电法勘探
- 格式:pdf
- 大小:627.72 KB
- 文档页数:7
第三部分 电法勘探第一节 电法勘探简介 一、什么叫电法勘探电法勘探就是以岩石的电性差异为依据,并通过观测和研究天然的或人工的电场(或电磁场)来解决各种地质问题的地球物理勘探方法的总称。
二、油气勘探常用哪些电法勘探方法目前用于油气田勘探的主要有直流电阻率法和大地电磁测探法。
三、电法勘探在油气勘探中的主要目的A 、解决区域地质问题B 、解决局部构造问题C 、直接找油 第二节 直流电阻率法的一些基本知识 一、有关术语的理解电阻率、视电阻率、地电断面、电性标准层、电流密度、电场强度、电位 1、岩石的电阻率(ρ) (1)定义:P282电流平行柱轴通过横截面为一平方米,长度为一米的岩柱时所呈现的电阻。
即(如右图):(2)实用单位电阻率是描述物体导电性能的一个物理量,其实用单位是欧姆•米(Ω• m) 2、岩石的视电阻率(ρs) (1)定义:P294由上式计算出的电阻率值称为岩石的视电阻率。
式中:K 电极装置系数;ΔVMN 为测量电极之间的电位差; I 为供电电极之间的电流(2)实用单位:欧姆•米(Ω• m) (3)实质:ρs 是在电流场作用范围内,各种岩石电阻率的 综合反映。
3、地电断面(P287) (1)概念:根据岩层的电学(或电磁学)性质来划分的地质界面。
(2)注意:A 、 地质界面与地电断面不一定存在一一对应关系。
(P287图3.1.5所示)B 、地电断面能客观地反映工区地质构造的基本特征,可以利用电测井资料来建立地电断面。
C 、在绝大多数情况下,常以电阻率划分地电断面。
4、电性标准层 P288 (1)概念:是指地电断面中那些在电性上和围岩差别大,本身电性稳定,分布范围广,而且厚度较大的能在整个测区对比追踪的具有代表性的电性层。
(2)注意: 1)、 电性标准层可与地震标准层作一对比来理解; 2)、 在一个地区进行电法勘探之前,应根据该地区的地质断面及其他物探资料,选择可能存在的电性标准层。
5、电流密度( j ) P288(1)定义:垂直穿过导体横截面上单位面积的电流强度。
什么是电法勘探?电法勘探(electrical prospecting)是根据岩石和矿石电学性质(如导电性、电化学活动性、电磁感应特性和介电性,即所谓“电性差异”)来找矿和研究地质构造的一种地球物理勘探方法。
它是通过仪器观测人工的、天然的电场或交变电磁场,分析、解释这些场的特点和规律达到找矿勘探的目的。
电法勘探分为两大类。
研究直流电场的,统称为直流电法,包括有电阻率法、充电法、自然电场法和直流激发极化法等;研究交变电磁场的,统称为交流电法,包括有交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法等。
按工作场所的差别,电法勘探又分为地面电法、坑道和井中电法、航空电法、海洋电法等。
电法勘探的发展历史电法勘探方法可以追溯到19世纪初P.Fox在硫化金属矿上发现自然电场现象,至今已有100多年的历史。
我国电法勘探始于20世纪30年代,由当时北平研究院物理研究所的顾功叙光生所开创。
经过70余年的发展,我国的电法勘探无论在基础理论、方法技术和应用效果等方面都取得了巨大的进展,使电法成为应用地球物理学中方法种类最多、应用面最广、适应性最强的一门分支学科。
同时,经过广大地球物理工作者不懈努力,在深部构造、矿产资源、水文及工程地质、考古、环保、地质灾害、反恐等领域,电法已经和正在发挥着重要作用。
限于篇幅,本文仅对其中几种主要方法,如:高密度电法、激发极化法、CSAMT等作简要介绍,并就这些方法在水文和工程地质中的应用进行阐述,供广大水文和工程地质、工程物探人员参考电法勘探原理电法勘探是根据岩石和矿石电学性质(如导电性、电化学活动性、导磁性和介电性,即所谓“电性差异”)来找矿和研究地质构造的一组地球物理勘探方法。
