得 所以
d r v v v 0 dt
d r F r m v dt
质点的角动量定理:作用于
dl M= dt
质点的合力对某参考点的力矩, 等于质点对同一参考点的角动 量随时间的变化率。 12 成立条件:惯性系
这样,
M
d l dt
将上式两边同乘以dt再积分得
大学物理
1
第四章 角动量守恒定律
• §4-1 力矩 • §4-2 质点角动量守恒定律
2
补充:矢量
1、矢量的加法和减法 平行四边形法则、三角形法则 2、矢量的数乘
B mA
3、矢量的标积(点积) 4、矢量的矢积(叉积)
A F s Fs cos
i C A B Ax Bx j Ay By k Az Bz
MrF r(F F 1 F 2 n) rF rF 1 rF 2 n M M 1 M 2 n
则:
即:合力对某参考点O的力矩等于各分力对同一 点力矩的矢量之和。
7
三、力对转轴的力矩 力对O点的力矩在通过O点的轴上的投影称为力 对转轴的力矩。 在以参考点O为原点的直角坐标系中,将力矩矢
L
11
二、质点的角动量定理
设质点的质量为m,在合力F 的作用下,运动方程 m v d dm v r F r F dt dt
考虑到
d r d d r m v r m v m v dt dt dt
1r 22 1 2 2 3 2 2 A m () mr mr 0 0 22 2 2
18
例题4-3 在一光滑的水平面上,有一轻弹簧,倔强 系数为k=100N/m,一端固定于o点,另一端连接一质 量为m=1kg的滑块,如图所示。设开始时,弹簧的 长度为l0=0.2m(自然长度), 滑块速度0=5m/s, 方向与 弹簧垂直。当弹簧转过900时,其长度l=0.5m,求此 时滑块速度 的大小和方向。 解 对滑块运动有影响的力只有弹性力,故角动量 和机械能都守恒: l m0l0=m lsin o m 1 2 1 2 1 2 m k ( l l ) 0 m 0 d l0 2 2 2 解得: =4m/s, =300。