人教版八年级上册数学习题13.3答案
- 格式:docx
- 大小:2.07 MB
- 文档页数:9
八年级数学上册《13.3等腰三角形》同步达标测评一.选择题(共8小题,满分32分)1.等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°2.已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°3.如图,△ABC中,DE∥BC,FB,FC分别平分∠ABC和∠ACB,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30B.32C.34D.364.如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10B.20C.15D.255.如图,为了加固屋顶的钢架,焊上等长的钢条(P1P2、P2P3等).若∠A=15°,AP1=P1P2,则这样的钢条最多只能焊上()条.A.4B.5C.6D.76.如图,AB=BC=CD=DE=EF=FG,则∠A的范围是()A.0°<∠A<15°B.0°<∠A<18°C.0°<∠A<20°D.0°<∠A<22.5°7.如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2021B2021A2022的边长为()A.4044B.4046C.22020D.220218.如图,直线AB⊥CD,垂足为O,点P在∠BOC的平分线上,点E在直线AB上,且△EOP是等腰三角形,则这样的点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分)9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.12.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.13.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.14.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.15.如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN 于P,连P A,则∠APN=.三.解答题(共9小题,满分60分)16.如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB﹣∠B).请说明理由.17.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.18.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.19.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.求证:AF⊥BC.20.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.21.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.22.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.23.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE 交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.24.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.2.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个角度数为40°,100°.故选:D.3.解:∵DE∥BC,∴∠BFD=∠FBC,∠EFC=∠BCF,∵FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠BCF,∴∠BFD=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵△ADE的周长=AD+AE+DE,DE=DF+EF,∴△ADE的周长=AD+BD+AE+EC=AB+AC,∵AB=18,AC=16,∴△ADE的周长=34.故选:C.4.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠BP5P4=100°,∴∠P3P5P4=80°,∴∠A=20°.故选:B.5.解:∵∠A=∠P1P2A=15°∴∠P2P1P3=30°,∠P1P3P2=30°∴∠P1P2P3=120°∴∠P3P2P4=45°∴∠P3P2P4=45°∴∠P2P3P4=90°∴∠P4P3P5=60°∴∠P3P5P4=60°∴∠P3P4P5=60°∴∠P5P4P6=75°∴∠P4P6P5=75°∴∠P4P5P6=30°∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.解:采用排除法:①∵AB=BC=CD=DE=EF=FG,当∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠FGE=∠GEF=∠EFD+∠A=60°+15°=75°,即此时符合;①当∠A=18°时,同法求出∠FEG=∠FGE=90°,此时△FEG不存在,此时不符合,同样,当∠A取大于18°的角都不符合,当∠A=小于18°的数时,△FEG存在,即选项A、C、D错误,只有选项B正确;故选:B.7.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A2021B2021A2022的边长为22020.故选:C.8.解:如图,①当OP=OE时,这样的点E由2个,②当PE=OE时,这样的点E由1个,③当OP=PE时,这样的点E由1个,∴这样的点P有4个,故选:D.二.填空题(共7小题,满分28分)9.解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.10.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为211.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.12.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.13.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.14.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.15.解:∵△ABM和△ACN都是等边三角形,∴AB=AM,AN=AC,∠BAM=∠CAN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠BAN,在△ABN与△AMC中,,∴△ABN≌△AMC(SAS),∴∠ANP=∠ACP,又∵∠AEN=∠PEC(对顶角相等),∵∠AEP=∠NEC(对顶角相等),∴∠APN=∠ACN=60°.故答案为:60°.三.解答题(共9小题,满分60分)16.证明:∵EF⊥AD,AD平分∠BAC,∴∠1=∠2,∠APE=∠APF=90°,又∵∠AEF=180°﹣∠1﹣∠APE,∠AFE=180°﹣∠2﹣∠APF,∴∠AEF=∠AFE,∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM,∵∠AEF=∠B+∠M,∠MFC=∠ACB﹣∠M,∴∠B+∠M=∠ACB﹣∠M,即:∠M=(∠ACB﹣∠B).17.证明:延长BD至F,使DF=BC,连接EF,∵EC=ED,∴∠ECD=∠EDC,∴∠ECB=∠EDF,∴△ECB≌△EDF(SAS),∴BE=EF,∠B=60°,∴△BEF为等边三角形,∴BE=BF,∵AE=BD,∴DF=AB,BC=DF,∴AB=BC,∴△ABC是等边三角形.18.证明:连接AD.则△ABC的面积=△ABD的面积+△ACD的面积,AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG.19.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C,∴AB=AC,∵点F为BC中点,∴AF⊥BC.20.证明:∵AB=AC,∴∠ABC=∠SCB,∵BD平分∠ABC,∴∠ABD=∠CBD,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠E+∠CDE=2∠DBC,∴∠DBC=∠E,∴△BDE为等腰三角形,BD=ED,∵DH垂直于BE,∴H为BE中点(三线合一).21.证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.22.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.23.(1)证明:作DF∥AB交BC于F,如图所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵DF∥AB,∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,∴△CDF是等边三角形,∴CD=DF,∵点P为DE中点,∴PD=PE,在△PDF和△PEB中,,∴△PDF≌△PEB(AAS),∴DF=BE,∴CD=BE;(2)解:∵DE⊥AC,∴∠ADE=90°,∴∠E=90°﹣∠A=30°,∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,∴BP=BE,由(1)得:CD=BE,∴BP=BE=CD,设BP=x,则BE=CD=x,AD=12﹣x,∵AE=2AD,∴12+x=2(12﹣x),解得:x=4,即BP的长为4.24.(1)证明:如图,过P做PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD ∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴△APF是等边三角形;∵AP=PF,AP=CQ,∴PF=CQ∴△PFD≌△QCD,∴PD=DQ.(2)△APF是等边三角形,∵PE⊥AC,∴AE=EF,△PFD≌△QCD,∴CD=DF,DE=EF+DF=AC,∵AC=1,DE=.。