它是通过仪器观测人工的、天然的电场或交变电磁场,分析、解释这些场的特点和规律,达到找矿勘探的目的。
电法勘探分为两大类研究直流电场的,统称为直流电法,就是研究与地质体有关的直流电场分布特点和规律来找矿和解决某些地质问题,包括电阻率法、充电法、自然电场法和直流激发极化法等研究交变电磁场的,统称为交流电法,就是研究与地体有关的交变电磁场的建立、分布、传播特点和规律来找矿和解决某些地质问题。
电法勘探实验报告一、引言电法勘探是一种通过测量地下电阻率来获取地质信息的技术方法。
它基于电流通过地下岩石和土壤时的电阻特性不同,通过测量电阻率的变化,可以推断出地下的岩石类型、层位结构、液体含量等地质信息。
本实验旨在通过对电法勘探实验的具体操作和数据分析,加深对该方法的理解,提高实际应用能力。
二、实验目的1. 学习电法勘探的基本原理和方法。
2. 掌握电法勘探实验仪器的使用和操作技巧。
3. 进行电法勘探实验,收集并分析实验数据。
4. 根据实验结果推断地下地质结构,判断可能存在的地下水和矿产资源。
三、实验仪器与原理本次实验所使用的电法勘探仪器包括:电源、电极、电流控制仪和电阻率测量仪。
原理基于地下岩石的电阻率与其类型、含水量和孔隙度等因素相关。
导流电极用于通过电流,而测量电极用于测量电位差。
在实验中,电流从导流电极注入地下,经过不同类型的地层,通过测量电位差,可以计算出地下岩石的电阻率。
四、实验步骤1. 准备工作:确定实验区域,清理测量点的地表杂物,布置测量线路。
2. 确定电极布置:根据实际情况,确定导流电极和测量电极的布置方式,确保电流均匀注入地下,以及获得较好的电位差测量结果。
3. 连接仪器:将电源、电流控制仪和电阻率测量仪连接好。
4. 设定参数:根据实验要求,设定合适的电流强度和测量时间。
5. 开始测量:将电流通过导流电极注入地下,保持电流稳定后,进行电位差测量。
记录测量数据。
6. 移动电极:根据需要,移动测量电极的位置,重复步骤5,直至完成整个测区的覆盖。
7. 数据处理:根据测量数据,计算不同测点的电阻率,并绘制电阻率剖面图。
8. 结果分析:根据电阻率剖面图,分析地下地质结构、液体含量以及可能存在的地下水和矿产资源。
五、实验数据与结果根据实验采集的数据,经过计算和处理,得到如下电阻率剖面图:(在此插入电阻率剖面图)根据电阻率剖面图分析,我们可以推断出该区域的地质结构特征。
例如,电阻率较低的区域可能存在水体,电阻率较高的区域可能是岩石层或矿物矿床。
电法勘探的原理及应用1. 什么是电法勘探电法勘探是一种利用地下电阻率差异揭示地下地质体结构及构造的地球物理勘探方法。
它通过测量地下电阻率的变化,获得地下地质体的结构信息,并进一步研究地下资源的分布情况。
2. 电法勘探的原理电法勘探基于地下地质体的电阻率差异,利用电流在地下的传播以及产生的电位差进行测量和分析。
通常,勘探者在地面上或井下放置电极,通过施加电流使地下发生电场,并测量电位差。
根据测量数据,可以计算得到地下地质体的电阻率,进而分析地下结构。
3. 电法勘探的应用电法勘探在地质勘探、矿产资源勘查、水文地质调查、环境工程、地下水资源评价等领域有着广泛的应用。
以下列举几个常见的应用场景:3.1 矿产资源勘查电法勘探在矿产资源勘查中起到重要的作用。
通过测量矿区地下的电阻率差异,可以发现矿体的存在以及矿体与围岩的边界情况。
这对于确定矿体的规模、形态以及储量估算都具有重要意义。
3.2 水文地质调查电法勘探在水文地质调查中也得到了广泛的应用。
通过测量地下不同地层的电阻率差异,可以揭示地下含水层的分布和性质。
这对于确定水资源的储量、流向以及开采潜力都具有重要意义。
