基因表达
- 格式:ppt
- 大小:2.71 MB
- 文档页数:65
DNA甲基化、组蛋白修饰及RNA分子的作用可在不同层面影响DNA分子的表达,其中任何环节出现错误都会导致不同的表达错误,从而引发人类疾病。
如果我们能控制DNA的表达,将可以使癌症、病毒引发的疾病(如肝炎、艾滋病)、血液疾病等得到治愈。
首先,简单谈下基因表达。
基因表达指的是基因转录及翻译的过程。
基因表达有两种方式:一种是组成性表达,指不大受环境变动而变化的一类基因表达。
另外一种是适应性表达,指环境的变化容易使其表达水平变动的一类基因表达。
那么基因的表达有何规律呢?时间和空间的特异性是基因表达规律两大特点。
时间特异性指的是按功能需要,某一特定基因的表达严格按特定的时间顺序发生。
空间特异性指的是在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现。
基因的表达调控无论是对真核生物还是原核生物都有着重要的作用,它能维持个体发育和分化,让个体更好的适应环境。
在基因表达里有个在存在于DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列称为启动子。
真核生物根据转录的方式可将启动子分三类。
1、RNA聚合酶I的启动子主要由两部分组成。
目前了解较清楚的是人的RNA聚合酶I的启动子。
在转录起始位点的上游有两部分序列。
核心启动子(core promoter)位于-45至+20的区域内,这段序列就足以使转录起始。
在其上游有一序列,从-180至-107,称为上游调控元件(upstream control element,UCE),可以大大的提高核心启动子的转录起始效率。
两个区域内的碱基组成和一般的启动子结构有所差异,均富含G.C对,两者有85%的同源性。
2、RNA聚合酶Ⅱ的启动子位于转录起始点的上游,由多个短序列元件组成。
该类启动子属于通用型启动子,即在各种组织中均可被RNA聚合酶n所识别,没有组织特异性。
经过比较多种启动子,发现RNA聚合酶II的启动子有一些共同的特点,在转录起始点的上游有几个保守序列,又称为元件(elememt)。
第十三章基因表达的调控一、基因表达调控基本概念与原理:1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。
2.基因表达的时间性及空间性:⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。
故又称为阶段特异性。
⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。
故又称为细胞特异性或组织特异性。
3.基因表达的方式:⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。
其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。
这类基因通常被称为管家基因(housekeeping gene)。
⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。
这类基因称为可诱导基因。
阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。
这类基因称为可阻遏基因。
4.基因表达的生物学意义:①适应环境、维持生长和增殖。
②维持个体发育与分化。
5.基因表达调控的基本原理:⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。
⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。
生物信息学研究中的基因表达分析方法随着技术的不断发展,基因表达信息已经成为了众多生物学研究的重要数据来源。
我们可以通过基因表达信息来了解细胞内基因转录活动的变化、探索基因调控网络的结构和功能,甚至可以预测未来细胞发育的走向。
在研究中,我们经常会使用一些生物信息学中的基因表达分析方法,本文将简单介绍一些常见的基因表达分析方法和应用领域。
1. 基因表达聚类分析基因表达聚类分析是将大量样品中基因表达谱进行分类,从中找到具有相似表达谱的基因,将它们放入同一组别。
