福建省福州市2013—2014学年九年级上期末质量检测数学试卷
- 格式:pdf
- 大小:115.53 KB
- 文档页数:3
2014年福州市高中毕业班质量检测理科数学试卷(完卷时间:120分钟;满分:150分)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|y =lg x },B ={(x ,y )|x=a },若A ∩B =∅,则实数a 的取值范围是( ). A. a <1 B. a ≤1 C. a <0 D. a ≤02.“实数a =1”是“复数(1)ai i +( a ∈R ,i 为虚数单位)的模为2”的( ). A.充分非必要条件 B.必要非充分条件C.充要条件D.既不是充分条件又不是必要条件 3. 执行如图所示的程序框图,输出的M 的值是( )A .2B .1-C .12D .2- 4. 命题”x R ∃∈,使得()f x x =”的否定是( )A.x R ∀∈,都有()f x x =B.不存在x R ∈,使()f x x ≠C.x R ∀∈,都有()f x x ≠D.x R ∃∈,使 ()f x x ≠5. 已知等比数列{a n }的前n 项积为∏n ,若8843=⋅⋅a a a ,则∏9=( ). A.512 B.256 C.81 D.166. 如图,设向量(3,1)OA =,(1,3)OB =,若OC =λOA +μOB ,且λ≥μ≥1,则用阴影表示C 点所有可能的位置区域正确的是( )7. 函数f (x )的部分图象如图所示,则f (x )的解析式可以是( ).A.f (x )=x +sin xB.x x x f cos )(=C.f (x )=x cos xD.)23)(2()(ππ--=x x x x f 8. 已知F 1、F 2是双曲线12222=-by a x (a >0,b >0)的左、右焦点,若双曲线左支上存在一点P 与点F 2关于直线abxy =对称,,则该双曲线的离心为 ( ).A.2B.5C.2D.2 9.若定义在R 上的函数f (x )满足f (-x )=f (x ), f (2-x )=f (x ), 且当x ∈[0,1]时,其图象是四分之一圆(如图所示),则函数H (x )= |x e x |-f (x )在区间[-3,1]上的零点个数为 ( )A.5B.4C.3 10.已知函数f (x )=x 3+bx 2+cx+d (b 、c 、d 为常数),当x ∈(0,1),则22)3()21(-++c b 的取值范围是( ).A.()5,237 B.)5,5( C.)25,437( D.(5,25)第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.11.5名同学排成一列,某个同学不排排头的排法种数为 (用数字作答).12.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自 阴影部分的概率为 .13. 若直线20x y -+=与圆22C :(3)(3)4x y -+-=相交于A 、B 两点,则CA CB ⋅的值为 . 14.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为 .15.已知函数1(1)sin 2,[2,21)2(),()(1)sin 22,[21,22)2nn x n x n n f x n N x n x n n ππ+⎧-+∈+⎪⎪=∈⎨⎪-++∈++⎪⎩, 若数列{a m }满足))(2(+∈=N m mf a m ,且{}m a 的前m 项和为m S ,则20142006S S -= .三、解答题:本大题共六个小题,共80分.解答应写出文字说明、证明过程和演算步骤. 16.(本小题满分13分)在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:规定:当产品中的此种元素含量≥15毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.17. (本小题满分13分)已知函数2()2cos cos ().f x x x x x R =+∈.(Ⅰ)当[0,]2x π∈时,求函数)(x f 的单调递增区间;(Ⅱ)设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且3,()2,c f C ==若向量)sin ,1(A =与向量)sin ,2(B n =共线,求b a ,的值.18. (本小题满分13分)如图,直角梯形ABCD 中,090ABC ∠=2===AD BC AB =4,点E 、F 分别是AB 、CD 的中点,点G 在EF 上,沿EF 将梯形AEFD 翻折,使平面AEFD ⊥平面EBCF . (Ⅰ)当AG GC +最小时,求证:BD ⊥CG ; (Ⅱ)当B ADGED GBCF V V --=2时,求二面角D BG C --平面角的余弦值.19.(本小题满分13分)已知动圆C 过定点(1,0),且与直线x =-1相切. (Ⅰ)求动圆圆心C 的轨迹方程;(Ⅱ)设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β, ①当βα+=2π时,求证直线AB 恒过一定点M ; ②若αβ+为定值(0)θθπ<<,直线AB 是否仍恒过一定点,若存在,试求出定点的坐标; 若不存在,请说明理由.20. (本小题满分14分)已知函数1()ln+)f x x ax a=-(,其中a R ∈且0a ≠ (Ⅰ)讨论()f x 的单调区间;(Ⅱ)若直线y ax =的图像恒在函数()f x 图像的上方,求a 的取值范围; (Ⅲ)若存在110x a-<<,20x >,使得()()f x f x ==120,求证:120x x +>. 21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换. 已知矩阵⎪⎪⎭⎫⎝⎛=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎪⎪⎭⎫⎝⎛=111α,属于特征值1的一个特征向量⎪⎪⎭⎫⎝⎛-=232α.(Ⅰ)求矩阵A 的逆矩阵; (Ⅱ)计算A 3⎪⎪⎭⎫⎝⎛-41的值. (2)(本小题满分7分)选修4-4:坐标系与参数方程.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为θθρcos 4sin 2=,直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222(t 为参数),两曲线相交于M ,N 两点. (Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若P (-2,-4),求|PM |+|PN|的值.(3)(本小题满分7分)选修4-5:不等式选讲 设函数f (x )=|x -4|+|x -3|, (Ⅰ)求f (x )的最小值m(Ⅱ)当a +2b +3c=m (a ,b ,c ∈R)时,求a 2+b 2+c 2的最小值.2014年福州市高中毕业班质量检测 数学(理科)试卷参考答案及评分标准1—10 DABCA DCBBD11.96 12.1/3 13.0 14.18+32 cm 2 15.804216. 解:(I)甲厂抽取的样本中优等品有7件,优等品率为7.10 乙厂抽取的样本中优等品有8件,优等品率为84.105=………………4分(II)ξ的取值为1,2,3. ………………5分12823101(1),15C C P C ξ⋅===………………7分21823107(2),15C C P C ξ⋅===………………9分 157)3(3100238=⋅==C C C P ξ………………11分 所以ξ的分布列为………………12分故17712123.1515155E ξξ=⨯+⨯+⨯=的数学期望为()………………13分 17. 解:(I)2()2cos 2f x x x =+=cos 221x x ++=2sin 216x π⎛⎫++ ⎪⎝⎭……………2分 令-222,262k x k k Z πππππ+≤+≤+∈,解得322322ππππ+≤≤-k x k 即63ππππ+≤≤-k x k …………4分[0,]2x π∈,∴f (x )的递增区间为]6,0[π………………6分(Ⅱ)由21)62sin(2)(=++=πC C f ,得21)62sin(=+πC 而()0,C π∈,所以132,666C πππ⎛⎫+∈ ⎪⎝⎭,所以5266C ππ+=得3C π=8⋅⋅⋅⋅⋅⋅⋅⋅⋅分因为向量)sin ,1(A m =与向量)sin ,2(B n =共线,所以sin 1sin 2A B =, 由正弦定理得:21=b a ①……………10分 由余弦定理得:3cos2222πab b a c -+=,即a 2+b 2-ab =9 ②………12分由①②解得32,3==b a ……………13分18. 解:(Ⅰ)证明:∵点E 、F 分别是AB 、CD 的中点,∴EF //BC 又∠ABC =90°∴AE ⊥EF ,∵平面AEFD ⊥平面EBCF , ∴AE ⊥平面EBCF ,AE ⊥EF ,AE ⊥BE , 又BE ⊥EF , 如图建立空间坐标系E ﹣xyz .……………2分 翻折前,连结AC 交EF 于点G,此时点G 使得AG+GC 最小.EG=12BC =2,又∵EA=EB =2. 则A (0,0,2),B (2,0,0),C (2,4,0), D (0,2,2),E (0,0,0),G (0,2,0), ∴=(﹣2,2,2),CG =(-2,-2,0)∴BD CG ⋅=(﹣2,2,2)(-2,-2,0)=0, ∴BD ⊥CG ………………5分 (Ⅱ)解法一:设EG=k ,AD ∥平面EFCB ,∴点D 到平面EFCB 的距离为即为点A 到平面EFCB的距离.S 四形GBCF =12[(3- k )+4]×2=7-k D GBCF V S AE 四形GBCF -\=鬃13=2(7)3k -又B ADGE ADGE V S BE 四形-=?13=2(2)3k +,B ADGE D GBCF V V --=2,∴4(2)3k +=2(7)3k -,1k ∴=即EG =1…………………8分设平面DBG 的法向量为1(,,)n x y z =,∵G (0,1,0), ∴(2,1,0),BG =-BD =(-2,2,2),则 1100n BD n BG ⎧⋅=⎪⎨⋅=⎪⎩,即222020 x y z x y -++=⎧⎨-+=⎩取x =1,则y =2,z =-1,∴(1,2,1)n =- …………………10分 面BCG 的一个法向量为2(0,0,1)n = 则cos<12,n n>=1212||||n n n n =- …………………12分由于所求二面角D-BF-C 的平面角为锐角, ……………………13分 (Ⅱ)解法二:由解法一得EG =1,过点D 作DH ⊥EF ,垂足H ,过点H 作BG 延长线的垂线垂足O ,连接OD. ∵平面AEFD ⊥平面EBCF,∴ DH ⊥平面EBCF ,∴OD ⊥OB,所以DOH ∠就是所求的二面角D BGC --的平面角. …………9分 由于HG =1,在∆OHG中5OH =, 又DH=2,在∆DOH中tan DHDOH OH∠==分 所以此二面角平面角的余弦值为6.…………13分 19. 解: (Ⅰ)设动圆圆心M (x ,y ),依题意点M 的轨迹是以(1,0)为焦点,直线x =-1为准线的抛物线………2分 其方程为y 2=4x .- …………3分(Ⅱ)设A (x 1,y 1),B (x 2,y 2).