13.2画对称图形一.选择题1.点A(2,﹣1)关于y轴对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)2.点A(a,﹣5)关于y轴对称点的坐标(﹣2,b),则a、b的值是()A.a=2,b=5B.a=2,b=﹣5C.a=﹣2,b=5D.a=﹣2,b=﹣5 3.在平面直角坐标系中,将点A(﹣1,2)向右平移4个单位长度得到点B,则点B关于y轴的对称点B′的坐标为()A.(﹣3,2)B.(3,﹣2)C.(3,2)D.(2,﹣3)4.已知点P(m﹣1,4)与点Q(2,n+2)关于y轴对称,则n m的值为()A.﹣2B.C.﹣D.15.在平面直角坐标系中,若点P(m,2)与点Q(3,n)关于y轴对称,则m,n的值分别是()A.﹣3,2B.3,﹣2C.﹣3,﹣2D.3,26.下列结论:①在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1);②m≠0,点P(m2,﹣m)在第四象限;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4);④横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上.其中正确的是()A.①③B.②④C.①④D.②③7.在平面直角坐标系中,点A(﹣2,a)与点B(b,3)关于x轴对称,则a+b的值是()A.﹣5B.﹣1C.1D.58.如图,△ABC顶点B的坐标是(﹣5,2),先把△ABC向右平移3个单位得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则顶点B2的坐标是()A.C.9.在平面直角坐标系中,已知点A(﹣2a,6)与B(4,b+2)关于x轴对称,则a,b的值为()A.a=2,b=﹣8B.a=2,b=8C.a=﹣2,b=8D.a=﹣2,b=﹣8 10.已知点A(a,3),B(﹣3,b),若点A、B关于x轴对称,则点P(﹣a,﹣b)在第_____象限,若点A、B关于y轴对称,则点P(﹣a,﹣b)在第_____象限.关于x轴对称的点的坐标为.12.将点P(﹣2,y)先向下平移4个单位,再向左平移2个单位,然后把点关于x轴对称得到点Q(x,﹣1)、则x+y=.13.点P(a,b)关于x轴的对称点的坐标为,关于y轴的对称点的坐标为.14.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是.15.如图,在平面直角坐标系内,点P(a,b)为△ABC的边AC上一点,将△ABC先向左平移2个单位,再作关于x轴的轴对称图形,得到△A′B′C',则点P的对应点P'的坐标为.三.解答题16.如图,△DEF的顶点在正方形网格的格点上.(1)画△DEF关于直线HG的轴对称图形△ABC(不写画法);(2)作△DEF中DE边上的中线(尺规作图,不写作法,保留作图痕迹).17.如图在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣3,4),B(﹣4,1),C(﹣1,1)(1)请在图中画出△ABC关于y轴的对称图形△A′B′C′,点A、B、C的对称点分别为A′、B′、C′,其中A′的坐标为;B′的坐标为;C′的坐标为,(2)请求出△A′B′C'的面积.18.如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△ABC和△A2B2C2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC的面积.19.如图,已知:∠AOB=90°,OC平分∠AOB,点P在射线OC上.点E在射线OA上,点F在射线OB上,且∠EPF=90°.(1)如图1,求证:PE=PF;(2)如图2,作点F关于直线EP的对称点F′,过F′点作FH⊥OF于H,连接EF′,F′H与EP交于点M.连接FM,图中与∠EFM相等的角共有个.参考答案与试题解析一.选择题1.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.2.【解答】解:∵点A(a,﹣5)关于y轴的对称点的坐标为(﹣2,b),∴a=2,b=﹣5,故选:B.3.【解答】解:点A(﹣1,2)向右平移4个单位长度得到的B的坐标为(﹣1+4,2),即(3,2),则点B关于y轴的对称点B′的坐标是:(﹣3,2).故选:A.4.【解答】解:∵点P(m﹣1,4)与点Q(2,n+2)关于y轴对称,∴m﹣1=﹣2,n+2=4,解得:m=﹣1,n=2,则n m的值为:2﹣1=.故选:B.5.【解答】解:∵点P(m,2)与点Q(3,n)关于y轴对称,∴m=﹣3,n=2,则m,n的值分别是:﹣3,2.故选:A.6.【解答】解:①在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1),说法正确;②m≠0,点P(m2,﹣m)在第四象限,说法错误;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4),说法错误;④横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上,说法正确.正确的说法是①④,故选:C.7.【解答】解:∵点A(﹣2,a)与点B(b,3)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b的值是:﹣3﹣2=﹣5.故选:A.8.【解答】解:∵顶点B的坐标是(﹣5,2),将其向右平移3个单位得到顶点B1,∴顶点B1的坐标为(﹣2,2).又∵顶点B2和顶点B1关于y轴对称,∴顶点B2的坐标为(2,2).故选:C.9.【解答】解:∵点A(﹣2a,6)与B(4,b+2)关于x轴对称,∴﹣2a=4,b+2=﹣6,解得:a=﹣2,b=﹣8,故选:D.10.【解答】解:∵点A(a,3),B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣3,∴﹣a>0,﹣b>0,∴点P(﹣a,﹣b)在第一象限,∵点A(a,3),B(﹣3,b)关于y轴对称,∴a=3,b=3,∴﹣a<0,﹣b<0,∴点P(﹣a,﹣b)在第三象限,故选:A.二.填空题(共5小题)11.【解答】解:点(﹣2017,2018)关于x轴对称的点的坐标为:(﹣2017,﹣2018).故答案为:(﹣2017,﹣2018).12.【解答】解:∵将点P(﹣2,y)先向下平移4个单位,再向左平移2个单位,∴平移后的坐标为:(﹣4,y﹣4),∵把点关于x轴对称得到点Q(x,﹣1),∴x=﹣4,y﹣4=1,解得:x=﹣4,y=5,则x+y=1.故答案为:1.13.【解答】解:点P(a,b)关于x轴的对称点的坐标为:(a,﹣b);关于y轴的对称点的坐标为:(﹣a,b).故答案为:(a,﹣b),(﹣a,b).14.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,∴A′的坐标为:(1,2),∵将点A′向上平移2个单位,∴得到点A″坐标为:(1,4).故答案为:(1,4).15.【解答】解:由题意点P(a,b)先向左平移2个单位得到(a﹣2,b),(a﹣2,b)关于x轴的对称点P′(a﹣2,﹣b),故答案为(a﹣2,﹣b).三.解答题(共4小题)16.【解答】解:(1)如图,△ABC为所作;(2)如图,FM为所作.17.【解答】解:(1)如图所示,△A′B′C′即为所求,A′的坐标为(3,4);B′的坐标为(4,1);C′的坐标为(1,1);故答案为:(3,4);(4,1);(1,1);(2)△A′B′C'的面积=×3×3=.18.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(6,6),B1(3,2),C1(6,1).(2)如图所示,△A2B2C2即为所求,A2(4,6),B2(1,2),C2(4,1);(3)△ABC和△A2B2C2关于y轴对称,△ABC的面积为×5×3=7.5.19.【解答】解:(1)如图1,过P作PG⊥OB于G,PH⊥AO于H,则∠PGF=∠PHE=90°,∵OC平分∠AOB,PG⊥OB,PH⊥AO,∴PH=PG,∵∠AOB=∠EPF=90°,∴∠PFG+∠PEO=180°,又∵∠PEH+∠PEO=180°,∴∠PEH=∠PFG,∴△PEH≌△PFG(AAS),∴PE=PF;(2)由轴对称可得,∠EFM=∠EF'M,∵F'H⊥OF,AO⊥OB,∴AO∥F'F,∴∠EF'M=∠AEF',∵∠AEF'+∠OEF=∠OFE+∠OEF=90°,∴∠AEF'=∠OFE,由题可得,P是FF'的中点,EF=EF',∴EP平分∠FEF',∵PE=PF,∠EPF=90°,∴∠PEF=45°=∠PEF',又∵∠AOP=∠AOB=45°,且∠AEP=∠AOP+∠OPE,∴∠AEF'+45°=45°+∠OPE,∴∠AEF'=∠OPE,∴与∠EFM相等的角有4个:∠EF'M,∠AEF',∠EFO,∠EPO.故答案为:4.13.3 等腰三角形一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A .甲、乙两种作法都正确B .甲的作法正确,乙的作法不正确C .甲的作法不正确,乙的作法正确D .甲、乙两种作法都不正确2. (2019•天水)如图,等边OAB △的边长为2,则点B 的坐标为A .(11),B .(13),C .(31),D .(33),3. (2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°4. (2020·聊城)如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120° B.130° C.145° D .150°F EC5. (2020·青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A.55°,55° B.70°,40°或70°,55°C.70°,40° D.55°,55°或70°,40°6. