物理化学 第一章解读
- 格式:ppt
- 大小:963.50 KB
- 文档页数:7
第一章气体的pVT 关系§1.1 理想气体状态方程§1.2 理想气体混合物§1.3 真实气体的液化及临界参数§1.4 真实气体状态方程§1.5 对应状态原理及普遍化压缩因子图教学重点及难点教学重点1.理解理想气体模型、摩尔气体常数,掌握理想气体状态方程。
2.理解混合物的组成、理想气体状态方程对理想气体混合物的应用,掌握理想气体的分压定律和分体积定律。
3.了解气体的临界状态和气体的液化,理解液体的饱和蒸汽压。
4.了解真实气体的pV m - p图、范德华方程以及压缩因子和对应状态原理。
教学难点:1.理想气体的分压定律和分体积定律。
前言宏观的物质可分成三种不同的聚集状态:气态:气体则最为简单,最易用分子模型进行研究。
液态:液体的结构最复杂,对其认识还很不充分。
固态:结构较复杂,但粒子排布的规律性较强,对其研究已有了较大的进展。
当物质的量n确定后,其pVT 性质不可能同时独立取值,即三者之间存在着下式所示的函数关系:f(p,V, T)= 0也可表示为包含n在内的四变量函数式,即f(p,V,T,n)= 0这种函数关系称作状态方程。
§1-1 理想气体的状态方程1.理想气体状态方程(1)气体的基本实验定律:波义尔定律:PV = 常数(n,T 恒定)盖·吕萨克定律:V/T = 常数(n,p恒定)阿伏加德罗定律:V/n=常数(T,p恒定)( 2 ) 理想气体状态方程上述三经验定律相结合,可整理得理想气体状态方程:pV=nRT(p: Pa(帕斯卡)V: m3(米3) T:K(开尔文)R(摩尔气体常数): J·mol-1·K-1(焦·摩尔-1·开-1))因为摩尔体积V m = V/n,气体的物质的量n=m /M理想气体状态方程又常采用下列两种形式:p V m=RT、pV=(m/M)RT2.理想气体模型(1)分子间力:分为相互吸引和相互排斥,按照兰纳德一琼斯的理论:E=E吸引+E排斥=-A r6+B r12由图可知:[1]当两个分子相距较远时,它们之间几乎没有相互作用。
气体的pVT关系一、理想气体状态方程pV=nRT (R=8.314472Pa·m3·mol·K-1)根据V m=V/n,n=n/M可得pV m=RTpV m=(m/M)RT根据ρ=m/V和理想气态方程可以求出气体的ρ、V、T、n、M、ρ各种性质。
ρ=pM/RT、M=ρRT/p=RTM/Pv、m=Pvm/RT、n=Pv/RT二、理想气体模型(一)、分子间作用力:两个分子间的相互吸引势能与距离r的6次方成反比,相互排除势能与距离r的12次方成反比。
E=E吸引+E排斥=-A/r6+B/r12(二)、理想气体的微观上的两个特征1、分子间无相互作用力。
2、分子本身不占体积。
(三)、在任何温度和压力下均符合理想气体模型或服从理想气体状态方程的气体称为理想气体图一:兰纳德-琼斯势能曲线示意图(四)、摩尔气体常数当压力趋于零的极限条件下,各种气体pVT均服从pV m=RT的定量关系,R是一个对各种气体都适用的常数。
R=8.314472Pa·m3·mol·K-1三、真实气体状态方程(一)、范德华方程(p+a/V2m)(V m-b)=RT将V m=V/n带入可得(p+n2a/V2)(V-nb)=nRTa只与气体的种类有关,与温度条件无关。
(a/V m2)又称为内压力说明了分子间相互吸引力对压力的影响反比于分子间距离r的6次方。
一般分子间作用力越大,a越大。
a的单位是Pa·m6·mol-2b应该与气体的温度有关。
b是体积修正项,表示每摩尔真实气体分子本身占有体积儿时分子自由活动空间减少的数值。
b的单位是m3·mol-1。
范德华认为真实气体由于分子间的相互作用力会导致气体的压强比理想气体小即p=(p理+a/V2m),体积在考虑了分子本身占有的体积b之后自由活动空间应该是(V m-b)。
范德华方程是一种被简化了的真实气体的数学模型,在任何温度、压力条件下均符合范德华方程的气体叫范德华气体(二)、维里方程pV m=RT(1+Bp2+Cp3+Dp4+……)维里方程是纯经验方程,当压力p→0,摩尔体积V m→0时,维里方程还原为理想气态方程。