由题意得x 1≠x 2(否则αβπ+=)且x 1x 2≠0,则4,4222211y x y x == 所以直线AB 的斜率存在,设直线AB 的方程为y=kx+b ,则将 y=kx+b 与y 2=4x 联立消去x ,得ky 2-4y +4b =0由韦达定理得kby y k y y 4,42121==+-------※…………6分 ①当βα+=2π时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,…………7分所以y 1y 2=16,又由※知:y 1y 2=kb4所以b =4k ;因此直线AB 的方程可表示为y=kx+4k ,所以直线AB 恒过定点(-4,0). …………8分②当αβ+为定值(0)θθπ<<时.若βα+=2π,由①知, 直线AB 恒过定点M (-4,0) …………9分 当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=16)(42121-+y y y y将※式代入上式整理化简可得:k b 44tan -=θ,所以θtan 44+=k b ,…………11分此时,直线AB 的方程可表示为y=kx +θtan 44+k ,所以直线AB 恒过定点)tan 4,4(θ-…………12分所以当2πθ=时,直线AB 恒过定点(-4,0)., 当2πθ≠时直线AB 恒过定点)tan 4,4(θ-.…………13分 20. 解:(I)f (x )的定义域为),1(+∞-a. 其导数'()a xf x a ax x a=-=-++2111………1分①当0a <时,'()0f x >,函数在),1(+∞-a上是增函数;…………2分 ②当0a >时,在区间(,)a-10上,'()0f x >;在区间(0,+∞)上,'()0f x <. 所以()f x 在(,)a-10是增函数,在(0,+∞)是减函数. …………4分 (II)当0a <时, 取1x e a=-,则11()1()2()011f e a e a ae e e a a a a-=--=->-=->, 不合题意.当0a >时令()()h x ax f x =-,则1()2ln()h x ax x a=-+………6分问题化为求()0h x >恒成立时a 的取值范围.由于'12()12()211a x a h x a x x a a+=-=++ ………7分 ∴在区间(,)a a--112上,0)('<x h ;在区间),21(+∞-a 上,0)('>x h .()h x ∴的最小值为1()2h a -,所以只需1()02h a->即1112()ln()022a a a a ⋅---+>,1ln 12a ∴<-,2ea ∴>………9分(Ⅲ)由于当0a <时函数在),1(+∞-a上是增函数,不满足题意,所以0a >构造函数:()()()g x f x f x =--(10x a-<<)11()ln()ln()2g x x x ax a a∴=--++………11分则2'22112()20111ax g x a x x x a a a=-+=<-+-所以函数)(x g 在区间1(,0)a-上为减函数. 110x a-<<,则1()(0)0g x g >=, 于是()()f x f x -->110,又1()0f x =,()()f x f x ->=120,由()f x 在,)+∞(0上为减函数可知21x x >-.即120x x +>…………………14分21. (1)(本小题满分7分)选修4-2:矩阵与变换解: (Ⅰ)法一:依题意,⎩⎨⎧==∴⎩⎨⎧-=-=+42,2236d c d c d c .⎪⎪⎭⎫⎝⎛=4233A . ………… 2分 所以⎪⎪⎪⎪⎭⎫ ⎝⎛--=-213121321A…………4分 法二:033)3(0332=-++-=----c d d dcλλλλ即的两个根为6和1, 故d =4,c =2. ⎪⎪⎭⎫⎝⎛=∴4233A …………2分 所以⎪⎪⎪⎪⎭⎫ ⎝⎛--=-213121321A-…………4分(Ⅱ)法一:⎪⎪⎭⎫ ⎝⎛-41=2⎪⎪⎭⎫ ⎝⎛11-⎪⎪⎭⎫ ⎝⎛-23…………5分 A 3⎪⎪⎭⎫ ⎝⎛-41=2×63⎪⎪⎭⎫ ⎝⎛11-13⎪⎪⎭⎫ ⎝⎛-23=⎪⎪⎭⎫ ⎝⎛434429…………7分 法二:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=1308612987423322142115;221421154233423332A A A 3⎪⎪⎭⎫ ⎝⎛-41=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛434429411308612987…………7分 (2)(本小题满分7分)选修4-4:坐标系与参数方程.解:(Ⅰ)(曲线C 的直角坐标方程为y 2=4x , 直线l 的普通方程x -y -2=0. ………..4分(Ⅱ)直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222(t 为参数), 代入y 2=4x , 得到0482122=+-t t ,设M ,N 对应的参数分别为t 1,t 2 则048,2122121>==+t t t t所以|PM |+|PN|=|t 1+t 2|=212…………7分(3) )(本小题满分7分)选修4-5:不等式选讲解:(Ⅰ)法1: f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1,故函数f (x )的最小值为1. m =1. …………4分法2:⎪⎩⎪⎨⎧<-<≤≥-=3,2743,14,72)(x x x x x x f .------------------1分x ≥4时,f (x )≥1;x <3时,f (x )>1,3≤x <4时,f (x )=1,----------------3分故函数f (x )的最小值为1. m =1. …………4分(Ⅱ)由柯西不等式(a 2+b 2+c 2)(12+22+32)≥(a +2b +3c )2=1----------5分故a 2+b 2+c 2≥141-…………6分 当且仅当143,71,141===c b a 时取等号…………7分。
福建省福州市2013年中考数学试卷一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福州)2的倒数是()A.B.﹣ C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.(2013福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2013福州)下列立体图形中,俯视图是正方形的是()A.B. C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5.(2013福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2013福州)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2013福州)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C. D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.(a2)3=a6,本选项错误;C.()2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.(2013福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB 长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(2013福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.(2013福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(2013福州)计算:= .考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.点评:本题比较容易,考查分式的减法运算.12.(2013福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360度.故答案为:360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.(2013福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14.(2013福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3(a﹣b)3的值是.考点:幂的乘方与积的乘方.专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15.(2013福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.考点:正多边形和圆.分析:延长AB,然后作出C所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出C所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,相邻的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(2013福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)考点:整式的混合运算;实数的运算;零指数幂.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(2013福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?考点:全等三角形的判定与性质;一元一次方程的应用.分析:(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.解答:(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18.(2013福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.解答:解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(2013福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD 关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.(2013福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB 于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.解答:(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD 的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点:二次函数综合题.分析:(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.解答:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+22n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.。