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是( )A. 6B. 7C. 8D. 97. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个8. (2020·宜宾)如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=13BE,AN=13AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形9. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为( )A. 2B. 4C. 6D. 810. (2020·绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠PAH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小二、填空题(本大题共6道小题)11. 等腰三角形的两边长分别为6 cm,13 cm,其周长为________ cm.12. (2020·齐齐哈尔)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.13. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD14. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.15. 在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是________.16. 【题目】(2020·滨州)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于点D,AD=4 cm,求BC的长.18. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.19. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB =DC ,过点D 作DE ∥AC ,交射线AB 于点E ,连接AD 交BC 于点F. (1)求证:AD ⊥BC ;(2)如图①,当点E 在线段AB 上且不与点B 重合时,求证:DE =AE ; (3)如图②,当点E 在线段AB 的延长线上时,请直接写出线段DE ,AC ,BE 的数量关系.20. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.人教版 八年级数学 13.3 等腰三角形 同步训练-答案一、选择题(本大题共10道小题) 1. 【答案】A2. 【答案】B【解析】如图,过点B 作BH AO ⊥于H 点,∵OAB △是等边三角形,∴1OH =,22=213BH -=∴点B 的坐标为(13),.故选B .3. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°. 5. 【答案】D【解析】(1)当70°是顶角时,另两个角相等,都等于12×(180°-70°)=55°;(2)当70°是底角时,另一个底角也是70°,顶角=180°-70°×2=40°.因此另外两个内角的底数分别是55°,55°或70°,40°.故选D.6. 【答案】C7. 【答案】D[解析] ∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.8. 【答案】C【解析】由△ABC和△ECD都是等边三角形,可得△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=13BE,AN=13AD,∴BM=AN,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN =60°,∴△MCN是等边三角形.9. 【答案】B10. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA,∴△BCP和△ABP均是等腰三角形.在△BCP中,∠CBP=θ,BC=BP,∴∠BPC=90°-12θ.在△ABP中,∠ABP=90°-θ,同理得∠APB=45°+12θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠PAH=45°,即其度数是个定值,不变.因此本题选C.二、填空题(本大题共6道小题)11. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm时,三角形的三边长为6 cm,6 cm,13 cm,6+6<13,不能构成三角形;(2)当腰长为13 cm时,三角形的三边长为6 cm,13 cm,13 cm,能构成三角形,周长=2×13+6=32(cm).12. 【答案】10或11.【解析】分3是腰长与底边长两种情况讨论求解即可.①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.13. 【答案】②③④【解析】14. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.15. 【答案】(-2,2)[解析] ∵点P(4,2),∴点P到直线x=1的距离为4-1=3.∴点P关于直线x=1的对称点P′到直线x=1的距离为3.∴点P′的横坐标为1-3=-2.∴对称点P′的坐标为(-2,2).16. 【答案】80°【解析】本题考查了等腰三角形的性质,∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°,因此本题填80°.三、解答题(本大题共4道小题)17. 【答案】解:∵AB=AC,∠C=30°,∴∠B=30°.∵AB⊥AD,AD=4 cm,∴BD=8 cm.∵∠ADB=90°-∠B=60°,∠C=30°,∴∠DAC=30°=∠C.∴CD=AD=4 cm.∴BC=BD+CD=8+4=12(cm).18. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.19. 【答案】解:(1)证明:∵AB=AC,∴点A在BC的垂直平分线上.∵DB=DC,∴点D在BC的垂直平分线上.∴直线AD是BC的垂直平分线.∴AD⊥BC.(2)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.(3)DE=AC+BE.理由:同(2)得∠BAD=∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.20. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.。
人教版八年级上册数学习题13.3 答案1.(1) 35 度, 35°;(2)解:当 80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为 80°,根据三角形的内角和定理可以求出顶角为 180°-80 °-80 °=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2〔 180°-80 °〕=50°.综上,等腰三角形的另外两个角是20°,80°或 50°,50°.2.3.解:∵五角星的五个角都是顶角为36°的等腰三角形,∴每个底角的度数是1/2 ×〔180°- 36 〕°=72°.∴∠ AMB=180° -72 °108°.4.5.证明: CE//DA, ∴∠ A=∠ CEB.6.7.8.:如图 13 -3-29 所示,点 P 是直线 AB 上一点,求作直线CD ,使 CD ⊥AB 于点 P.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.作法: (1)以点 P 为圆心作弧交 AB 于点 E,F,(2)分别以点 E,F 为圆心,大于 1/2EF 的长为半径作弧,两弧相交于点 C,过C, P 作直线 CD,那么直线 CD 为所求直线.9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.10.11.。
Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。
分析:题目要求我们证明AD=AB 。
观察图形,AB 与AD 位于△ABD 中。
由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。
用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。
证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。
又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。
Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。
又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。
Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。
求证:△CEB 是等腰三角形。
证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。
∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。
Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。
求证:BD=CE 。
证明:∵AB =AC ,∴∠B =∠C 。
又∵AD =AE ,∴∠ADE =∠AED 。