3.3 环境工程电法勘探在环境工程中的应用越来越广泛。
通过测量地下结构的电阻率差异,可以评估地下储存物质的位置、分布以及迁移路径,为环境污染的治理和地下储存设施的选择提供重要参考。
3.4 地下水资源评价电法勘探在地下水资源评价中也是一种常用的方法。
通过测量地下地质体的电阻率,可以揭示地下地质体的结构和性质,进一步评价地下水储量、水质以及地下水动态变化,为合理开发和管理地下水资源提供依据。
4. 电法勘探的优势和局限性4.1 优势•非破坏性:电法勘探无需在地下进行钻探等破坏性操作,可以有效避免对环境的破坏和人员安全的威胁。
•高效快速:电法勘探操作简便,数据采集和分析速度较快,能够快速获取地下结构信息。
•成本较低:相比其他地球物理勘探方法,电法勘探设备和操作成本相对较低,具有较高的经济性。
电法勘探原理与方法电法勘探是一种利用地下电阻率、电导率等物理特性来探测地下构造和岩石性质的地球物理勘探方法。
它通过在地表或井下布设电极,施加电流,测量地下的电场分布和电位差,从而推断地下介质的性质和构造。
电法勘探广泛应用于地质、水文、环境等领域,成为一种重要的地球物理勘探手段。
电法勘探的原理是利用地下介质的电阻率和电导率特性来推断地下构造和岩石性质。
地下介质的电阻率和电导率与其含水量、孔隙度、渗透性、矿物成分等有关,因此可以通过测量地下的电阻率和电导率分布来推断地下的构造和岩石性质。
电法勘探的原理基于欧姆定律和电场分布规律,通过施加电流产生电场,测量地下的电位差,从而推断地下介质的性质和构造。
电法勘探的方法主要包括直流电法、交流电法、自然场法等。
直流电法是通过在地表或井下布设电极,施加直流电流,测量地下的电位差来推断地下介质的性质和构造。
交流电法是通过施加交流电流,测量地下的电场分布和相位差来推断地下介质的性质和构造。
自然场法是利用地球自然电场的变化来推断地下介质的性质和构造。
这些方法各有特点,可以根据实际勘探需求选择合适的方法进行勘探。
电法勘探在地质勘探中有着广泛的应用。
它可以用于矿产勘探,通过测量地下的电阻率和电导率分布来推断矿体的位置和性质。
同时,电法勘探也可以用于地下水资源的勘探,通过测量地下的电阻率和电导率分布来推断地下水的分布和含量。
此外,电法勘探还可以用于环境勘探,通过测量地下的电阻率和电导率分布来推断地下的岩土性质和地下构造,为工程建设和环境保护提供重要的参考。
总之,电法勘探是一种重要的地球物理勘探方法,它利用地下介质的电阻率和电导率特性来推断地下构造和岩石性质。
通过选择合适的方法和参数,可以实现对地下构造和岩石性质的准确勘探,为地质、水文、环境等领域提供重要的信息和数据支持。
在未来的地球物理勘探中,电法勘探将继续发挥重要作用,为人类认识地球、利用地球资源和保护地球环境做出贡献。
电法勘探原理与方法
电法勘探原理与方法是一种地质勘探方法,利用地下电阻率差异来推断地下结构和岩石性质。
电法勘探方法主要包括直流电法、交流电法和自然电场法。
直流电法是最常用的电法勘探方法之一。
它通过在地下埋设电极,将直流电流注入地下,然后测量地下电位差来推断地下的电阻率分布。
直流电法常用的电极配置方式有Wenner、Schlumberger和地接法等。
交流电法是利用交流电流在地下的传播特性来进行勘探的方法。
它通过在地下埋设电极,在地下注入交流电流,然后测量地下的电流和电压相位差来推断地下的电阻率分布。
交流电法常用的电极配置方式有四电极法、测压法和饱和法等。
自然电场法是利用地球的自然电场进行勘探的方法。
地球的自然电场是由地下的电荷分布和地球表面的电离层活动所产生的,其频率范围从直流到几百赫兹。
自然电场法主要通过测量地上不同位置的电势差来推断地下的电阻率分布。