2024-2025学年福建省福州市鼓楼区屏东中学九年级(上)月考数学试卷(9月份)一.选择题(共10小题,每小题4分,共40分)A.B.C.D.1.(4分)观察下列每组图形,是相似图形的是( )A.B.C.D.2.(4分)下列选项中,y不是x函数的是( )A.2:3B.4:9C.8:18D.16:813.(4分)已知两个相似三角形的周长比为4:9,则它们的对应角平分线比为( )A.x(x+1)=28B.x(x-1)=28C.x(x+1)=28D.x(x-1)=284.(4分)我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场).计划分为4组,每组安排28场比赛,设每组邀请x个球队参加比赛,可列方程得( )1212A.4B.2C.2D.45.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=60°,AC=4,则AD的长为( )M3M3 A.2022B.2023C.2024D.20256.(4分)若m,n是方程x2+2x-2026=0的两个实数根,则m2+3m+n的值为( )7.(4分)学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间,并制作了如图所示的统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )二.填空题(共6小题,每小题4分,共24分)A.中位数为67分钟B.众数为88分钟C.平均数为73分钟D.方差为0A.B.C.D.8.(4分)函数y=ax2-1与y=ax(a≠0)在同一平面直角坐标系中的图象可能是( )A.抛物线与x轴的一个交点为(3,0)B.在对称轴左侧,y随x增大而增大C.抛物线的对称轴是直线x=D.函数y=ax2+bx+c的最大值为69.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…-2-1012…y…04664…从上表可知,下列说法中错误的是( )12A.2.5B.3C.D.10.(4分)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为( )M5M6 11.(4分)如果点A(-2,a)在函数y=-x+3的图象上,那么a的值等于.12三.解答题(共9小题,共86分)12.(4分)把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为 .13.(4分)如图,AD ∥BE ∥CF ,若AB =2,AC =5,DE =4,则EF 的长是 .14.(4分)如图,菱形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE ⊥AB 于点E ,连接OE ,若AB =10,OE =6,则对角线AC 的长为 .15.(4分)小明在计算一组数据的方差时,列出的算式如下:=[2+3+],根据算式信息,这组数据的平均数是 .S 216(7-x )2(8-x )2(9-x )216.(4分)已知抛物线y =x 2-2x +c 经过A (n +3,y 1),B (2n -1,y 2)两点,若A 、B 分别位于抛物线对称轴的两侧,且y 1<y 2,则n 的取值范围是 .17.解方程:(1)(x +1)2=16;(2)x 2-6x +1=0.18.如图,已知点D 是△ABC 的边上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC .求证:四边形ADCN 是平行四边形.19.某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间满足一次函数关系,其图象如图所示,设该商场销售这种商品每天获利w(元).(1)求y 与x 之间的函数关系式;(2)求w 与x 之间的函数关系式.20.如图,在△ABC 中,AD 平分∠BAC ,点E 在AC 上,且∠EAD =∠ADE .(1)求证:△DCE ∽△BCA ;(2)若AB =6,DE =4,求的值.BD CD21.已知:二次函数y =x 2-(m +2)x +m -1.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A 、B (A 在原点左边,B 在原点右边),且AB =3,求此时抛物线的解析式.22.某学校开展劳动教育,并在活动前、后实施两次调查.活动前随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),并分组整理,绘制成如下的条形统计图(其中A 组0≤t <2,B 组2≤t <4,C 组4≤t <6,D 组6≤t <8,E 组t ≥8).活动开展一个月后,数学社团再次随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),按照同样的分组方法绘制成如下扇形统计图,发现活动后调查的数据C 组人数与活动前B 组人数相同.请根据图中信息解答下列问题:(1)请将条形统计图补充完整;(2)活动后调查数据的中位数落在 组;(3)若该校共有2400名学生,请根据活动后调查结果,估计该校学生一周课外劳动时间不小于4小时的人数.23.如图,在平行四边形ABCD 中,AC 为对角线,AC =BC ,AE 是△ABC 的中线.(1)按要求作图:①在AD 取一点F 使得EF ∥CD ;(要求:尺规作图,不写作法,保留作图痕迹).②画出△ABC 的高CH .(要求:仅使用无刻度的直尺画图).(2)在(1)的条件下,若AB =2,∠B =60°,求CH 的长.24.在平面直角坐标系中,已知抛物线y =ax 2+bx 经过A (4,0),B (1,3)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的表达式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD 交AB 于点D ,PD ∥OB .记△CPB ,△BCO 的面积分别为S 1,S 2,判断是否存在最大值.若存在,求出最大值;若不存在,请说明理由.S 1S 225.在一次课上,王老师请同学们思考如何通过折纸的方法来确定正方形一边上的一个三等分点.【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:第1步:如图1,将边长为6的正方形纸片ABCD 对折,使点A 与点B 重合,展开铺平,折痕为EF ;第2步:再将BC 边沿CE 翻折得到GC ;第3步:延长EG 交AD 于点H ,则点H 为AD 边的三等分点.证明如下:连接CH ,∵正方形ABCD 沿CE 折叠,∴∠D =∠B =∠CGH =90°,CG =CB =CD ,又∵CH =CH ,∴△CGH ≌△CDH (①_____)∴GH =DH .设DH =x ,∵E 是AB 的中点,则AE =BE =EG =AB =3,在Rt △AEH 中,可列方程:②_____,解得:DH =2,即H 是AD 边的三等分点.“破浪”小组进行如下操作:第1步:如图2所示,先将正方形纸片对折,使点A 与点B 重合,展开铺平,折痕为EF ;第2步:再将正方形纸片对折,使点B 与点D 重合,展开铺平,折痕AC 与折痕DE 交于点G ;第3步:过点G 折叠正方形纸片ABCD ,使折痕MN ∥AD .【过程思考】(1)“乘风”小组的证明过程中,①处的推理依据是;②处所列方程是;(2)结合“破浪”小组操作过程,判断点M 是否为AB 边的三等分点,并证明你的结论;【拓展提升】(3)①如图3,将矩形纸片ABCD 对折,使点A 和点D 重合,展开铺平,折痕为EF ,将△EDC 沿CE 翻折得到△EGC ,过点G 折叠矩形纸片,使折痕MN ∥AB ,若点M 为边AD 的三等分点,请求出的值;②在边长为6的正方形ABCD 中,点E 是射线BA 上一动点,连接CE ,将△EBC 沿CE 翻折得到△EGC ,直线EG 与直线AD 交于点H .若DH =AD ,请直接写出BE 的长.12AD DC13。
2013-2014学年度第一学期九年级期末质量检查考试数学试卷考试时间:120分钟;命题人:游宝发学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列式子中,属于最简二次根式的是(A )(B (C ) (D 2.下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个 3.已知一元二次方程2x x 1 0+-=,下列判断正确的是( ) A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程无实数根D.方程根的情况不确定4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是A .0.5B .1C .2D .45.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙1O 的半径为4cm ,则⊙O 2的半径为( ) A .5cm B .13cm C .9 cm 或13cm D .5cm 或13cm 6.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15π B .24π C .30π D .39π 7.下列事件是随机事件的为A 、度量三角形的内角和,结果是180︒B 、经过城市中有交通信号灯的路口,遇到红灯C 、爸爸的年龄比爷爷大D 、通常加热到100℃时,水沸腾 8.如果将抛物线2y x =向左平移2个单位,那么所得抛物线的表达式为A.22y x =+B.22y x =-C.2(2)y x =+D.2(2)y x =-9.如图,在平面直角坐标系中,抛物线2y 1x 2=经过平移得到抛物线21x 2y 2x =-,其对称轴与两段抛物线所围成的阴影部分的面积为A .2B .4C .8D .1610.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为A.3B.34-C.4D.326- 二、填空题11x 的取值范围是____________. 12.如果关于x 的方程220xx m -+=(m 为常数)有两个相等实数根,那么m =______.13.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图,∠A =30°,AC =10,则此时两直角顶点C 、C ′间的距离是_______. 14.如图,AB 为⊙O 的直径,点P 为其半圆上任意一点(不含A 、B ),点Q 为另一半圆上一定点,若∠POA 为x°,∠PQB 为y°,则y 与x 的函数关系是 . 15.如图,一条抛物线m x y +=241(m<0)与x 轴相交于A 、B 两点(点A 在点B 的左侧).若点M 、N 的坐标分别为(0,—2)、(4,0),抛物线与直线MN 始终有交点,线段AB 的长度的最小值为 .三、解答题16.计算:(1))323(235a bb a ab b ÷-⋅(2) 17.解方程:0822=--x x18.如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)平移△ABC,使点A 移动到点A 2(0,2),画出平移后的△A 2B 2C 2并写出点B 2、C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2成中心对称,写出其对称中心的坐标. 19.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形ABCD.点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,则中间的阴影部分组成正方形...EFGH.已知烧制该种地砖平均每块需加.工费..0.35元,要使BE 长尽可能小,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则CE 长应为多少米?解:设 CE =x ,则S △CFE = ,S △ABE = S 四边形AEFD = (用含x 的代数式表示,不需要化简)。