2022-2023学年人教版八年级数学上册《13.3等腰三角形》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.已知等腰三角形三边的长分别为4,x,10,则x的值是()A.4B.10C.4 或10D.6 或102.已知等腰三角形ABC的周长为20cm,BC=8cm,则AB的长度是()A.8cm B.6cmC.8cm或6cm D.8cm或6cm或4cm3.已知等腰三角形的一个底角为70°,则其顶角为()A.50°B.60°C.30°D.40°4.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°5.如图,在△ABC中,D、E是两边AB、AC上的点,DE∥BC,DE=BE,若∠DBC=20°,∠C=65°,则∠A的度数是()A.60°B.65°C.70°D.75°6.如图,已知点B,C,D,E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,则∠E=()A.35°B.30°C.25°D.15°7.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()°A.150B.120C.90D.808.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD于点D.∠ABD=∠A,若BD=1,BC=3,则AC的长为()A.2B.3C.4D.59.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10B.8C.6D.410.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为()A.B.C.D.无法确定二.填空题(共6小题,满分30分)11.等腰三角形一边长等于4,一边长等于9,它的周长是.12.已知△ABC中有一个内角是30°,AB=AC,AB边上的中垂线交直线BC于点D,连结AD,则∠DAC=.13.如图,AD是△ABC的高,且AB+BD=DC,∠BAD=40°,则∠C的度数为.14.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E =60°,若BE=4cm,DE=3cm,则BC=cm.15.如图,∠ABC的平分线BF与△ABC的相邻外角∠ACG的平分线CF相交于F,过F 作DF∥BC,交AB于D,交AC于E,若BD=8cm,CE=5cm,则DE的长为.16.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB 于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)三.解答题(共5小题,满分50分)17.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.18.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.19.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.20.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB 的大小为(直接写出结果,不证明)21.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.参考答案一.选择题(共10小题,满分40分)1.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.2.解:(1)当BC=8cm为底边时,AB为腰,由等腰三角形的性质,得AB=(20﹣BC)=6cm;(2)当BC=8cm为腰时,①若AB为腰,则BC=AB=8cm;②若AB为底,则AB=20﹣2BC=4cm,故选:D.3.解:∵等腰三角形的一个底角为70°,∴顶角=180°﹣70°×2=40°.故选:D.4.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣25°=65°.故选:D.5.解:∵DE=BE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC=20°,∴∠DBE=∠BDE=20°,∴∠ABC=40°,∵∠C=65°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣40°﹣65°=75°,故选:D.6.解:如图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:D.7.解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.8.解:延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:D.9.解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×12=6,故选:C.10.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故选:A.二.填空题(共6小题,满分30分)11.解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.12.解:∠B=30°是底角,如图1:∵AB=AC,∠B=30°,∴∠C=30°,∵AB边上的中垂线交直线BC于点D,∴∠BAD=∠B=30°,∴∠ADC=30°+30°=60°,∴∠DAC=180°﹣30°﹣60°=90°;∠BAC=30°的角是顶角,如图2:∵AB=AC,∠BAC=30°,∴∠B=∠ACB=(180°﹣30°)÷2=75°,∵AB边上的中垂线交直线BC于点D,∴∠BED=∠AED=90°﹣75°=15°,∴∠ADC=15°+15°=30°,∴∠DAC=75°﹣30°=45°.故∠DAC=90°或45°.故答案为:90°或45°.13.解:在线段DC上取一点E,使DE=DB,连接AE,∵AD是△ABC的高,∴AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠EAD=∠BAD=40°,∠AEB=∠B=90°﹣∠BAD=50°,∵AB+BD=DC,DE+CE=DC,∴AB=CE,∴AE=CE,∴∠EAC=∠C,∵∠AEB=∠EAC+∠C=2∠C,∴∠C=∠AEB=25°,故答案为:25°.14.解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=4cm,DE=3cm,∴DM=1cm,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=cm,∴BN=cm,∴BC=2BN=7cm,故答案为7.15.解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD=8cm,EF=CE=5cm,∴BD﹣CE=FD﹣EF=DE=8﹣5=3(cm),故答案为:3cm.16.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案是:①②③三.解答题(共5小题,满分50分)17.证明:(1)∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∵E为△ABC的外角平分线上的一点,∴∠DAE=∠EAC,∴∠B=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)在△ABF和△CAE中,,∴△ABF≌△CAE(SAS),∴AF=CE.18.(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B (3)∵由(2)知△BDE≌△CEF,∴∠BDE=∠CEF,∴∠CEF+∠DEF=∠BDE+∠B,∴∠DEF=∠B,∴AB=AC,∠A=40°,∴∠DEF=∠B==70°.19.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.20.解:(1)①证明:∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD.在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD;②证明:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=60°;(2)AC=BD,∠APB=α.21.解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.。
第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.6米B.9米C.12米D.15米2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.300a元B.150a元C.450a元D.225a元3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.6. 在△ABC中,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.参考答案:1.B2.B3.54.85. 解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC= 12AE= 12BE=2.5.6. 证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵ D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.7. 证明:∵△ABC为等边三角形,∴AC=BC=AB ,∠C=∠BAC=60°,∵CD=AE,∴△ADC≌△BEA.∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵ BQ⊥AD,∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.。
