确定二次函数的表达式
- 格式:ppt
- 大小:1.42 MB
- 文档页数:66
二次函数的表达式常见的三种形式:
1、一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且,
当已知抛物线上任意三点坐标时,通常设其函数表达式为一般式,然后列出关于c b a ,,的三元一次方程组求解;
2、顶点式:)0,,(2≠++=a k h a k h x a y 为常数,且)(,当已知抛物线的顶点坐标和抛
物线上另一点的坐标时,通常先设函数的表达式为顶点式,然后将另一点的坐标带入,解关于a 的一元一次方程;
3、交点式(拓展):)0,,)()((2121≠--=a x x a x x x x a y 为常数,且,其中21,x x 是抛物线与x 轴两交点的横坐标.当已知抛物线与x 轴的交点及抛物线上另一点坐标时,通常先设其函数表达式为))((21x x x x a y --=,然后将另一点的坐标带入求出待定系数a .。
2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。
2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。
二次函数的图像及其三种表达式之答禄夫天创作学生:时间:学习目标1、熟悉罕见的二次函数的图像;2、理解二次函数的三种表达式知识点分析1、.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]2、一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
例题精讲例题1已知函数y=x2+bx+1的图象经过点(3,2).(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.例题2、一次函数y=2x +3,与二次函数y=ax 2+bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大.(4)当x 为何值时,一次函数值大于二次函数值? 随堂练习1.已知函数y=ax 2+bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是()A .0<-ab 2<1 B .0<-ab 2<2 C .1<-ab 2<2D .-a b2=1图①图②y =21x 2+2x +1写成y =a (x -h)2+k 的形式是A.y =21(x -1)2+2B.y =21(x -1)2+21 C.y =21(x -1)2-3D.y =21(x +2)2-1y =-2x 2-x +1的顶点在第_____象限m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都y =xy =-x 上 xy 轴上n ,得到分歧的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图37.下列说法错误的是y =-2x 2中,当x =0时,y 有最大值是0 y =4x 2中,当x >0时,y 随x 的增大而增大y =2x 2,yx 2,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点8.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43 B.-43C.45D.-45 9.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 110.抛物线y =21(x +3)2的顶点坐标是______.11.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.12.函数y =34x -2-3x 2有最_____值为_____.13.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.14.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______.15.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是; (2)当x=时,y=3;16.抛物线y=ax 2+bx +c (c ≠0)如图②所示,回答:(1)这个二次函数的表达式是; (2)当x=时,y=3;(3)根据图象回答:当x 时,y >0.17.已知抛物线y=-x 2+(6-2k )x +2k -1与y 轴的交点位于(0,5)上方,则k 的取值范围是.18.一根长为100m 的铁丝围成一个矩形的框子,要想使铁丝框的面积最大,边长分别为.19.若两个数的差为3,若其中较大的数为x ,则它们的积y 与x 的函数表达式为,它有最值,即当x=时,y=.20.边长为12cm 的正方形铁片,中间剪去一个边长为x 的小正方形铁片,剩下的四方框铁片的面积y (cm 2)与x (cm )之间的函数表达式为.21.等边三角形的边长2x 与面积y 之间的函数表达式为.22.抛物线y=x 2+kx -2k 通过一个定点,这个定点的坐标为. 23.已知抛物线y=x 2+x +b 2经过点(a ,-41)和(-a ,y 1),则y 1的值是.24.如图,图①是棱长为a 的小正方体,②、③是由这样的小正方体摆放而成,依照这样的方法继续摆放,由上而下分别叫第一层、第二层……第n 层,第n 层的小正方体的个数记为S ,解答下列问题:(1)依照要求填表:n 1 2 3 4 …s 1 3 6 …(2)写出当n=10时,S=.(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的点.(4)请你猜一猜上述各点会在某一函数图象上吗?如果在某一函数的图象上,求出该函数的表达式.25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.图中二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数表达式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?。
二次函数的三种表示方式1.二次函数的一般式:y=ax2+bx+c(a≠0);2.二次函数的顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x 1+x2=,x1x2=,即=-(x1+x2),=x1x2.所以,y=ax2+bx+c=a( )= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.二次函数的交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.。