2023-2024学年第二学期福州市九年级质量抽测数学答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果学生的解法与本解答不同,可根据习题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当学生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示学生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(本题共10小题,每小题4分,共40分) 1.A 2.B 3.A 4.A 5.C 6.D 7.B 8.B 9.C 10.B二、填空题(本题共6小题,每小题4分,共24分) 11.60−米 12.抽样调查 13.70° 14.23x > 15.396元16.DE三、解答题(本题共9小题,共86分)17.(本小题满分8分)解:原式π312=−++ ······································································································ 6分π=. ··············································································································· 8分18.(本小题满分8分)证明:∵BE CF =,∴BE EF CF EF +=+,∴BF CE =. ········································································································· 3分在△ABF 和△DCE 中AB DC =,············································································································ 4分 B C ∠=∠,············································································································ 5分 BF CE =, ∴△ABF ≌△DCE , ································································································ 6分 ∴A D ∠=∠. ········································································································ 8分19.(本小题满分8分)解法一:∵3a b=,∴3a b =, ········································································································· 1分∴原式222(3)233(2)3(3)b b b b b b b b −×⋅=−÷−− ······································································· 2分 222239(2)296b bb b b b −=−⋅− ··················································································· 4分 2238(2)23b b=−⋅ ····························································································· 6分 8123=× ······································································································ 7分 43=. ······································································································· 8分 B C DA E F ⎧⎪⎨⎪⎩解法二:原式22222()2a b a ab a b a b a ab−−=−⋅−−− ············································································· 2分 ()()2(2)a b a b a b a b a a b +−−=⋅−− ···················································································· 5分 a b a+=. ····································································································· 6分 ∵3a b=, ∴3a b =, ········································································································· 7分 ∴原式33b b b+=43=. ······································································································· 8分 20.(本小题满分8分)解:(1)400; ·············································································································· 2分72°; ··············································································································· 4分 (2)记两名男生为M ,N ,两名女生为P ,Q .6分由表(图)可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等. ········· 7分 其中抽取的两名同学刚好为两位女同学的结果有2种.∴抽取的两名同学刚好为两位女同学是21126=. ······················································· 8分21.(本小题满分8分) 证明:连接OC ,CD. ····································································································· 1分∵CA CB =,∴A B ∠=∠.········································································································· 2分 ∵BD 是直径,∴90BCD ∠=°.分 ∵D 是OA 的中点, ∴AD OD =.分又OB OD =,∴AO BD =.分 ∵△AOC ≌△BDC , ································································································ 6分 ∴90ACO BCD ∠=∠=°, ························································································· 7分 ∴OC ⊥AC .∵点C 为半径OC 的外端点,∴AC 是⊙O 的切线. ······························································································ 8分22.(本小题满分10分) (1)····························································· 3分如图,O 为所求作的点. ··························································································· 4分(2)证明:∵D 是BC 的中点,∴12BD BC =. ······························································································ 5分∵△ABC 绕点O 旋转得到△DEF ,D ,E 分别是点A ,B 的对应点,∴OB OE =,90BOE AOD ∠=∠=°,△ABC ≌△DEF , ·········································· 6分∴90BOD ∠=°,BC EF =,ABC DEF ∠=∠.分 在△ODB 与△OGE 中 ABC DEF OB OE BOD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ODB ≌△OGE , ·分 ∴BD EG =,分∴12EG EF =,即EG FG =,∴G 是EF 中点. ··························································································· 10分 23.(本小题满分10分)解:(1)①a ; ················································································································ 1分②b ;················································································································· 2分 ③tan b α⋅; ········································································································ 3分 ④(tan )b a α⋅+; ································································································· 4分(2)先在该建筑物(MN )的附近较空旷的平地上选择一点A , 点B 为测量人员竖直站立时眼睛的位置,用自制测角仪获取最高处(M )的仰角MBC α∠=,然后由点A 朝点N 方向前进至点D 处,此时点E 为测量人员竖直站立时眼睛的位置,再用自制测角仪获取最高处(M )的仰角MEC β∠=; ················································ 5分 再用皮尺测得测量人员眼睛到地面的距离m AB a =,以及前进的距离m AD b =, ············· 6分 由实际背景可知四边形ABED ,四边形ABCN 为矩形, 故m NC DE AB a ===,m BE AD b ==.