人教版八年级数学上册《13.3等腰三角形》同步训练1.如图,△ABC是等边三角形,△BCD是等腰三角形,且BD=CD,过点D作AB的平行线交AC于点E,若AB=8,DE=6,则BD的长为()A.6B.C.D.2.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证AB=AC.以下是排乱的证明过程:①又∠1=∠2,②∴∠B=∠C,③∵AD∥BC,④∴∠1=∠B,∠2=∠C,⑤∴AB=AC.证明步骤正确的顺序是()A.③→②→①→④→⑤B.③→④→①→②→⑤C..①→②→④→③→⑤D.①→④→③→②→⑤3.如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°4.如图,已知△ABC是等边三角形,D是BC边上的一个动点(异于点B、C),过点D作DE⊥AB,垂足为E,DE的垂直平分线分别交AC、BC于点F、G,连接FD,FE.当点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰三角形;②△CFG一定为等边三角形;③△FDC可能为等腰三角形.其中正确的有()A.0个B.1个C.2个D.3个5.如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为()A.12B.16C.20D.86.如图,AB∥CD,CB平分∠ACD,点E在AB上,DE⊥CB,垂足为F,连接AF则下列结论中错误的是()A.AB=AC B.∠AFC=∠DC.∠AEF+∠D=180°D.∠AFC>∠FCD7.如果一个等腰三角形的两边长为2和5,那么这个三角形的周长是()A.9B.12C.9或12D.不确定8.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°9.若等腰三角形一边长9cm,另一边长4cm,则它的周长为()A.22cm B.17cm C.22cm或17cm D.22cm或19cm 10.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4 B.9 C.4或9 D.大于5且小于1311.下列对△ABC的判断,错误的是()A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB=BC,∠C=50°,则∠B=50°C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若∠A=20°,∠C=80°,则△ABC是等腰三角形12.已知等腰三角形的周长为19,一边长为8,则此等腰三角形的底边长为()A.3B.8C.3或8D.8或5.513.若等腰三角形的顶角是大于60°的锐角,则底角度数的取值范围是()A.x<60°B.x≤60°C.45°<x<60°D.45°≤x<60°14.△ABC中,∠BAC=∠BCA,AD平分∠BAC,DE∥AC,下列说法正确的是()A.∠B=36°B.∠ADB=108°C.∠ADB=3∠EDA D.∠AED=3∠B 15.等腰三角形的两边长为3和8,则这个等腰三角形的周长是()A.14B.19C.14或19D.2016.如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.则下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD⋅BC17.如图,在△ABC中,AB=AC,AC的垂直平分线l交BC于点D.若∠BAD=78°,则∠B的度数是()A.34°B.30°C.28°D.26°18.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM 交AB于点E.若AE=5,BE=1,则EC的长度是()A.B.C.9D.19.如图,在等腰△ABD中,∠A=32°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为.20.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径画弧交AC于点C和点D,再分别以点C和点D为圆心,大于DC长为半径画弧,两弧相交于点F,作射线BF交AC于点E.若∠A=40°,则∠EBC=度.21.如图,在边长为2的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.22.如图,在△ABC中,AB=AC,∠B=35°,D是BC边上的动点,连接AD,若△ABD 为直角三角形,则∠DAC的度数为.23.已知等腰三角形的一个内角为110°,则等腰三角形的底角的度数为.24.用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.25.如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BC=16cm,则BD=cm.26.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,0),在y轴上取一点C使△ABC为等腰三角形,符合条件的C点有个.27.如图,在△ABC中,AB=AC,∠BAC=108°,AC的中垂线交BC于点D,交AC于点E,连接AD,则图中等腰三角形有个.28.如图,在△ABC中,以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=32°,求∠DAC的度数.29.如图,已知△ABC中,AB=AC,∠ABC、∠ACB的平分线交于点E,直线AE交BC于点D,说明AD⊥BC的理由.30.若关于x,y的二元一次方程组的解都是正数.(1)求a的取值范围;(2)若此方程组的解是一个等腰三角形的一条腰和底边的长,且这个等腰三角形的周长为12,求a的值.31.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.参考答案1.解:连接AD交BC于点O,取AC中点N,连接ON,如图,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABC=60°,∵△BCD是等腰三角形,∴BD=DC,∴AD垂直平分BC,∴BO=CO=4,∵AN=CN,∴ON=AB=4,ON∥AB,∵AB∥DE,∴ON∥DE,∴OD=AO,∴AO=4,∴OD=2,在Rt△BOD中,BD==2.故选:B.2.解:∵③AD∥BC,∴④∠1=∠B,∠2=∠C,∵①∠1=∠2,∴②∠B=∠C,∴⑤AB=AC,故证明步骤正确的顺序是③→④→①→②→⑤,3.解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.4.解:∵DE的垂直平分线分别交AC、BC于点F、G,∴FE=FD,∴△DEF一定为等腰三角形,故①正确;∵DE⊥AB,DE⊥FG,∴AB∥FG,∴∠FGC=∠B=60°,又∵△ABC是等边三角形,∴∠C=60°,∴△CFG中,∠C=∠CFG=∠CGF,∴△CFG一定为等边三角形;故②正确;∵∠FDC>∠FGC=60°,∠C=60°,∠CFD<∠CFG=60°,∴△FDC不可能为等腰三角形.故③错误;5.解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.6.解:∵AB∥CD,∴∠B=∠BCD,∠AEF+∠D=180°,故C选项正确;∵CB平分∠ACD,∴∠ACB=∠BCD,∴∠ACB=∠B,∴AC=AB,故A选项正确;∵DE⊥CB,∴∠CFD=90°,∴∠D+∠BCD=90°,假如∠AFC=∠D,则∠CAF=∠CFD=90°,而∠CAF不一定是90°,∴∠AFC与∠D不一定相等,故B选项错误;∵∠AFC是△ABF的外角,∴∠AFC>∠B,∵∠B=∠FCD,∴∠AFC>∠FCD,故D选项正确,故选:B.7.解:∵2+2=4<5,∴腰的长不能为2,只能为5,∴等腰三角形的周长=2×5+2=12,故选:B.8.解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,底角∠A=50°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.9.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,此时等腰三角形的周长是4cm+9cm+9cm=22cm,故选:A.10.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故选:B.11.解:A.若∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此选项正确,不符合题意;B.若AB=BC,∠C=50°,则∠A=∠C=50°,∠B=100°,故此选项错误,符合题意;C.若AB=BC,∠A=60°,则∠A=∠C=60°,∠B=60°,所以△ABC是等边三角形,故此选项正确,不符合题意;D.若∠A=20°,∠C=80°,则∠B=80°,∠C=∠B=80°,所以△ABC是等腰三角形,故此选项正确,不符合题意.故选:B.12.解:本题可分两种情况:①当腰长为8时,底边长=19﹣2×8=3;经检验,符合三角形三边关系;②底边长为8,此时腰长=(19﹣8)÷2=5.5,经检验,符合三角形三边关系;因此该等腰三角形的底边长为3或8.故选:C.13.解:设等腰三角形的底角为x°,则顶角为(180°﹣2x),由题意可得:60°<180°﹣2x<90°,∴45°<x<60°,∴底角度数的取值范围是45°<x<60°,故选:C.14.解:设∠CAD=x°,∵AD平分∠BAC,∠BAC=∠BCA,∴∠BCA=∠BAC=2x°,∵DE∥AC,∴∠BDE=∠BCA=2x°,∠ADE=∠CAD=x°,∴∠ADB=∠BDE+∠ADE=2x°+x°=3x°,即∠ADB=3∠EDA,故选:C.15.解:①若3是腰,则另一腰也是3,底是8,但是3+3<8,故不构成三角形,舍去.②若3是底,则腰是8,8.3+8>8,符合条件.成立.故周长为:3+8+8=19.故选:B.16.解:根据作图方法可得BC=BD=CD,∵BD=CD,∴点D在BC的垂直平分线上,∵AB=AC,∴点A在BC的垂直平分线上,∴AD是BC的垂直平分线,故C结论正确;∴O为BC中点,∴AO是△BAC的中线,∵AB=AC,∴∠BAD=∠CAD,故A结论正确;∵BC=BD=CD,∴△BCD是等边三角形,故B结论正确;∵四边形ABDC的面积=S△BCD+S△ABC=BC•DO+BC•AO=BC•AD,故D选项错误,故选:D.17.