S r a b c (其中r 为三角形内切圆半径) a2 2(3) 1 sin 1 sin 1 sinS ab C bc A ac B2 2 2五、常见三角形的基本类型及解法:(1)已知两角和一边(如已知A, B, 边c)解法:根据内角和求出角 C ( A B) ;a b c根据正弦定理R2sin A sin B sin C求出其余两边a,b(2)已知两边和夹角(如已知a,b,C )2 2 2 2 cos 解法:根据余弦定理c a b ab C 求出边c;2 2 2b c a根据余弦定理的变形cos A 求A ;2bc 根据内角和定理求角 B ( AC) .(3)已知三边(如:a, b, c )b 2 2c2 acos A 求A ;解法:根据余弦定理的变形2bc根据余弦定理的变形cos B2a2c2ac2b 求角B ;根据内角和定理求角 C (A B)(4)已知两边和其中一边对角(如:a,b, A)(注意讨论解的情况)解法1:若只求第三边,用余弦定理: 2 2 2 2 cosc a b ab C ;a b c解法2:若不是只求第三边,先用正弦定理R2sin A sin B sin C解,两解或无解的情况,见题型一);求B (可能出现一再根据内角和定理求角 C (A B) ;.先看一道例题:例:在ABC 中,已知b 2 ,求角C。
解直角三角形的方法与技巧直角三角形是一种特殊的三角形,其中一个角度为90度。
在解决几何问题时,了解解直角三角形的方法与技巧能够帮助我们更高效地推导和计算相关的问题。
本文将介绍一些解直角三角形的方法和技巧,希望能够对读者有所启发。
1. 边长关系在直角三角形中,三条边的关系是解题的关键。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
这一关系可以表示为c^2 = a^2 + b^2,其中c表示斜边的长度,a和b分别表示两条直角边的长度。
2. 比例关系直角三角形中,两个角的比例关系也是解题时需要注意的重点。
根据正弦定理和余弦定理,我们可以得到解直角三角形的更多方法。
2.1 正弦定理在直角三角形中,通过正弦定理,我们可以得到以下关系:a/sinA= b/sinB = c/sinC。
其中a、b、c分别表示三个边的长度,A、B、C分别表示与边a、b、c相对的角度。
这一定理可以帮助我们在已知两个边和一个角度的情况下求解其他未知量。
2.2 余弦定理直角三角形中,通过余弦定理,我们可以得到以下关系:c^2 = a^2 + b^2 - 2abcosC。
其中c表示斜边的长度,a和b表示两条直角边的长度,C表示两条直角边之间的夹角。
这一定理可以帮助我们在已知三个边的长度时求解角度。
3. 特殊角度的解法解直角三角形时,特殊角度的解法也是十分常用的。
例如,当一个直角角度等于30度时,另外两个角度分别为60度和90度。
我们可以利用特殊角度的性质,直接计算边长和角度的数值。
4. 应用于实际问题解直角三角形的方法和技巧可以应用于各种实际问题中。
例如,在测量建筑物高度时,可以通过测量直角三角形的底边和仰角来计算建筑物的高度。
在导航中,可以利用直角三角形的边长关系来计算两点之间的距离。
5. 示例与练习为了更好地理解和应用解直角三角形的方法与技巧,我们可以通过一些实例和练习来加深学习。
以下是一些示例题目:5.1 已知一个直角三角形的斜边长为10厘米,一直角边长为6厘米,求另一直角边的长。
高中解三角形,你不得不知的5种解法!在高中数学学习中,解三角形是非常重要的一部分。
掌握解三角形的方法能够帮助我们解决与三角形相关的各种问题。
本文将介绍5种常用的解三角形的方法,帮助你更好地理解和应用。
一、正弦定理正弦定理是解决三角形中的边和角关系的重要工具。
设三角形ABC 的三边长分别为a、b、c,对应的角为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC利用这个定理,我们可以通过已知的两个角和一个边,推导出其他未知的边或角。