在Rt △BCM 和Rt △ECM 中,90BCM ∠=°,∴tan MC BC α=, ··································································································· 7分tan MC EC β=, ··································································································· 8分∴tan tan MC MC BE BC EC αβ=−=−,············································································ 9分即tan tan MC MC b αβ=−,∴tan tan tan tan b MC αββα⋅⋅=−,∴tan tan ()m tan tan b MN MC CN a αββα⋅⋅=+=+−. ······························································10分 24.(本小题满分12分)解:(1)①将A (2−,0),B (6,4)代入22y ax bx =+−,得422036624a b a b −−=⎧⎨+−=⎩,, ·························································································· 2分解得1412a b ⎧=⎪⎨⎪=−⎩,, ∴抛物线的解析式为211242y x x =−−. ······························································· 4分A BCMN α ABC D EMN②将0y =代入211242y x x =−−,得2112042x x −−=, 解得14x =,22x =−, ∵A (2−,0), ∴C (4,0). ································································································ 5分 根据题意,得8AD =,2CD =,6AC =,4BD =,90ADB ∠=°, ∴1tan tan 2BAD CBD ∠=∠=, ∴BAD CBD ∠=∠.分 ∵EAC ABC ∠=∠, ∴EAB EBA ∠=∠,∴EB EA =.分∵B (6,4), ∴设E (6,t ),∴4AE BE t ==−,DE t =−. ∵222AD DE AE +=,∴2228()(4)t t +−=−,∴6t =−,∴E (6,6−). ····························································································· 8分(2)5a <−或56a >. ······························································································· 12分25.(本小题满分14分)(1)证明:∵BE ⊥AD , ∴90AEB ∠=°. ······························································································ 1分 ∵90ACB ∠=°,ADC BDE ∠=∠, ∴CAE CBE ∠=∠. ························································································· 2分∵四边形AEFC 是平行四边形,∴CAE F ∠=∠, ····························································································· 3分 ∴CBE F ∠=∠. ····························································································· 4分(2)解:12S S =. ·········································································································· 5分理由如下:延长BE ,AC 交于点P ,过点E 作EQ ⊥AP 于点Q .∵AD 平分∠BAC ,∴BAD CAD ∠=∠. ············································································ 6分 ∵90AEP AEB ∠=∠=°, ∴APB ABP ∠=∠,∴AB AP =, ····················································································· 7分∴EB EP =,即12PE PB =.∵EQ ⊥AP , ∴90PQE PCB ∠=°=∠, ∴EQ ∥BC ,∴△PQE ∽△PCB , ············································································ 8分 ∴EQ PE BC PB=, ∴12EQ BC =, ·················································································· 8分∴2112S AC EQ AC BC S =⋅=⋅=.(3)证明:延长BE 交CF 于点T .∵四边形AEFC 是平行四边形, ∴AC ∥FG ,AE ∥CF ,AC EF =∴90BTC BED ∠=∠=°,90BHG BCA ∠=∠=°. ∴BT ⊥CF .A BCFE D A B CF E D P Q。
2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线253y x =-+向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为( ) A .()2514y x =-++ B .()2512y x =-++ C .()2512y x =--+D .()2514y x =--+2.如图,在第一象限内,()23P ,,(,2)M a 是双曲线ky x=(0k ≠)上的两点,过点P 作PA x ⊥轴于点A ,连接OM 交PA 于点C ,则点C 的坐标为( )A .(2,1)B .32,4⎛⎫ ⎪⎝⎭C .22,3⎛⎫ ⎪⎝⎭D .42,3⎛⎫ ⎪⎝⎭3.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .2C .24D .2234.2020的相反数是( ) A .12020B .12020-C .-2020D .20205.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.56.一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan 3α=,则扇形纸板和圆形纸板的半径之比是( )A .1304B .22C .23D .6727.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:x1- 0 23 4y54-3-下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若()()12,2,,3A x B x 是抛物线上两点,则12x x ≤,其中正确的个数是( ) A .2B .3C .4D .58.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C .依此方式,绕点O 连续旋转2020次,得到正方形202020202020OA B C ,如果点A 的坐标为()2,0,那么点2020A 的坐标为( )A .()2,0-B .()1,1C .(2D .()1,1-9.函数y =ax 2与y =﹣ax +b 的图象可能是( )A.B.C.D.10.如图,阳光透过窗户洒落在地面上,已知窗户AB高1.5m,光亮区的顶端距离墙角3m,光亮区的底端距离墙角1.2m,则窗户的底端距离地面的高度(BC)为()A.1m B.1.2m C.1.5m D.2.4m二、填空题(每小题3分,共24分)11.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.12.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.13.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P 在__________.14.已知函数22(0)(0)x x xyx x⎧-+>=⎨≤⎩的图象如图所示,若直线y x m=+与该图象恰有两个不同的交点,则m的取值范围为_____.15.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.16.如图,A 是反比例函数(0)ky x x=>图象上的一点,点B 、D 在y 轴正半轴上,ABD ∆是COD ∆关于点D 的位似图形,且ABD ∆与COD ∆的位似比是1:3,ABD ∆的面积为1,则k 的值为____.17.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______. 18.已知x-2y=3,试求9-4x+8y=_______ 三、解答题(共66分)19.(10分)如图,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA ⊥AB ,垂足为点A ,DP ⊥BC ,垂足为点P ,AP BPPD CD=.(1)求证:∠APD =∠C ;(2)如果AB =3,DC =2,求AP 的长. 20.(6分)解方程 (1)2x 2﹣7x +3=1; (2)x 2﹣3x =1.21.(6分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作AB 的垂线交AC 的延长线于点F .(1)求证:BE DE=;(2)过点C作CG⊥BF于G,若AB=5,BC=25,求CG,FG的长.23.(8分)如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。