除了上述方法外,还有一些衍生的电法勘探方法,如剖面电法、大地电磁法和电磁波法等。
这些方法在电流注入、电压测量和数据处理等方面有所不同,但原理都是基于电阻率差异进行地下勘探。
电法勘探方法在地质勘探、矿产勘探和水资源勘探等领域有着广泛的应用。
它可以提供地下结构、地层厚度、岩石性质和地
下水含量等信息,为工程建设和资源开发提供重要参考。
然而,电法勘探方法也存在一些限制,如对地下介质特性的假设、电极布设的要求和数据解释的复杂性等。
因此,在实际应用中需要综合考虑各种因素,选择合适的电法勘探方法,并结合其他地质勘探方法进行综合解释。
电法勘探整理(仅供参考版)三、名词解释:1.视电阻率:在地下岩石电性分布不均匀(有两种或两种以上导电性不同的岩石或矿石)或地表起伏不平的情况下,若仍按测定均匀水平大地电阻率的方法和计算公式求得的电阻率称之为视电阻率,以符号表示。
实质:视电阻率不是地下某一种岩石的真电阻率,而是电场作用范围内地下电性不均匀体的综合反映。
视电阻率值与地下不同导电性岩石(或矿体)的分布状况(厚度、埋深、形状等)有关,与装置类型、大小、装置相对于电性不均匀体的位置及地形有关.2.高密度电法:高密度电法是以岩/土导电性的差异为基础,研究人工施加稳定电流场的作用下地中传导电流分布规律的一种电探方法。
3.中间梯度法:中间梯度法是电阻率剖面法中一种常用的重要方法。
该法的两个供电电极相距不远,而观测是在其中间1/3地段进行。
4.地电断面:按电阻率差异来划分的断面,地球真正的地电断面非常复杂,实用中采用简化模型:一维、二维和三维模型。
地电断面基本模型:一维模型是广泛使用的模型,不均匀的大地断面用水平均匀断面代换,在水平均匀断面内,电阻率仅是深度Z的函数。
5.电法勘探(简称电法):是地球物理勘探方法中的一种。
它是以岩石、矿石的导电性、电化学活动性、介电性和导磁性的差异为物质基础,使用专用的仪器设备。
观测和研究地壳周围物理场的变化和分布规律。
进而达到解决地质问题的目的的一组地球物理勘探方法。
四、简答1.影响矿,岩石电阻率因素:1)矿物成分、含量及结构。
随金属矿物含量增加,电阻率下降,结构上:侵染状>细脉状2)岩矿石的孔隙度、湿度。
随孔隙度、含水量增加,电阻率下降,风化带、破碎带,含水量增加,电阻率下降3)水溶液矿化度,随水溶液矿化度增加,电阻率下降。
4)温度,温度T上升,溶解度变大,离子活性增加,电阻率下降;结冰时,电阻率显著升高5)压力压力增加,孔隙度减小,电阻率增加;超过压力极限,岩石破碎,电阻率减小6)岩石电阻率与层理的关系,层理构造是大多数沉积岩和变质岩的典型特征,如砂岩、泥岩、片岩、板岩以及煤层等,它们均由很多薄层相互交替组成。
电法勘探名词解释电法勘探是一种地球物理勘探方法,通过测量地下电阻率的变化来获取地下结构和性质的信息。
它利用地下不同材料的导电能力差异来推断地下的岩石类型、含水层、矿产资源等。
在电法勘探中,常用的术语包括电阻率、电流、电极、电阻率剖面、电极排列等。
首先,电阻率是指材料阻碍电流流动的能力。
不同地下物质具有不同的电阻率,如岩石、土壤和水等。
电阻率通常以欧姆/米(Ω·m)为单位。
通过测量不同地下层的电阻率变化,可以推断地下材料的性质和边界。
其次,电流是指通过地下电极的电子流动。
在电法勘探中,电流会通过一对电极(一正一负)注入地下,通过测量地下电压差来计算电阻率。
电流的大小和方向对勘探结果有重要影响。
电极是用于注入电流和测量电压的设备。
一般来说,电极有不同的形状和排列方式,如直线电极、正方形电极、四极电极等。
根据勘探目的和地下条件的不同,选择合适的电极排列方式对结果的准确性和解析能力具有重要影响。
电阻率剖面是通过电阻率测量数据绘制的地下剖面图。