解:∵AB=AC,∴∠B=∠C,∵AC的垂直平分线l交BC于点D,∴AD=DC,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ADB=2∠B,∵∠BAD=78°,∴∠B+∠ADB+∠BAD=∠B+2∠B+78°=180°,∴∠B=34°,故选:A.18.解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=5+1=6,在Rt△ACE中,CE==,故选:A.19.解:∵AD=AB,∠A=32°,∴∠ABD=∠ADB=(180°﹣∠A)=74°,由作图可知,EA=EB,∴∠ABE=∠A=32°,∴∠EBD=∠ABD﹣∠ABE=74°﹣32°=42°,故答案为:42°.20.解:∵AB=AC,∠A=40°,∴∠ACB=(180°﹣40°)÷2=70°,由题意可知,BC=BD,∴∠BDC=∠ACB=70°,∴∠CBD=180°﹣70°×2=40°,由题意可知,BF平分∠DBC,∴∠EBC=∠CBD=20°.故答案为:20.21.解:连接DE,∵在边长为2的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=1,且DE∥AC,BD=BE=EC=1,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=,故EF===,∵G为EF的中点,∴EG=,∴DG==,故答案为:.22.解:如图,∵AB=AC,∠B=35°,∴∠B=∠C=35°,∴∠BAC=110°,当∠BAD=90°时,∠DAC=110°﹣90°=20°;当∠ADB=90°时,∵AB=AC,AD⊥BC,∴∠DAC=∠BAD=55°.故答案为:20°或55°.23.解:∵等腰三角形的一个内角是110°,∴等腰三角形的顶角为110°,∴等腰三角形的底角为35°,故答案为:35°.24.解:组成等腰三角形的两根木棒的长度分别为3cm和6cm,根据三角形三边关系可得,组成等腰三角形的第三根木棒长为6cm,故答案为:6.25.解:∵AB=AC,AD平分∠BAC交BC于点D,∴BD=DC=BC,∵BC=16cm,故答案为:8.26.解:观察图形可知,若以点A为圆心,以AB为半径画弧,与y轴有2个交点,但其中一个与B点重合,故此时符合条件的点由1个;若以点B为圆心,以AB为半径画弧,与y轴有2个交点;线段AB的垂直平分线与y轴有1个交点;∴符合条件的C点有:1+2+1=4(个),故答案为:4.27.解:∵AB=AC,∠BAC=108°,∴△ABC是等腰三角形,∠B=∠C=(180°﹣∠BAC)÷2=36°,∵AC的中垂线交BC于点D,交AC于点E,∴AD=CD,∴△ADC是等腰三角形,∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=72°,∠ADB=∠DAC+∠C=72°,∴∠BAD=∠ADB,∴△BAD是等腰三角形.故图中等腰三角形有3个.故答案为:3.28.解:∵∠B=40°,∠C=32°,∴∠BAC=180°﹣∠B﹣∠C=108°,由作图可知:BA=BD,∴∠BAD=∠BDA=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=38°.29.证明:∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=,,∴∠EBC=∠ECB,∴EB=EC,∴AE垂直平分BC,∴AD⊥BC.30.解:(1)解得,∵若关于x、y的二元一次方程组的解都为正数,∴,解得:a>1;(2)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为12,∴2(a﹣1)+a+2=12,解得:a=4,∴x=3,y=6,故3,3,6不能组成三角形,∴2(a+2)+a﹣1=12,解得:a=3,∴x=2,y=5,故2,5,5能组成等腰三角形,∴a的值是3.31.证明:∵∠1=∠2,∴DB=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴AB=AC.。
人教版数学八年级上册第十三章13.3.2 等边三角形培优练习一、选择题1.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°【答案】B2. 以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)【答案】D3. 已知直线DE与不等边△ABC的两边AC,AB分别交于点D,E,若△CAB=60°,则图中△CDE+△BED=()A.180°B.210°C.240°D.270°【答案】C4. 如图,△DAC和△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,有如下结论:△△ACE△△DCB;△CM=CN;△AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个【答案】B.5. 如图,已知△MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64【答案】C.6.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.8【答案】A7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B。
2022-2023学年人教版八年级数学上册《13.3等腰三角形》同步达标测试题(附答案)一.选择题(共10小题,满分30分)1.如果等腰三角形两边长是6 cm和12 cm,那么它的周长是()A.18 cm B.24 cm C.30 cm D.24或30 cm 2.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°3.如图,在△ABC中,AB=AC>BC,点D、E分别在AB、AC上,连接BE、CD,相交于点F,BE=BC,∠ABE=∠BCD,若CE=5,则CF的长为()A.6B.5C.4D.34.若(a﹣2)2+|b﹣5|=0,则以a、b为边长的等腰三角形的周长为()A.7B.12C.9D.9或125.如图,已知AE交CD于点O,AB∥CD,OC=OE,∠A=50°,则∠C的大小为()A.10°B.15°C.25°D.30°6.如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.67.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC8.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积为()A.2cm2B.4cm2C.6cm2D.8cm29.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③B.②③④C.①③④D.①②③④10.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A =18°,则∠GEF的度数是()A.108°B.100°C.90°D.80°二.填空题(共10小题,满分30分)11.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为.12.等腰三角形的一个内角是80°,则它顶角的度数是.13.如果等腰三角形的一个外角是100°,那么它的底角为.14.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是.15.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,则∠CDE的度数为.16.等腰三角形的一个角是70°,则它的一腰上的高与底边的夹角是.17.在等腰△ABC中,∠A:∠B:∠C=1:m:4,则m的值是.18.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.19.如图,在△ABC中,边AB的垂直平分线分别交AB、AC于点D,E,若AD为4cm,△ABC的周长为26cm,则△BCE的周长为cm.20.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.三.解答题(共7小题,满分60分)21.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.22.如图,在△ABC中,∠ABC=90°,点E在BC上,点F在AB的延长线上,连接AE,CF,且AE=CF,BF=BE.求证:△ABC是等腰三角形.23.如图,△ABC中,AB=AC,D点在BC上,∠BAD=30°,且∠ADC=60°,BD=3,求CD.24.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD 交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.25.如图所示,在△ABC中,AB=AC,分别在边AB、AC上取点D、E,使DE∥BC,△ADE是等腰三角形吗?说明理由.26.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.(1)∠1=∠2=°.(2)∠1与∠3相等吗?为什么?(3)试判断线段AB与BD,DH之间有何数量关系,并说明理由.27.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.参考答案一.选择题(共10小题,满分30分)1.解:当12为腰,6为底时,12﹣6<12<12+6,能构成等腰三角形,周长为12+12+6=30;当6为腰,12为底时,6+6=12,不能构成三角形.故选:C.2.解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,底角∠A=50°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.3.解:∵AB=AC,BE=BC,∴∠ABC=∠ACB.