福州市2013—2014学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 21 4(正确一个得2分) 三、解答题:(满分90分)16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分 (2) 9x +6 x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分 解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分 ∴抛物线的解析式为:y =x 2-4x +3. ……………11分(答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x… 0 1 2 3 4 … y =x 2-4x+3 … 3 0 -1 0 3 … 二次函数y =x 2-4x +3的图像如右图. 18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 1 2. ………………………………6分 (2) 列树状图如下:……………9分A B C O xy A 1 B 1 C 1 y =x 2-4x +3 1 2 35 1 2 3 5 1 2 3 5 1 2 3 5 小明 小强小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x与y的积为偶数有7种. (10)分∴小明获胜的概率P(x与y的积为偶数)=716 <12,……………………………11分(或证明716 ≠916 也可)∴游戏规则不公平.……………………………………………………………………12分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元.………………………10分20.解:(1) 连接OC.…………………………………………1分∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°.………2分∵OA=OC,∴∠A=∠ACO,………………………………3分∵∠A=∠PCB,∴∠ACO=∠PCB.………………………………4分∴∠PCB+∠OCB=∠ACO+∠OCB=90°,即∠PCO=90°.∴PC⊥OC.………………………………5分又∵OC为⊙O的半径,∴PC是⊙O的切线.………………………………6分(2) ∵AC=PC,∴∠A=∠P,………………………………………7分∴∠PCB=∠A=∠P.∴BC=BP=1.………………………………………8分∴∠CBO=∠P+∠PCB=2∠PCB.又∵∠COB=2∠A=2∠PCB,∴∠COB=∠CBO,…………………………………9分∴BC=OC.又∵OB=OC,∴OB=OC=BC=1,即△OBC为等边三角形.……10分∴∠COB=60°.………………………………11分∴l⌒BC=1×60π180=13π.……………………………12分21.解:(1) DC+CE=2;…………………………………3分(2) 结论成立.连接PC,如图.…………………………4分∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.ABCOPABCDEP∴∠ACP =∠B =45°,∠CPB =90°. …………………5分∴∠BPE =90°-∠CPE .又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分由(2)可知:PD =PE ,∠PDC =∠PEB , ∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM=DC +CE=2.∴△CMN 的周长是2. …………………………………13分22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分解得:n =1, …………………………………………9分∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分(3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) A B C D E M P N F A BC O x yD A B CO xyD EMP N G∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4, ∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k =n -1 m b =1, ∴直线PC 的解析式为y = n -1 m x +1. …………………11分当x =2时,c = 2(n -1) m +1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为:=S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG )=2S △GCD +S △PGN -S △PMG=2×12 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2)=[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分A B C O x y D M P N G。
2023-2024学年福建省福州市长乐重点中学九年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列函数表达式中,一定为二次函数的是( )A. y=2x−5B. y=ax2+bx+cC. ℎ=(t+2)2D. y=x2+1x2.下列图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.将抛物线y=4x2+1的图象向左平移3个单位,再向下平移2个单位,得到的抛物线是( )A. y=4(x+3)2−1B. y=4(x+2)2−3C. y=4(x−3)2−2D. y=4(x−2)2−34.在一个不透明的口袋中装有4个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在25%附近,则口袋中黑球可能有( )A. 10个B. 11个C. 12个D. 13个5.下列关于圆的说法,不正确的是( )A. 圆是轴对称图形B. 圆是中心对称图形C. 优弧大于劣弧D. 垂直于弦的直径平分这条弦所对的弧6.关于二次函数y=−x2+2x+3,下列说法中不正确的是( )A. 图象开口向下B. 图象的对称轴是直线x=1C. 当x>1时,y随x的增大而增大D. 函数的最大值为47.已知关于x的一元二次方程mx2+2x+1=0有两个实根,则m的范围是( )A. m<1B. m≤1C. m<1且m≠0D. m≤1且m≠08.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )A. 30°B. 40°C. 45°D. 50°9.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0(a ≠0)的一个解x的范围是( )x…1 1.1 1.2 1.3 1.4…y…−1−0.490.040.59 1.16…A. 1<x<1.1B. 1.1<x<1.2C. 1.2<x<1.3D. 1.3<x<1.410.如图,已知二次函数y=ax2+bx+c(a<0)的图象与x轴交于点A(−1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③−1≤a≤−2;3④4ac−b2>8a.其中正确的结论是( )A. ①③④B. ①②③C. ①②④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.如图,该图形绕其中心旋转能与其自身完全重合,则其旋转角最小为______ 度.12.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),抛物线的对称轴是直线x=2.那么一元二次方程ax2+bx+c=0的根是______ .13.若A (−132,y 1),B (−52,y 2),C (8,y 3)为二次函数y =(x−2)2图象上三点,则y 1,y 2,y 3的大小关系为______ .(用“>”号表示)14.若点A (−3,m ),B (5,m )在同一抛物线上,则此抛物线的对称轴是直线______ .15.如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,连接AC ,AD .若∠D =62°,则∠BAC = .16.如图,△ABC 是等边三角形,AB =2,D 在BC 边上,连接AD ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接DE 、BE ,则△BED 的周长最小值是______ .三、解答题(本大题共9小题,共86.0分。
2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 722.一个不透明的盒子装有m 个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m 的值约为( ) A .8B .10C .20D .403.已知二次函数()210y ax bx c a =++≠和一次函数()20y kx n k =+≠的图象如图所示,下面四个推断:①二次函数1y 有最大值②二次函数1y 的图象关于直线1x =-对称 ③当2x =-时,二次函数1y 的值大于0④过动点(),0P m 且垂直于x 轴的直线与12y y ,的图象的交点分别为C,D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-,其中正确的有( )A .1个B .2个C .3个D .4个4.如图,反比例函数1y x=的大致图象为( ) A . B . C . D .5.如图,AB 是O 的直径,点,,C D E 在O 上,20AED ︒∠=,则BCD ∠的度数为( )A .100︒B .110︒C .120︒D .130︒6.下列计算错误的是( ) A .222()-=-B .2(2)2-=C .2(2)2-=D .22=27.已知二次函数233y x mx n =-+-的图像与x 轴没有交点,则( )A .423m n +>B .423m n +<C .423m n -<D .423m n -> 8.如图,一只箱子沿着斜面向上运动,箱高AB =1.3cm ,当BC =2.6m 时,点B 离地面的距离BE =1m ,则此时点A 离地面的距离是( )A .2.2mB .2mC .1.8mD .1.6m9.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,且点B 的坐标为(6,4),如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)10.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的 统计图如图所示,则符合这一结果的试验可能是 ( )A .掷一枚硬币,出现正面朝上的概率B .掷一枚硬币,出现反面朝上的概率C .掷一枚骰子,出现 3点的概率D .从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率 二、填空题(每小题3分,共24分)11.