通过将不同观测点的电阻率值绘制在剖面上的相应位置,可以直观地了解地下构造的变化。
电阻率剖面常用于解释地下岩石性质、地下水位和矿产资源等。
最后,电极排列是指电极在地下的布置方式。
常见的电极排列方式有直线排列、正方形排列、四极排列等。
不同的电极排列方式具有不同的解析能力和精度,选择合适的电极排列方式对获得准确的勘探结果至关重要。
总结起来,电法勘探是一种通过测量地下电阻率变化来推断地下结构和性质的地球物理勘探方法。
在电法勘探中,电阻率、电流、电极、电阻率剖面和电极排列是常用的术语。
电法勘探在地质、水文和矿产资源勘探等领域具有广泛应用,并为工程建设和资源开发提供了重要的地下信息。
电法勘探electrical prospecting根据地壳中各种岩石和矿体之间存在的电磁学性质的差异,通过对电磁场观测,以探查地质构造和寻找有用矿产。
电法勘探主要利用岩石的导电性、介电性、导磁性和电化学性质(见岩石物理性质)。
当地下岩层和矿体的电学性质沿水平方向和垂直方向发生变化时,地面观测到的电磁场空间分布便相应地发生变化。
根据电磁场空间分布的异常特征,人们可以推断地质构造或矿体的存在状态,包括大小、形状、位置、埋藏深度和物性参数等,从而达到勘探的目的。
电法勘探的方法有许多种,常用的方法有电阻率法、充电法、激发极化法、自然电场法、大地电磁法和电磁感应法等。
电法勘探的应用范围很广,主要用于寻找金属和非金属矿床,勘查地下水和能源资源,并解决一些工程地质问题。
发展简史电法勘探自19世纪初开始实验研究。
1835年福克斯(R. W.Fox)用自然电场法找到了第一个硫化矿。
19世纪末期提出的利用人工场源的电阻率法,到20世纪初已较成熟。
20世纪初确立了电阻率法和温纳尔装置。
激发极化效应的电化学过程是1920年发现的,经各国学者的深入研究,形成了激发极化法。
电磁感应法于1917年提出,并于1925年首次获得找矿效果。
中国的电法勘探工作始于30年代,1949年以后才取得迅速发展。
1, 电阻率法此法利用岩石、矿石电阻率的差异,观测地面上人工电流场(稳定的或准稳定的)的分布规律。
许多国家用此法寻找石油、煤田、地下水和金属矿床,都取得一定成效。
图1为电阻率法原理示意。
由电源通过地面上一对金属电极A、B向地下输入强度为I的电流,使地中建立稳定电流场,在地面上另外两个测量电极M、N之间观测电位差△U,并按公式: ,计算视电阻率ρs。
通常以MN中点为测点,标示出ρs值,便知ρs沿测线的变化情况。
K称为电极排列系数,它与A、B、M、N四个电极的相对位置和间距有关。
对于一定的电极排列,K为常数。
当地下只有一种电阻率为ρ 的均匀各向同性介质时,ρs=ρ;当地下为非均匀介质时, ρs则取决于围岩、矿体、测点位置和电极排列等因素。
第三章 电法勘探电法勘探是以地壳中岩(矿)石的电(磁)性质的差异为主要的物理基础,利用电(磁)场(天然和人工的)的空间和时间的分布规律,研究地质构造和寻找有用矿产的一组地球物理勘探方法---电法。
物理基础:岩、矿石的导电性、激电性(电化学特性),介电性、导磁性。
方法:(1)天然场法----自然电场法(2)人工场法:直流电法、交流电法、电磁场法 目前的分类方法主要是分为两大类: (1)传导类电法;(2)感应类电法传导类电法:是以地中传导电流(交、直流、天然、人工)为主的工作方法。
感应类电法:利用地中涡旋感应电流为主的工作方法。
本章主要讲述传导类电法,其分为两大类:电阻率法、激电法。
方法各有五种:电剖面法、中间梯度法、电测深法、充电法、自然电场法。
自然电场法只用MN 两测量电极观测A 供电电极 M 测量电极 N 测量电极B 供电电极在解决地质问题时视地质任务的需要而选定用什么方法。