∠BEC=∠BCE,∴∠ABC=∠ACB=∠BEC,∵∠ABE=∠BCD,∴∠EBC=∠ECD,∵∠CFE为△CBF的外角,∴∠CFE=∠CBF+∠FCB,∵∠ABE=∠BCD,∴∠CFE=∠CBF+∠FCB=∠ABC,∴∠CFE=∠CEF,∴CF=CE=5,故选:B.4.解:∵(a﹣2)2+|b﹣5|=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5,∴等腰三角形的三边长分别为2,2,5或2,5,5,∵2+2<5,2+5>5,∴边长分别为2,2,5的等腰三角形不存在,∴以a、b为边长的等腰三角形的周长为2+5+5=12,5.解:∵AB∥CD,∠A=50°,∴∠DOE=∠A=50°,∵OC=OE,∴∠C=∠E,∴∠C=∠DOE=25°,故选:C.6.解:∵△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=2AB,∵S△ABC=AC•BF,∴AC•BF=2AB,∵AC=AB,∴BF=2,∴BF=4,故选:B.7.解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.8.解:∵S△ABC=12cm2,∴阴影部分面积=12÷2=6cm2.9.解:∵BE是△ABC的中线,∴AE=CE,∴△ABE的面积等于△BCE的面积,故①正确;∵AD是△ABC的高线,∴∠ADC=90°,∴∠ABC+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABC=∠CAD,∵CF为△ABC的角平分线,∴∠ACF=∠BCF=∠ACB,∵∠AFC=∠ABD+∠BCF,∠AGF=∠ACF+∠CAD,∴∠AFC=∠AGF,故②正确;∵∠BAD+∠CAD=∠ACB+∠CAD=90°,∴∠BAD=∠ACD,∴∠F AG=2∠ACF,故③正确;根据已知条件无法证明BH=CH,故④错误,故选:A.10.解:∵∠A=18°,AB=BC=CD=DE=EF,∴∠ACB=18°,根据三角形外角和外角性质得出∠BCD=108°,∴∠CBD=∠CDB=×(180°﹣108°)=36°,∵∠ECD=180°﹣∠BCD﹣∠ACB=180°﹣108°﹣18°=54°,∴∠ECD=∠CED=54°∴∠CDE=180°﹣54°×2=72°,∵∠EDF=∠EFD=180°﹣(∠CDB+∠CDE)=72°,∴∠DEF=180°﹣(∠EDF+∠EFD)=36°,∴∠GEF=180°﹣(∠CED+∠DEF)=90°,即∠GEF=90°.二.填空题(共10小题,满分30分)11.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣25°=65°.故答案为:115°或65°.12.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.13.解:∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角是180°﹣100°=80°,①80°角是顶角时,它的底角为:(180°﹣80°)=50°,②80°角是底角时,它的底角80°,所以,它的底角是50°或80°.故答案为:50°或80°.14.解:∵等腰三角形的一边长为3,另一边长为6,∴有两种情况:①6为底,3为腰,而3+3=6,那么应舍去;②3为底,6为腰,那么6+6+3=15;∴该三角形的周长是6+6+3=15.故填15.15.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE=(180°﹣∠CAD)=70°,∴∠CDE=90°﹣70°=20°,故答案为:20°.16.解:如图:△ABC,AB=AC,BD⊥AC当底角为70°时,即∠ABC=∠C=70°,∵BD⊥AC,∴∠BDC=90°,∴∠CBD=90°﹣∠C=90°﹣70°=20°;当顶角为70°时,即∠A=70°,∵AB=AC,∴∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣∠C=90°﹣55°=35°,综上,它的一腰上的高与底边的夹角是20°或35°.故答案为20°或35°.17.解:当∠A为顶角时,此时∠B和∠C为底角,∴此时∠A:∠B:∠C=1:4:4,即:m=4;当∠A为底角时,此时∠C为顶角,所以,∠A:∠B:∠C=1:1:4,即:m=1,故答案为1或4.18.解:∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°﹣72°﹣36°﹣36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°﹣72°﹣36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.故答案为:3.19.解:∵ED垂直平分AB,∴AE=BE,∴BD=AD=4cm,AB=8cm,∵△ABC的周长为26cm,∴AC+BC=18cm,△BCE的周长=BC+CE+AE=BC+CE+AE=18cm.故填18.20.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.三.解答题(共7小题,满分60分)21.解:如图,AB=AC,BD为腰AC上的中线,设AD=DC=x,BC=y,根据题意得或,解得或,当x=4,y=17时,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系,舍去;当x=7,y=5时,等腰三角形的三边为14,14,5,答:这个等腰三角形的底边长是5.22.证明:∵∠ABC=90°,∴∠CBF=180°﹣∠ABC=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴AB=CB,∴△ABC是等腰三角形.23.证明:∵∠ADC=60°,∠BAD=30°,∴∠B=∠ADC﹣∠BAD=60°﹣30°=30°=∠BAD,∴BD=AD=3,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∴∠DAC=120°﹣30°=90°,∴CD=2AD=6.24.(1)证明:∵AD=CD,∴∠DAC=∠DCA,∵AB∥CD,∴∠DAC=∠CAB,∴AC是∠EAB的角平分线,∵CE⊥AE,CB⊥AB,∴CE=CB;(2)AC垂直平分BE,证明:由(1)知,CE=CB,∵CE⊥AE,CB⊥AB,∴∠CEA=∠CBA=90°,在Rt△CEA和Rt△CBA中,,∴Rt△CEA≌Rt△CBA(HL),∴AE=AB,CE=CB,∴点A、点C在线段BE的垂直平分线上,∴AC垂直平分BE.25.解:△ADE是等腰三角形,理由:在△ABC中,AB=AC,∴∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.26.解:(1)∵AD为BC边上的高,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=ABD=22.5°,故答案为:22.5;(2)∠1=∠3,理由是:∵AB=BC,BE平分∠ABC,∴BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3;(3)AB=BD+DH,理由是:∵在△BDH和△ADC中,∴△BDH≌△ADC(ASA),∴DH=DC,∴BC=BD+DC=BD+DH,∵AB=BC,∴AB=BD+DH.27.解:∵AB=AC,∴∠B=∠C(等边对等角),∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB(等角的余角相等),∵∠EDB=∠ADF(对顶角相等),∴∠EFC=∠ADF,∴AD=AF,∴△ADF是等腰三角形.。
人教版八年级数学13.3 等腰三角形针对训练一、选择题1. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2 B.5.2 C.7.8 D.82. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°3. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC4. 下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 107. 如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE ∥BC交AB于点E.若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.128. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.309. 如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E,D.若AC=3,AB=4,则DE的长为()A.6 B.7 C.8 D.910. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 如图,在△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠BFD=________°.13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.15. 如图,在△ABC中,∠B=20°,∠A=105°,点P在△ABC的三边上运动,当△P AC为等腰三角形时,顶角的度数是__________.三、解答题16. 如图所示,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1,求AD的长.17. 如图所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC 于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.18. 如图①,在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F.探究一:猜想图①中线段EF 与BE ,CF 间的数量关系,并证明. 