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________. 12.体育课上,小聪,小明,小智,小慧分别在点O 处进行了一次铅球试投,铅球分别落在图中的点A ,B ,C ,D 处,则他们四人中,成绩最好的是______.13.已知抛物线24y x bx =-++经过(2,)n -和(4,)n 两点,则n 的值为__________.14.将抛物线y =﹣x 2﹣4x (﹣4≤x≤0)沿y 轴折叠后得另一条抛物线,若直线y =x+b 与这两条抛物线共有3个公共点,则b 的取值范围为_____.15.如图在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,以点B 为圆心,BC 的长为半径作弧,交AB 于点F ,D 为AC 的中点,以点D 为圆心,DC 长为半径作弧,交AB 于点E ,若2BC =,则阴影部分的面积为________.16.已知:如图,在平面上将ABC ∆绕B 点旋转到A B C '''∆的位置时,//,65AA BC ABC ︒'∠=,则'CBC ∠为__________度.17.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度. 18.比较三角函数值的大小:sin30°_____cos30°(填入“>”或“<”). 三、解答题(共66分)19.(10分)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目. 第一环节:写字注音、成语故事、国学常识、成语接龙(分别用1234, , , A A A A 表示); 第二环节:成语听写、诗词对句、经典通读(分别用123,,B B B 表示) (1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率. 20.(6分)在平面直角坐标系xOy 中,存在抛物线2y mx 2=+以及两点()A 3,m -和()B 1,m .(1)求该抛物线的顶点坐标;(2)若该抛物线经过点()A 3.m -,求此抛物线的表达式;(3)若该抛物线与线段AB 只有一个公共点,结合图象,求m 的取值范围.21.(6分)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.22.(8分)某班级组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩如下(10分制) 甲 10 8 7 9 8 10 10 9 10 9 乙789710109101010(1)甲队成绩的众数是 分,乙队成绩的中位数是 分. (2)计算乙队成绩的平均数和方差.(3)已知甲队成绩的方差是1分2,则成绩较为整齐的是 队.23.(8分)已知抛物线2224y x mx m m =-+-++的顶点A 在第一象限,过点A 作AB y ⊥轴于点B ,C 是线段AB上一点(不与点A 、B 重合),过点C 作CD x ⊥轴于点D ,并交抛物线于点P .(1)求抛物线2224y x mx m m =-+-++顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围; (2)若直线AP 交y 轴的正半轴于点E ,且2CPAC=,求OEP △的面积S 的取值范围. 24.(8分)已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程), 25.(10分)已知函数2y x =+(1)该函数自变量的取值范围为;(2)下表列出y与x的几组对应值,请在平面直角坐标系中描出下列各点,并画出函数图象;x …8-193-14-1142439144…y … 3 2 1 23123725…(3)结合所画函数图象,解决下列问题:①写出该函数图象的一条性质:;②横、纵坐标均为整数的点称为整点,若直线y= -x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点,则b的取值范围为.26.(10分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)小李同学抽到物理实验题目①这是一个事件(填“必然”、“不可能”或“随机”).(2)小张同学对物理的①、②和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE ,∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH , ∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =,∴18EFCABCD SS =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等. 2、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,4m=0.2, 解得,m =20,经检验m=20是所列方程的根且符合实际意义, 故选:C . 【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.3、B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,∴二次函数y1有最小值,故①错误;观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;当x=-2时,二次函数y1的值小于0,故③错误;当x<-3或x>-1时,抛物线在直线的上方,∴m的取值范围为:m<-3或m>-1,故④正确.故选B.【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.4、B【分析】比例系数k=1>0,根据反比例函数图像的特点可判断出函数图像.【详解】∵比例系数k=1>0∴反比例函数经过一、三象限故选:B.【点睛】本题考查反比例函数图像的分布,当k>0时,函数位于一、三象限.当k<0时,函数位于二、四象限.5、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90︒,∠ACD=20︒,即可求∠BCD的度数.【详解】连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=∠AED=20°,∴∠BCD=∠ACB+∠ACD=90°+20°=110°, 故选:B . 【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 6、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A : 2=,故A 错误,符合题意;B 2=正确,故B 不符合题意;C :2(2=正确,故C 不符合题意;D 正确,故D 不符合题意. 故选:A. 【点睛】此题考查算术平方根,依据 (0)(0)a a a a a ≥⎧==⎨-<⎩,2a =(进行判断.7、C【分析】若二次函数233y x mx n =-+-的图像与x 轴没有交点,则0∆<,解出关于m 、n 的不等式,再分别判断即可; 【详解】解:233y x m n =-+-与x 轴无交点,2239120,4m n n m ∴∆=-<∴>, 22334442244333m n m m m ⎛⎫∴++=+-≥- ⎪⎝⎭>,故A 、B 错误;同理:22334442244333m n m m m ⎛⎫-<-=--+≤ ⎪⎝⎭;故选C . 【点睛】本题主要考查了抛物线与坐标轴的交点,掌握抛物线与坐标轴的交点是解题的关键. 8、A【分析】先根据勾股定理求出CE ,再利用相似三角形的判定与性质进而求出DF 、AF 的长即可得出AD 的长. 【详解】解:由题意可得:AD ∥EB ,则∠CFD =∠AFB =∠CBE ,△CDF ∽△CEB , ∵∠ABF =∠CEB =90°,∠AFB =∠CBE ,∴△CBE∽△AFB,∴BEFB=BCAF=ECAB,∵BC=2.6m,BE=1m,∴EC=2.4(m),即1FB=2.6AF=2.41.3,解得:FB=1324,AF=169120,∵△CDF∽△CEB,∴DFEB=CFCB,即132.624 1 2.6 DF-=解得:DF=19 24,故AD=AF+DF=1924+169120=2.2(m),答:此时点A离地面的距离为2.2m.故选:A.【点睛】本题考查了勾股定理、相似三角形的判定和性质,利用勾股定理,正确利用相似三角形的性质得出FD的长是解题的关键.9、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形O A′B′C′的面积等于矩形OABC面积的14,∴两矩形面积的相似比为:1:2,∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(-3,-2).故选:D.此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键. 10、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A. 掷一枚硬币,出现正面朝上的概率为1=0.52,故此选项不符合题意; B. 掷一枚硬币,出现反面朝上的概率为1=0.52,故此选项不符合题意; C. 掷一枚骰子,出现 3点的概率为10.1676≈,故此选项不符合题意; D. 从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为10.333≈,故此选项符合题意; 故选:D. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(每小题3分,共24分) 11、1米【分析】设建筑物的高度为x ,根据物高与影长的比相等,列方程求解. 【详解】解:设建筑物的高度为x 米,由题意得,4366x =,解得x=1. 故答案为:1米. 【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决. 12、小智【分析】通过比较线段的长短,即可得到OC >OD >OB >OA ,进而得出表示最好成绩的点为点C . 【详解】由图可得,OC >OD >OB >OA , ∴表示最好成绩的点是点C , 故答案为:小智. 【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.【分析】根据(-2,n )和(1,n )可以确定函数的对称轴x=1,再由对称轴的x=2(1)b-⨯-,即可求出b ,于是可求n的值.【详解】解:抛物线24y x bx =-++经过(-2,n )和(1,n )两点,可知函数的对称轴x=1, ∴2(1)b-⨯-=1,∴b=2; ∴y=-x 2+2x+1,将点(-2,n )代入函数解析式,可得n=-1; 故答案是:-1. 【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键. 14、0<b <94【分析】画出图象,利用图象法解决即可.【详解】解:将抛物线y =﹣x 2﹣4x (﹣4≤x≤0)沿y 轴折叠后得另一条抛物线为y =﹣x 2+4x (0≤x≤4) 画出函数如图,由图象可知,当直线y =x+b 经过原点时有两个公共点,此时b =0,解24y x b y x x=+⎧⎨=-+⎩,整理得x 2﹣3x+b =0, 若直线y =x+b 与这两条抛物线共有3个公共点,则△=9﹣4b >0, 解得94b <所以,当0<b <94时,直线y =x+b 与这两条抛物线共有3个公共点, 故答案为904b <<.