取决于合理选择方法、技术外,还决定于是否与其它物探方法(磁、重等)和化探以及地质钻探等多种相邻学科勘探手段的密切配合。
主要原因是地球物理场的异常是多解的,单独用一种方法是不易获得肯定的地质结果的。
§3-1 电阻率法一、基础知识(一) 有关电阻率的知识1、 电阻率:某种物质的电阻率为电流流过1m 3该物质组成的立方体时所表现的电阻值。
单位Ω.m (欧姆.米)。
注意:R=ρS Lρ=R L Sρ的单位,在中学时学的是Ω.mm 2.m -1我们这的单位是Ω.m 提问:电阻率小导电性如何? (大) 电导 S=1/R2、 纵向电阻率与横向电阻率)(b i假设:许多导电纸的迭成如图,各层导电纸的电阻率为ρ1.ρ2...ρm(1)通入电流a 时:各层导电纸的整体显现的电阻是并联 即:1/R t =1/R 1+1/R 2+………+1/R mR i =ρi S L =ρi ii hL L即 111h R ρ=, 222h R ρ=… mmm h R ρ=mmtmi ih h h hρρρρ+⋅⋅⋅⋅⋅⋅++=∑=22111则:→=∑∑==mi iimi it h h 11ρρ 定义为纵向电阻率纵向电导tmi it t h R S ρ∑===11 (2)通入电流b 时:整体电阻显现为各层电阻之合,即为串联m n R R R R +⋅⋅⋅⋅⋅⋅++=21mmmi inh h h hρρρρ+⋅⋅⋅⋅⋅⋅++=∑=22111则→=∑∑==mi imi i in hh 11ρρ定义为横向电阻率横向电导nmi i n n h R S ρ∑===11提问t n ρρ哪个大?(t n ρρ〉)(3)ρt 和ρn 与地质上的关系:层状构造岩石的电阻率即存在ρt 和ρn由于沉积的旋回和构造挤压,往往使得两种或更多种矿物成份不同的薄层交错成层。
测绘技术中的物探勘察方法详解引言:测绘技术是一门重要的学科,它涉及到地理信息、地形测量和地质勘察等多个领域。
在测绘过程中,物探勘察方法起到了至关重要的作用。
本文将详细介绍测绘技术中的物探勘察方法,包括电法勘探、地震勘探和地磁勘探三个方面。
一、电法勘探电法勘探是一种利用电流在地下的传导特性来探测地下结构的方法。
它通过在地表上设置电极,通过施加电压和测量电流的方式来获取地下信息。
电法勘探在地质勘察和矿产资源勘探中被广泛运用。
电法勘探的主要原理是根据地下不同材料的电导率差异来判断地下结构。
一般来说,导体的电导率较高,而绝缘体的电导率较低。
通过测量地下电流的分布情况和电阻率的变化,可以推测地下是否存在矿藏或岩层。
在电法勘探中,常用的测量方法有直流电法、交流电法和中心极化电法等。
直流电法是最基本的电法勘探方法,它通过施加直流电压来测量地下电阻率。
交流电法则是通过施加交流电压,并测量电流和电压的相位差来判断地下的电导率。
二、地震勘探地震勘探是一种利用地震波在地下传播的特性来推断地下结构的方法。
它通过记录地震波在地下的传播速度和振幅变化,进而了解地下的岩层、断层和地下水等信息。
地震勘探在地质灾害预测和石油勘探中有着广泛的应用。
地震勘探的基本原理是地震波在地壳中传播的速度和路径会受到地下结构的影响。
不同材料对地震波的传播有不同的阻碍作用,因此可以通过分析地震波在地下的传播特性来推断地下结构。
地震勘探中的主要方法包括折射波法和反射波法。
折射波法是利用地震波在不同岩层间的折射现象来判断地下结构。
反射波法则是通过记录地震波在地下岩层反射的情况来分析地下结构。
三、地磁勘探地磁勘探是一种利用地球磁场的变化来获取地下信息的方法。
地球磁场在地下的分布情况受到地下结构的影响,因此可以通过测量地磁场的变化来推断地下的磁性物质和矿产资源。
地磁勘探在矿产勘探和环境地质中有重要应用。
地磁勘探的基本原理是地球磁场在地下不同材料中的磁导率差异会引起地磁场的变化。