探究二:设AB =8,AC =6,求△AEF 的周长.探究三:如图②,在△ABC 中,∠ABC 的平分线BO 与△ABC 的外角平分线CO 交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F.猜想这时EF 与BE ,CF 间又是什么数量关系,并证明.19. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.20. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.人教版八年级数学13.3 等腰三角形针对训练-答案一、选择题1. 【答案】B[解析] 根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于 6.2. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】C4. 【答案】D[解析] 有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.5. 【答案】D[解析] 由∠BAD+∠B=∠CAD+∠C可得∠ADB=∠ADC,又∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,又BD=DC,由垂直平分线的性质可得AB=AC.由等式的性质,根据AB-BD=AC-CD,AB+BD=AC+CD,又BD=CD,均可得AB=AC.选项D不能得到AB=AC.6. 【答案】C【解析】∵AB=AC,AD平分∠BAC,∴根据等腰三角形三线合一性质可知AD⊥BC,BD=CD,在Rt△ABD中,AB=5,AD=3,由勾股定理得BD=4,∴BC=2BD=8.7. 【答案】C[解析] ∵BD平分∠ABC,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.∵△AED的周长为16,∴AE+DE+AD=AE+BE+AD=AB+AD=16.∵AD=6,∴AB=10.8. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.9. 【答案】B[解析] 由题意得∠EBC=∠ABE,∠ACD=∠DCB.根据平行线的性质得∠DCB=∠ADC,∠EBC=∠AEB,所以∠ADC=∠ACD,∠ABE=∠AEB.所以AD=AC,AB=AE.所以DE=AD+AE=AC+AB=3+4=7.10. 【答案】D二、填空题11. 【答案】36[解析] 过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=12AB=12×12=6.∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】7013. 【答案】30[解析] ∵MN ∥BC ,∴∠MOB =∠OBC.∵∠OBM =∠OBC , ∴∠MOB =∠OBM. ∴MO =MB.同理NO =NC.∴△AMN 的周长=AM +MO +AN +NO =AM +MB +AN +NC =AB +AC =30.14. 【答案】85或14 [解析] ①当∠A 为顶角时,等腰三角形两底角的度数为180°-80°2=50°, ∴特征值k =80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.15. 【答案】105°或55°或70° [解析] (1)如图①,点P 在AB 上时,AP =AC ,顶角∠A =105°.(2)∵∠B =20°,∠BAC =105°, ∴∠ACB =180°-20°-105°=55°.点P 在BC 上时,如图②,若AC =PC ,则顶角∠C =55°.如图③,若AC =AP ,则顶角∠CAP =180°-2∠C =180°-2×55°=70°. 综上所述,顶角为105°或55°或70°.三、解答题16. 【答案】[解析] 由已知条件易知△ABE ≌△CAD ,从而BE =AD ,只需求PB 的长即可,由BQ ⊥AD 知,若在Rt △BPQ 中有∠PBQ =30°就可以求出BP 的长,于是求证∠BPQ =60°是解决问题的突破口. 解:∵△ABC 为等边三角形, ∴∠BAC =∠C =60°,AB =CA. 又AE =CD ,∴△ABE ≌△CAD. ∴∠ABE =∠CAD ,BE =AD.∴∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°. 又BQ ⊥AD ,∴∠PBQ =30°. ∴PB =2PQ =6.∴BE =PB +PE =7.∴AD =BE =7.17. 【答案】证明:如图所示,过点D 作DG ∥AC 交BC 于点G ,则∠GDF =∠E ,∠DGB =∠ACB. 在△DFG 和△EFC 中,⎩⎨⎧∠DFG =∠EFC ,DF =EF ,∠GDF =∠E ,∴△DFG ≌△EFC(ASA).∴GD =CE.∵BD =CE ,∴BD =GD.∴∠B =∠DGB.∴∠B =∠ACB.∴AB =AC ,即△ABC 是等腰三角形.18. 【答案】解:探究一:猜想:EF =BE +CF.证明如下: ∵BO 平分∠ABC ,∴∠ABO =∠CBO. ∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14. 探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC , ∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠EBO =∠EOB.∴BE =OE. 同理:OF =CF ,∴EF =OE -OF =BE -CF.19. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.20. 【答案】解:(1)证明:∵AB =AC , ∴点A 在BC 的垂直平分线上.∵DB =DC ,∴点D 在BC 的垂直平分线上. ∴直线AD 是BC 的垂直平分线.∴AD ⊥BC. (2)证明:∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD.∵DE ∥AC ,∴∠EDA =∠CAD. ∴∠BAD =∠EDA.∴DE =AE. (3)DE =AC +BE.理由:同(2)得∠BAD =∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.。
人教版八年级上册数学习题13.3答案
1.(1) 35度,35°;
(2) 解:当80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为80°,根据三角形的内角和定理可以求出顶角为180°-80°-
80°=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2(180°-80°)=50°.
综上,等腰三角形的另外两个角是20°,80°或50°,50°.
2.
3.解:∵五角星的五个角都是顶角为36°的等腰三角形,
∴每个底角的度数是1/2×(180° - 36°)=72°.∴∠AMB=180°-72°108°.4.
5.证明:CE//DA,∴∠A=∠CEB.
6.
7.
8.已知:如图13 -3-29所示,点P是直线AB上一点,求作直线CD,使CD ⊥AB于点P.
作法:(1)以点P为圆心作弧交AB于点E,F,
(2)分别以点E,F为圆心,大于1/2EF的长为半径作弧,两弧相交于点C,过C,P作直线CD,则直线CD为所求直线.
9.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高重合.
10.
11.
12.
13.解:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.以等腰三角形两腰上的高相等为例进行证明.
已知:在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E求证:BD=CE.
14.
15.解:如图13-3-31所示,作∠BAC的平分线AD交BC于点D,过点D作DE⊥AB于点E,则△ADC≌△ADE≌△BDE.
人教版八年级上册数学第91页复习题答案1.解:除了第三个图形,其余的都是轴对称图形.找对称轴略.
2.解:如图13-5-22所示.
3.证明:连接BC,∵点D是AB的中点,CD⊥AB,∴AC= BC.同理,
AB=BC,∴AC=AB.
4.解:点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E 不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数.
5.解:∠D=25°,∠E=40°,∠DAE=115°.
6.
7.
8.解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴.
9.解:(1)(4)是轴对称;(2)(3)是平移. (1)的对称轴是y轴;(4)的对称轴是x
轴;(2)中图形I先向下平移3个单位长度,再向左平移5个单位长度得到图形Ⅱ;(3)中图形I先向右平移5个单位长度,再向下平移3个单位长度得到图形Ⅱ.
10.证明:因为AD是△ABC的角平分线,DE,DF分别垂直于AB,AC于点E,F,所以DE= DF,∠DEA= ∠DFA= 90°.又因为DA=DA,所以Rt△ADE≌Rt△ADF,所以AE=AF,所以AD垂直平分EF.
11.证明:∵△ABC是等边三角形,
∴AB=BC=AC,/A=∠B=∠C=60°,
又∵AD= BE=CF,
∴BD=CE=AF.
∴△ADF≌△BED≌△CFF,.
∴DF=ED=FE.
即△DEF是等边三角形.
12.解:这5个点为正五边形的5个顶点,如图13 - 5-23所示,正五边形的每一个内角为108°,以A,B两点为例,△ABC,△ABD,△ABE都是等腰三角形.同理,其他任意三点组成的三角形也都是等腰三角形.
点拨:由正五边形的各边都相等,各角都为108°,各对角线都相等可联想到本题结论.
13.
14.
15.解:如图13-5-24所示,作点A关于MN的对称点A′,再作点B关于L 的对称点B′,连接A'B',交MN于点C,交L于点D,则A一C一D一B是牧马人定的最短路径.。