医学统计学复习资料
- 格式:docx
- 大小:25.62 KB
- 文档页数:9
医学统计学第一章绪论第一节医学统计学的定义和内容1.医学统计学的主要内容 :统计推断、统计描述第二节统计工作的基本步骤1.医学统计工作可分为四个步骤:统计设计搜集资料整理资料分析资料第三节统计资料的类型医学统计资料按研究指标的性质一般分为:定量资料、定性资料、等级资料一、定量资料(计量资料)定量资料(quantitative data)是用定量的方法测定观察单位(个体)某项指标数值的大小,所得的资料称定量资料。
如身高(㎝)、体重(㎏)、脉搏(次/分)、血压(kPa,mmHg)等为数值变量,其组成的资料为定量资料。
二、定性资料(计数资料)定性资料(qualitative data)是将观察单位按某种属性或类别分组,清点各组的观察单位数,所得的资料。
亦称无序分类资料。
如:男-女分组;中医的虚、实,阴、阳等分组;按生存-死亡分组;A、B、O、AB分组。
三、等级资料等级资料(ranked data)是将观察单位按属性的等级分组,清点各组的观察单位数,所得的资料为等级资料。
亦称有序分类资料。
如治疗结果分为治愈、显效、好转、无效四个等级。
:疾病的严重程度可以分为,轻、中、重;中医辨证中舌象的颜色有,淡、红、暗、紫。
♦根据需要,各类变量可以互相转化。
♦若按贫血的诊断标准将血红蛋白分为四个等级:重度贫血、中度贫血、轻度贫血、正常,可按等级资料处理。
有时亦可将定性资料或等级资料数量化,如将等级资料的治疗结果赋以分值,分别用0、1、2…等表示,则可按定量资料处理。
第四节统计学中的几个基本概念一、同质与变异同质(homogeneity)是指观察单位或研究个体间被研究指标的主要影响因素相同或基本相同。
如研究儿童的生长发育,同性别、同年龄、同地区、同民族、健康的儿童即为同质儿童。
变异(variation)由于生物个体的各种指标所受影响因素极为复杂,同质的个体间各种指标存在差异,这种差异称为变异。
如同质的儿童身高、体重、血压、脉搏等指标会有一定的差别。
第1章绪论医学统计学是一门“运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。
1.个体:又称观察单位,是统计研究的最基本单位,也是构成总体的最基本的观察单位。
2.总体:根据研究目的确定的同质观察单位某项指标测量值(观察值)的集合。
分为有限总体(明确规定了空间、时间、人群范围内有限个观察单位)和无限总体(无时间和空间范围的限制)。
反映总体特征的指标为参数,常用小写希腊字母表示。
3.样本:从总体中随机抽取的一部分有代表性的观察单位组成的整体。
(抽样,随机化原则,样本含量)根据样本资料计算出来的相应指标为统计量,常用大写英文字母表示。
4.抽样研究:从总体中随机抽取样本,根据样本信息推断总体特征的方法。
抽样误差是由随机抽样(样本的偶然性)造成的样本指标与总体指标之间、样本指标与样本指标之间的差异。
其根源在于总体中的个体存在变异性。
只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
统计分析主要是针对抽样误差而言。
5.变量(一个个体的任意“特征”);资料(变量值的集合),资料类型:①计量资料/定量资料/数值变量资料:表现为数值大小,一般有度量衡单位,又可分为连续型和离散型两类;②计数资料/定性资料/无序分类变量资料/名义变量资料:表现为互补相容的属性或类别,一般无度量衡单位,可分为二分类和多分类;③等级资料/半定量资料/有序分类变量资料:表现为等级大小或属性程度。
各类资料间可相互转化。
①可选分析方法有:t检验、方差分析、相关回归分析等;②可选分析方法有:χ2检验、z检验等;③可选分析方法有:秩和检验、Ridit分析等。
6.误差:实测值与真实值之差。
可分为随机误差(随机测量误差+抽样误差)与非随机误差(系统误差与非系统误差)。
①随机误差:是一类不恒定、随机变化的误差,由多种尚无法控制的因素引起,它是不可避免的;②系统误差:是实验过程中产生的误差,它的值或恒定不变,或遵循一定的变化规律,其产生原因往往是可知的或可以掌握的,它是可以消除或控制的;③非系统误差:又称过失误差,是指在实验过程中由于研究者偶然失误而造成的误差,可以消除。
教学提要(一)《医用统计学》基本概念1、变异:宇宙中的事物,千差万别,各不相同。