二、余弦定理余弦定理也是解决三角形中的边和角关系的重要方法之一。
设三角形ABC的三边长分别为a、b、c,对应的角为A、B、C,则余弦定理可以表达为:c² = a² + b² - 2abcosC利用余弦定理,我们可以通过已知的三个边或两个边和一个角,求解未知的边或角。
三、正切定理正切定理是解决三角形中的边和角关系的另一种方法。
设三角形ABC的三边长分别为a、b、c,对应的角为A、B、C,则正切定理可以表达为:tanA = (2ar)/(a²-b²)tanB = (2br)/(b²-a²)利用正切定理,我们可以通过已知的两个边和一个角,求解未知的边或角。
四、角平分线定理角平分线定理是解决三角形中的角平分线与三边的关系的重要定理。
设角ABC的角平分线为AD,连接点D到边BC的交点为D,则角平分线定理可以表达为:BD/DC = AB/AC利用角平分线定理,我们可以通过已知的两个边,求解未知边或角平分线。
五、相似三角形和比例关系相似三角形和比例关系也是解决三角形问题的重要思想。
如果两个三角形的对应角相等,则称这两个三角形为相似三角形。
在相似三角形中,对应边的比例相等。
利用相似三角形和比例关系,我们可以通过已知的两个三角形,求解未知的边或角。
综上所述,解三角形是高中数学学习中的基础内容,掌握不同的解法能够帮助我们解决各种三角形相关的问题。
解直角三角形的基本类型及解法解直角三角形的基本类型及解法解直角三角形方法很多,灵活多样.解直角三角形是探究直角三角形中边角关系的问题,是现实世界中应用广泛的关系之一,本文是整理解直角三角形的基本类型及解法的资料,仅供参考。
解直角三角形的基本类型及解法解直角三角形注意事项1.尽量使用原始数据,使计算更加准确.2.有的问题不能直接利用直角三角形内部关系解题,•但可以添加合适的辅助线转化为解直角三角形的问题.3.一些较复杂的解直角三角形的问题可以通过列方程或方程组的方法解题.4.解直角三角形的方法可概括为有弦(斜边)用弦(正弦、余弦),无弦有切(正切、余切),宁乘毋除,取原避中其意指:当已知或求解中有斜边时,可用正弦或余弦;无斜边时,就用正切或余切;当所求元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求解时,则取原始数据,忌用中间数据.5.必要时按照要求画出图形,注明已知和所求,•然后研究它们置于哪个直角三角形中,应当选用什么关系式来进行计算.6.要把添加辅助线的过程准确地写在解题过程之中.7.解含有非基本元素的直角三角形(即直角三角形中中线、高、角平分线、•周长、面积等),一般将非基本元素转化为基本元素,或转化为元素间的关系式,再通过解方程组来解.解直角三角形教学案学习目标:1、了解解直角三角形的概念,2、能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学过程:一、情境如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处。
问大树在折断之前高多少米?显然,我们可以利用勾股定理求出折断倒下的部分的长度为= ,+10=36所以,大树在折断之前的高为36米。
二、探索活动1、定义教学:任何一个三角形都有六个元素,______条边、_____个角,在直角三角形中,已知有一个角是_________,我们把利用已知的元素求出末知元素的过程,叫做解直角三角形。
解三角形常见类型及解法
解斜三角形一般注意一下几个方面:首先分析此题属于哪种类型的问题,然后依题意画出示意图,把已知量和未知量标在示意图中,最后确定用哪个定理转化,哪个定理求解,并进行作答.
用正弦余弦定理解决三角形问题的类型:已知两边和其中一条边所对的角有几解,通过作图解释,让他们掌握和理解本质,这些结论什么的根本不用记,从而突破难点
能够应用正弦定理,余弦定理等知识和方法解决一些与测量和集合计算有关的实际问题。
这也是本课时的一个难点,突破这个难点关键是如何将实际问题转化为数学问题,首先画出示意图,将抽象问题形象化,构造三角形,利用三角形的知识来解决。