对于一个未知的基因,我们可以通过它与已知基因的表达谱进行比较,将其归入相应类别。
这种方法常见的应用场景包括:基于表达谱的肿瘤亚型分类、基因功能预测等。
其中,基于聚类分析的聚类算法主要有层次聚类和k均值聚类两种。
层次聚类算法将样本或基因逐步归类,生成一个树状结构(Dendrogram),可以根据需要将树状结构切割成指定数量的聚类;k均值聚类则根据事先指定的聚类数量将所有数据划分为指定数量的类别。
2. 差异基因表达分析在比较两个或多个生物组织或环境的基因表达水平时,常用差异分析来筛选表达差异明显的基因。
通过差异分析,我们可以发现哪些基因在不同的细胞类型、组织类型和发育阶段中表达水平差异较大,甚至可以帮助我们发现潜在的疾病标记物。
常见的差异分析方法包括t检验、方差分析和较新的DESeq、edgeR等差异表达分析软件包。
3. 基因组拼接分析在基因组拼接分析中,我们对齐基因组序列和转录组序列以鉴定剪切变异、外显子水平表达和全内含子表达等信息。
基因组拼接分析使得我们能够进一步挖掘基因、蛋白质和RNA转录本的相互作用模式和基因区域的多样性。
常用的方法包括软件包如TopHat、Cufflinks等。
4. 生物网络分析通常,基因表达谱是由多个基因表达水平组成的,而这些水平之间可能相互影响。
基于此,我们可以构建生物网络图谱并挖掘功能模块来获得新的知识。
这种方法的优点在于我们可以通过挖掘关键基因和互作关系来发掘新的靶点和以及不同疾病之间的关系。
基因表达谱的分析和解读基因表达谱是指生物体内基因在特定环境或状态下的表达情况的记录,是基因组学、分子生物学和计算生物学的交叉学科。
目前,随着高通量测序技术和计算能力的迅猛发展,基因表达谱分析逐渐成为生命科学研究的重要领域。
一、基因表达谱的分析1、测定基因表达谱基因表达谱的测定主要有两种方法:芯片技术和转录组测序。
芯片技术是通过制备特定的DNA探针,然后将其固定到芯片表面,用于检测样品中的RNA,可以同时检测几百万个基因。
转录组测序则是通过高通量测序技术,对RNA进行测序,可以获取到全基因组的表达信息。
两种方法具有互补性,可以提供更为全面的基因表达谱信息。
2、处理基因表达谱数据分析基因表达谱数据的主要任务是将大量的原始数据转化为可解释和可视化的结果。
常用的数据处理方法包括以下几个步骤:(1)数据归一化:由于样品之间的RNA浓度和RNA种类的差异,需要进行数据归一化,以消除这些技术差异。
(2)差异分析:根据生物实验的目的,选择适宜的分析方法,比较不同样品在基因表达水平上的差异。
(3)聚类分析:聚类分析可以将相似的基因表达谱分为一组,便于发掘潜在的基因功能和作用途径。
二、基因表达谱的解读1、生物信息学分析基因表达谱数据的解析和生物信息学密切相关。
常见的生物信息学分析包括基因富集分析、通路富集分析和功能注释分析。
基因富集分析是通过将基因表达谱中显著性差异的基因与特定的基因功能数据库相比较,来鉴定具有显著富集的通路和生物过程。
通路富集分析则是将差异基因与已知通路或生物过程相匹配,以确定哪些通路或过程与表型变化相关。
2、机器学习方法机器学习是一种人工智能的分析方法,目的是从数据中挖掘模式和规律。
基于机器学习的基因表达谱分类方法可以将样本分为不同的亚型或状态,以进一步理解基因表达谱的生物学意义。
常见的机器学习方法包括支持向量机、随机森林和人工神经网络等。
机器学习方法通常需要多个数据集的共同验证,以确保分析的稳健性和可靠性。
基因的表达过程
基因是生命的基础单位,是DNA分子直接控制生物体遗传特征的基本质料。
但是基因不能直接转化成蛋白质,还需要一系列复杂的步骤来控制和调节基因的表达。
基因的表达过程可以分为转录和翻译两大部分。
一、转录
转录是指基因信息从DNA模板被转录成RNA分子的过程。
这个过程是在细胞核中进行的,包括以下几个步骤:
1. 启动子识别:RNA聚合酶需要在基因区起始位点寻找所谓的启动子,才能开始转录基因。
2. RNA合成:RNA聚合酶按照DNA模板单链进行合成新的RNA链,与DNA模板链形成互补配对。
3. 终止转录:RNA聚合酶需要识别到一个终止序列,才能结束合成过程,而产生的RNA链与DNA单链分离。
二、翻译
翻译是指RNA分子指导下的蛋白质合成过程。
这个过程是在细胞质内进行的,包括以下几个步骤:
1. 连接:氨基酸在载体RNA上得到激活后与tRNA结合,进而和RNA分子上的三联密码子匹配。