即使是性质相同的事物,就同一观察指标来看,各观察指标(亦称个体)之间,也各有差异,称为变异。
同质观察单位之间的个体变异,是生物的重要特征,是偶然性的表现。
2、变量:由于生物的变异特性,使得观察单位某种指标的数值互相不等,所以个体值称为变量值或观察值。
3、总体:即根据研究目的确定的同质的研究对象的全体。
更确切地说,是性质相同的所有观察单位的某种变量值的集合。
4、样本:即从总体中抽取一部分作为观察单位进行观察,这部分观察单位称为样本。
为了使样本对总体有较好的代表性,抽样必须遵循随机化的原则,即总体中每一观察单位均有相同的机会被抽取到样本中去。
5、计量资料(数值变量资料):对每个观察单位用定量方法测定某项指标量的大小,所得的资料称为计量资料,一般有度量衡等单位。
6、计数资料(分类变量资料):将观察单位按某种属性或类别分组,所得各组的观察单位数,称为计数资料。
可分为二项式或多项式分类变量。
7、等级资料:将观察单位按某种属性的不同程度分组,所得各组的观察单位数,称为等级资料。
这类资料与计数资料不同的是:属性的分组有程度的差别,各组按大小顺序排列;与计量资料不同的是:每个观察单位未确切定量,因而称为半定量资料。
8、抽样误差:由于总体中各观察单位间存在个体差异, 抽样研究中抽取的样本, 只包含总体的一部分, 因而样本指标不一定等于相应的总体指标, 这种样本统计量与总体参数间的差别称为抽样误差。
(二)统计工作的基本步骤1、设计: 这是关键的一步。
要求科学、周密、简明。
2、搜集资料: 要求完整、准确、及时。
医学统计资料的来源主要有三个方面:(1) 统计报表; (2) 日常医疗工作的原始记录和报告卡片; (3) 专题调查3、整理资料: 核查资料; 按性质或数量分组, 拟定整理表。
4、分析资料: 包括指标的计算、统计图表的绘制, 用统计方法如参数估计、假设检验等对资料作统计分析。
医学统计学复习资料导言医学统计学是医学领域中非常重要的一门学科,它的作用是帮助医生和研究人员通过收集、分析和解释数据来评估医学检验和治疗的效果。
本文将提供一份医学统计学的复习资料,帮助读者回顾和巩固相关的知识。
一、基本概念1.1 总体和样本在医学统计学中,总体是指我们研究的整体对象,而样本则是总体的一个子集。
例如,我们对某种疾病的患者进行研究时,患者总体就是所有患该病的人群,而样本则是我们实际观察到的一部分患者。
1.2 参数和统计量在医学统计学中,参数是用来描述总体特征的统计量,例如总体均值、总体方差等。
而统计量是通过样本数据来估计总体参数的量,例如样本均值、样本方差等。
假设检验是医学统计学中常用的一种方法,它用于判断总体参数的假设是否成立。
在假设检验中,我们先假设总体参数的某个值是正确的(称为零假设),然后通过收集样本数据来判断该假设是否成立。
二、数据的分布2.1 正态分布正态分布在医学统计学中非常重要,因为许多统计方法都假设数据服从正态分布。
正态分布具有钟形曲线的特点,均值、中位数和众数都重合在一起。
常见的正态分布检验有Shapiro-Wilk检验和Kolmogorov-Smirnov检验。
2.2 t分布t分布是一种在样本量较小的情况下使用的概率分布,它比正态分布的尾部更加厚重。
t分布的形状取决于样本量,当样本量增加时,t分布逐渐趋近于正态分布。
在医学研究中,常用t分布来进行样本均值的假设检验。
非参数检验是一种不依赖于数据分布的统计方法,它对数据的要求相对较低。
与参数检验不同,非参数检验适用于无法确定数据分布或偏离正态分布的情况。
常见的非参数检验方法有Wilcoxon秩和检验和Mann-Whitney U检验。
三、统计推断3.1 置信区间置信区间是一种用来估计总体参数的范围,它是一个区间,表示我们对总体参数的估计在一定置信水平下的可信程度。
通常,置信区间的宽度与置信水平相关,越高的置信水平意味着更宽的置信区间。
名词解释1.总体:是指根据研究目的确定的、性质相同的的所有观察单位的集合。
