统计学_ 贾俊平 -中国人民大学出版社_第五版
- 格式:doc
- 大小:2.84 MB
- 文档页数:87
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
第9章 分类数据分析一、思考题1.简述列联表的构造与列联表的分布。
答:列联表是由两个以上的变量进行交叉分类的频数分布表。
列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。
2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。
答:对三个生产厂甲、乙、丙提供的学习机的A、B、C三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。
抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。
表9-2根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。
建立假设:H0:次品类型与厂家生产是独立的,H1:次品类型与厂家生产不是独立的。
可以计算各组的期望值,如表9-3所示(表中括号内的数值为期望值)。
表9-3 各组的期望值计算表所以2222(2017)(4033)(7058)9.821173358χ---=+++=…。
而自由度等于(R -1)(C -1)=(3-1)×(3-1)=4,若以0.01的显著性水平进行检验,查χ2分布表得20.01(4)13.277χ=。
由于220.019.821(4)13.277χχ=<=,故接受原假设H 0,即次品类型与厂家生产是独立的。
3.说明计算2χ统计量的步骤。
答:计算2χ统计量的步骤:(1)用观察值o f 减去期望值e f ;(2)将(o f -e f )之差平方;(3)将平方结果2)(e o f f -除以e f ;(4)将步骤(3)的结果加总,即得:22()o e ef f f χ-=∑。
4.简述ϕ系数、c 系数、V 系数的各自特点。
答:(1)ϕ相关系数是描述2×2列联表数据相关程度最常用的一种相关系数。
它的计算公式为:ϕ,式中,∑-=ee of f f 22)(χ;n 为列联表中的总频数,也即样本量。
4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:Q L 位置=425=6.25.所以Q L =19+0.25^0=19 Q U 位置=475=18.75,所以Q U =25+2^0.75=26.5(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图Frequency Stem & Leaf 1.00 5. 5 3.00 6. 678 5.00 7. 13488 (2) 平均数:7,标准差0.71 (3)第一种方式的离散系数x s v s ==2.797.1=0.28 第二种方式的离散系数xs v s ==771.0=0.10 所以,第二种排队方式等待时间更集中。
(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.5.甲企业总平均成本nf Mx ki ii∑==1=3406600=19.41(元) 乙企业总平均成本nf Mx ki ii∑==1=(元)29.183426255=所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。
4.6计算数据如表:利润总额的平均数nf Mx ki ii∑==1=(万元)67.42612051200= 利润总额标准差()nx x f *2∑-=σ= (万元)99.1151201614666==σ 峰态系数6479.03352.23)99.115(120851087441643)(4414—=-=-⨯=--=∑=ns f x MK ki ii偏态系数313)(ns f x MSK ki ii∑=-==2057.0)99.115(120)67.426(3513=⨯-∑=i iif M4.8对于不同的总体的差异程度的比较采用标准差系数,计算如下:%3.8605===x s v s 男; %10505===x s v s 女 (1)女生的体重差异大,因为离散系数大;(2)以磅为单位,男生的平均体重为132.6磅,标准差为11.05磅;女生的平均体重为110.5磅,标准差为11.05磅%33.86.13205.11===x s v s 男%105.11005.11===x s v s 女 (3)156065=-=-=s x x z i i ,所以大约有68%的人体重在55kg~65kg 之间;(4)255040=-=-=s x x z i i ,所以大约有95%的女生体重在40kg~60kg 之间。
第4章 数据的概括性度量一、单项选择题1.一组数据中出现频数最多的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】A【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势。
一般情况下,只有在数据量较大的情况下,众数才有意义。
2.下列关于众数的叙述,不正确的是( )。
A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响【答案】C【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
一般情况下,只有在数据量较大的情况下,众数才有意义。
一组数据可能存在多个众数,由于众数是一个位置代表值,因此它不受数据中极端值的影响。
3.一组数据排序后处于中间位置上的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】B【解析】中位数是一组数据排序后处于中间位置上的变量值。
中位数将全部数据等分成两部分,每部分包含50%的数据,一部分数据比中位数大,另一部分则比中位数小。
4.一组数据排序后处于25%和75%位置上的值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】C【解析】四分位数也称四分位点,它是一组数据排序后处于25%和75%位置上的值。
四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。
5.非众数组的频数占总频数的比例称为( )。
A.异众比率B.离散系数C.平均差D.标准差【答案】A【解析】异众比率是指非众数组的频数占总频数的比例。
主要用于衡量众数对一组数据的代表程度。
6.四分位差是( )。
A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.四分位数与上四分位数的中间值【答案】A【解析】四分位差也称内距或四分间距,它是上四分位数与下四分位数之差。
四分位差反映了中间50%数据的离散程度,其数值越小,说明中间的数据越集中;其数值越大,说明中间的数据越分散。
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。