2. 延伸:一个已经连接的氨基酸和它的载体RNA脱离,留下了一个暴露的氨基酸和连接到下一个氨基酸的tRNA。
3. 终止翻译:翻译终止的命令是由一些不对应于氨基酸的RNA 信号识别。
这个信号使酶靠近并断开多肽链和RNA的连接。
总之,基因的表达是一个高度复杂的过程,需要许多不同类型的细胞成分协同工作才能完成。
研究基因表达和调控过程有助于我们理解生命的奥秘,也为新药开发提供了新的思路。
基因的表达一、基因:1、概念:基因是具有遗传效应的DNA分子片段,是控制生物性状的结构和功能的基本单位。
2、基因与脱氧核甘酸、DNA、染色体关系3、基因的存在场所核基因:染色体上呈线性排列,有性生殖产生配子时基因和染色体真核 具有行为上的一致性。
质基因:线粒体、叶绿体原核:拟核病毒:核酸4、遗传信息:基因中脱氧核苷酸(或碱基对)的排列顺序,代表遗传信息。
每个基因都有特定的遗传信息。
二、基因的功能1、储存遗传信息:通过脱氧核苷酸的排列顺序。
2、传递遗传信息:时间:细胞分裂。
方式:DNA复制3、表达遗传信息:时间:个体发育中。
方式:转录和翻译。
三、基因控制蛋白质的合成:(一)基因的表达:基因(DNA)通过复制将遗传信息传递给后代,在后代的个体发育中,基因中的遗传信息以一定的方式反映到蛋白质的分子结构上来,使后代表现出与亲代相似的性状,这一过程叫基因的表达。
基因的表达是通过DNA控制蛋白质的合成来实现的。
(二)DNA和RNA的比较DNA RNA结构规则的双螺旋结构通常呈单链结构组成基本单位脱氧核苷酸核糖核苷酸五碳糖脱氧核糖(C5H10O4)核糖(C5H10O5)无机酸磷酸磷酸碱基嘌呤腺嘌呤 A腺嘌呤 A鸟嘌呤 G鸟嘌呤 G 嘧啶胞嘧啶 C胞嘧啶 C胸腺嘧啶 T尿嘧啶 U分类通常只有一类分为mRNA、rRNA、tRNA功能主要的遗传物质在无DNA的生物中是遗传物质,在有DNA的生物中,辅助DNA完成其功能。
考虑:下列各种生物体含有的碱基,核苷酸及核酸种类碱基种类核苷酸种类核酸种类五碳糖种类烟草烟草花叶病毒蓝藻噬菌体(三)基因表达过程1、 转录(表示为:DNA→mRNA)(1)概念:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
示意图为说明:转录是以基因为单位进行的,因为一个DNA分子包含有许多个基因,因此,1个DNA就可转录多种多个RNA,基因在转录时为模板的那条链不是固定的,不同基因模板链不同。
基因测序和基因表达的定量分析随着现代科技的飞速发展,人类对于基因的研究也有了重大进展。
其中,基因测序和基因表达定量分析是当前最具有前瞻性和研究价值的两个方向。
本文将分别介绍基因测序和基因表达定量分析的相关知识,并探讨其在医学、生物学等领域的应用前景。
一、基因测序基因测序是指利用现代科技手段,对人类基因组或者其他生物体的基因进行全面或局部的测定、分析和解码。
目前,常用的基因测序技术包括Sanger测序法、Illumina测序法、Ion Torrent测序法、PacBio测序法、Nanopore测序法等。
其中,Illumina测序法是目前使用最广泛的基因测序技术之一。
该技术具有高通量、高精度、低成本等优点,已经被广泛应用于基因组学、转录组学、表观遗传学等研究领域。
通过对某一生物体基因组进行全面测序,可以揭示出其基因结构、基因编码信息、重要的调控元件等相关信息。
这些信息对于深入研究人类疾病、基因进化、种群遗传学等方面都有着重要意义。
二、基因表达定量分析基因表达定量分析是指通过测定生物体在不同状态下的基因表达水平,进而探究其生物功能和调控机制的一种方法。
目前,常用的基因表达定量分析技术包括实时荧光定量PCR、microarray芯片、RNA序列(RNA-seq)等。
实时荧光定量PCR技术可以对少量样本进行基因表达定量检测,具有高灵敏度、高特异性、高准确性等特点。
但同时该技术只能测定几十个基因,并不能全面反映基因表达状态。
而microarray芯片技术可以同时检测几千个基因的表达水平,能够全面而快速地获得一个生物体在某一状态下的基因表达谱。
但该技术成本较高,并且存在芯片设计和数据分析等技术难题。
相较之下,RNA-seq技术是具备高通量、高准确、高灵敏等特点的一种基因表达定量分析技术。
该技术不依赖于芯片设计,能够覆盖全基因组范围内的RNA转录本,同时还能够检测到新型RNA组分、外源RNA以及RNA编辑等信息。