【点睛】本题考查了二次函数图像的折叠问题,解决本题的关键是能够根据题意画出二次函数折叠后的图像,掌握二次函数与一元二次方程的关系. 15、75364π-【分析】过D 作DM ⊥AB ,根据=EDAABCCBF CDE S S S S S++-阴影扇形扇形计算即得.【详解】过D 作DM ⊥AB ,如下图:∵D 为AC 的中点,以点D 为圆心,DC 长为半径作弧,交AB 于点E ∴AD=ED=CD∴=A DEA ∠∠,2AE AM = ∵30A ∠=︒∴=DEA=30A ︒∠∠ ∴60EDC ∠=︒∵在Rt ABC △中,90ACB ∠=︒ ∴60B ∠=︒ ∵2BC =∴tan 30BCAC ==︒∴12AD ED CD AC ===∴sin 30DM AD =︒=3cos302AM AD =︒==,23AE AM == ∴60423603CBF S ππ⨯==扇形,6033602EDC S ππ⨯==扇形,1324EDAS AE DM ==1232ABCS BC AC ==∴76=4EDA ABCCBF CDE S S S SSπ++-=-阴影扇形扇形故答案为:76π 【点睛】本题考查了求解不规则图形的面积,解题关键是通过容斥原理将不规则图形转化为规则图形. 16、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算. 【详解】解:∵AA′∥BC , ∴∠A′AB=∠ABC=65°. ∵BA′=AB ,∴∠BA′A=∠BAA′=65°, ∴∠ABA′=1°,又∵∠A′BA+∠ABC'=∠CBC'+∠ABC', ∴∠CBC′=∠ABA′=1°. 故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则2360n RSπ=扇由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=26 360nπ⋅,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.18、<【分析】直接利用特殊角的三角函数值分别代入比较得出答案.【详解】解:∵sin30°=12,cos30°=32.∴sin30°<cos30°.故答案为:<.【点睛】本题主要考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题关键.三、解答题(共66分)19、(1)见解析(2)1 6【分析】(1)利用列表法展示所有12种等可能的结果数;(2)找出小明参加总决赛抽取题目是成语题目的结果数,然后根据概率公式计算即可. 【详解】(1)使用列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)小明参加总决赛抽取题目都是成语题目的概率为126P == 【点睛】此题考查概率公式与列表法,解题关键在于利用列表法 列出所有结果 20、(1)(0,2);(2)21y x 24=-+;(3)m=2或1m 4≤-. 【分析】(1)2mx 2y =+是顶点式,可得到结论; (2)把A 点坐标代入2mx 2y =+得方程,于是得到结论;(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m 的值,再进行分析变化趋势可得到结论.【详解】(1)2mx 2y =+是顶点式,顶点坐标为,2(0);(2)∵抛物线经过点()3.A m -, ∴m=9m +2, 解得: 1m 4=- , ∴21y x 24=-+ (3)如图1,当抛物线开口向上时,抛物线顶点在线段AB 上时,m 2= ;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点A 时,1m 4=-;直线x=-3交抛物线于点(-3,9m+2),当1m<4-时,9m+2<m ,交点位于点A 下方,直线x=1交抛物线于点(1,m+2),交点位于点B 上方,所以此时线段AB 与抛物线一定有且只有一个交点,符合题意; 综上所述,当m 2=或1m 4≤-时,抛物线与线段AB 只有一个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想. 21、(1)49;(2)13【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】解:列表得: 左 直 右 左 左左 左直 左右 直 左直 直直 直右 右左右直右右右共有9种等可能结果,其中,两辆车中恰有一辆车向左转的有4种情况;两辆车行驶方向相同有3种情况 (1)P (两辆车中恰有一辆车向左转)=49; (2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比. 22、(1)10,9.5;(2)平均数=9,方差=1.4;(3)甲. 【分析】(1)根据众数、中位数的意义求出结果即可;(2)根据平均数、方差的计算方法进行计算即可; (3)根据甲队、乙队的方差比较得出结论.【详解】(1)甲队成绩中出现次数最多的是10分,因此众数是10,乙队成绩从小到大排列后处在第5、6两个数的平均数为9+102=9.5,因此中位数为9.5, 故答案为:10,9.5; (2)乙队的平均数为:72892105910⨯++⨯+⨯=,2S 乙 =110[(7﹣9)2×2+(8﹣9)2+(10﹣9)2×5]=1.4, ∵1<1.4, ∴甲队比较整齐, 故答案为:甲. 【点睛】本题考查了统计的问题,掌握众数、中位数的意义、平均数、方差的计算方法是解题的关键. 23、(1)函数解析式为y=x+4(x >0);(2)0≤S≤12. 【分析】(1)抛物线解析式为y=-x 2+2mx-m 2+m+4,设顶点的坐标为(x ,y ),利用抛物线顶点坐标公式得到x=m ,y=m-4,然后消去m 得到y 与x 的关系式即可.(2)如图,根据已知得出OE=4-2m ,E (0,2m-4),设直线AE 的解析式为y=kx+2m-4,代入A 的坐标根据待定系数法求得解析式,然后联立方程求得交点P 的坐标,根据三角形面积公式表示出S=12(4-2m )(m-2)=-m 2+3m-2=-(m-32)2+14,即可得出S 的取值范围. 【详解】(1)由抛物线y=-x 2+2mx-m 2+m+4可知,a=-1,b=2m ,c=-m 2+m+4, 设顶点的坐标为(x ,y ),∴x=-()221m⨯-=m , ∵b=2m , y=()()()()22414241m m m ⨯-⨯-++-⨯-=m+4=x+4,即顶点的纵坐标随横坐标变化的函数解析式为y=x+4(x >0); (2)如图,由抛物线y=-x 2+2mx-m 2+m+4可知顶点A (m ,m+4),∵CD x ⊥轴 ∴//CD y 轴 ∴△ACP ∽△ABE ,∴CP BEAC AB = ∵2CPAC = ∴2BEAB=, ∵AB=m , ∴BE=2m , ∵OB=4+m , ∴OE=4+m-2m=4-m , ∴E (0,4-m ),设直线AE 的解析式为y=kx+4-m ,代入A 的坐标得,m+4=km+4-m ,解得k=2, ∴直线AE 的解析式为y=2x+4-m , 解222424y x my x mx m m +--+-+⎩+⎧⎨== 得 114x m y m ⎩+⎧⎨==,222x m y m -⎧⎨⎩==,∴P (m-2,m ),∴S=12(4-m )(m-2)=-m 2+3m-2=-12(m-3)2+12, ∴S 有最大值 12,∴△OEP 的面积S 的取值范围:0≤S≤12.【点睛】本题考查了二次函数的应用,解题的关键是正确的用字母表示出点的坐标,并利用题目的已知条件得到有关的方程或不等式,从而求得未知数的值或取值范围.24、(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,1)和点(2,−9),∴40449a c a c ++=⎧⎨-+=-⎩,解得:15a c =⎧⎨=-⎩,∴245y x x =--; ∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==, 解得:11x =-,25x =, 如图:∴点A 的坐标为(1-,1),点B 的坐标为(5,1); ∴结合图象得到,当x <1-或x >5时,函数值大于1. 【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.25、(1):x >-2;(2)见详解;(1)①当x >-2时,y 随x 的增加而减小;②2≤b <1. 【分析】(1)x+2>0,即可求解; (2)描点画出函数图象即可;(1)①任意写出一条性质即可,故答案不唯一;②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),即可求解【详解】解:(1)x+2>0,解得:x>-2,故答案为:x>-2;(2)描点画出函数图象如下:(1)①当x>-2时,y随x的增加而减小(答案不唯一),故答案为:当x>-2时,y随x的增加而减小(答案不唯一),②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),故2≤b<1,故答案为:2≤b<1.【点睛】本题考查的是一次函数图象与系数的关系,这种探究性题目,通常按照题设的顺序逐次求解,通常比较容易.26、(1)随机;(2)P(同时抽到两科都准备得较好)=29.【分析】(1)根据三种事件的特点,即可确定答案;(2)先画出树状图,即可快速求出所求事件的概率. 【详解】解:(1)由题意可知,小李同学抽到物理实验题目①这是一个随机事件,故答案为:随机;(2)树状图如下图所示:则P(同时抽到两科都准备得较好)=29.【点睛】本题考查了求概率的列表法与树状图法,弄清题意,画出树状图或正确的列表是解答本题的关键.。
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2023-2024学年第一学期福州市四校教学联盟期末学业联考九年级数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,有且只有一个选项是符合题目要求的.1. 2023年10月12日,习近平总书记在进一步推动长江经济带高质量发展座谈会上强调:“要把产业绿色转型升级作为重中之重,加快培育壮大绿色低碳产业.”下列绿色图标中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形和中心对称图形的识别,根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A 、不是轴对称图形,也不是中心对称图形,不符合题意;B 、既是轴对称图形,也是中心对称图形,符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意;故选B .2. 抛物线277y kx x =−−的图象和x 轴有两个交点,则k 的取值范围是( ) A. 74k ≥− B. 74k >− C. 74k ≥−且0k ≠ D. 74k >−且0k ≠ 【答案】D【解析】【分析】本题考查了抛物线与x 轴的交点,由于二次函数与x 轴有两个交点,故二次函数对应的一元二次方程2770kx x −−=中,Δ0>,解不等式即可求出k 的取值范围,由二次函数定义可知,0k ≠.即可得出结论.【详解】解:∵二次函数277y kx x =−−的图象和x 轴有两个交点,∴20449280k b ac k ≠ ∆=−=+>, ∴74k >−且0k ≠. 故选:D .3. 下列事件,是必然事件是( )A. 经过有信号灯的路口,遇到红灯B. 打开电视频道,正在播体育新闻C. 掷一次骰子,向上一面点数大于0D. 射击运动员射击一次,命中十环【答案】C【解析】【分析】本题考查了必然事件的概念。