2.样本:是从总体中随机抽取的,对总体有代表性的一部分观察单位所组成的集合3.抽样误差:由于随机抽样所造成的样本统计量与总体参数的差异4.概率:表示事件发生机会大小的统计指标,是一个介于0-1时间的值5.小概率事件:习惯上将P≦0.05或P≦0.01成为小概率事件,表示事件发生的可能性小6.构成比:表示某事物内部各组成部分在总体中所占的比重或分布7.率:说明某现象在一定条件下发生的频率或强度8.标准化法:采用同一标准,计算得到标准化率后再进行比较的方法9.流行:当一个地区(或单位)某病的发生率显著超过该病的历年的发病水平时10.发病率:表示一定时间内(通常是一年)特定人群中某病新病例出现的频率11.患病率:表示某以特定时间内被发现观察总人口中某病新旧病例所占的比值12.死亡率:指某人群在一定期间(通常为一年)内的死亡人数与该地区同期人口数的比值13.抽样调查:在研究人群中随机地抽取一部分个体进行调查,即调查人群中具有代表性的一部分,根据这种调查结果估计该人群某病的患病率或某些特征的情况14.食物中毒:是指摄入了还有生物性、化学性有毒有害物质的食物或把有毒有害物质当作食品摄入后引起的非传染性急性或亚急性疾病15.消毒:用化学、物理、生物等方法杀灭或消除外界环境中致病性微生物的一种措施16.病原携带者:没有任何临床症状但有排出病原体的人17.潜伏期:指病原体侵入机体到最早出现临床症状的这段时间18.空白对照:对照组不施加任何处理措施19.双盲:指研究者和研究对象都不知道研究对象的分组情况20.沾染:对照组的患者额外地接受了实验组的药物,使对照组疗效提高,人为地扩大对照组疗效的情况21.分类变量:按属性或类别事先将研究对象分组,然后清点各组研究对象的个数而得的数据22.Ⅰ类错误:在假设检验中拒绝一个实际成立的原假设所犯癿错误,其概率记为α23.Ⅱ类错误:在假设检验中接叐了一个实际不成立的原假设所犯的错误其概率记为β24.合理营养:全面而平衡的营养,每日膳食中各种营养素种类齐全,数量充足,相互间比例恰当25.RR:暴露组与非暴露组的发病率或死亡率之比,表示暴露某因素后易患某病的程度26.OR:含义与相对危险度相同,指暴露组发生某病的危险性为非暴露组的多少倍或百分之几简答题1.描述集中趋势三个指标的应用区别算数均数适用于对称分布,尤其是正态分布;几何均数适用于对数正态分布,如抗体滴度等呈倍数关系的资料,但应注意数值中出现零值或负值时不宜使用;中位数适用于各种分布的资料,特别是偏态分布资料,分布末端无确定值的资料2.相对数的应用注意计算相对数时应有足够的样本例数;不能用构成比代替率;正确计算总率;注意资料的可比性;样本率或构成比的比较需要进行假设检验3.统计表的制作要求(1)标题:简明扼要,清晰地反应统计表的核心内容,包括研究时间地点内容(2)标目:分横标目和纵标目,。
医学统计学复习资料(名解+简答)一、名词解释1.统计量 (statistic):统计量是统计理论中用来对数据进行分析、检验的变量。
2.同质 (homogeneity):是指观察单位(研究个体)间被研究指标的影响因素相同。
3. 抽样误差 (sampling error):由于随机抽样造成的样本均数与总体均数的差别。
4. 总体 (population):根据研究目的而确定的同质观察单位的全体称为总体,更确切的说,它是同质的所有观察单位某种观察值的集合。
5. 变异 (variation):变异就是标志在同一总体不同总体单位之间的差别。
6. 参数 (parameter):参数,也叫参变量,是一种变量。
7. 样本 (sample):研究中实际观测或调查的一部分个体称为样本,研究对象的全部称为总体。
8. 概率 (probability):概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
1. 正态分布 (normal distribution):靠近均数分布的频数最多,离开均数越远,分布的数据越少,左右两侧基本对称,这种中间多、两侧逐渐减少的基本对称的分布,称为正态分布2. 中位数 (median):一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数,注意:和众数不同,中位数不一定在这组数据中)3. 方差 (variance):是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。
4. 四分位数间距 (quartile interval):是上四分位数与下四分位数之差,用四分位数间距可反映变异程度的大小。
5. 正偏态分布 (positively skewed distribution):为统计学概念,即统计数据峰值与平均值不相等的频率分布。
如果频数分布的高峰向左偏移,长尾向右侧延伸称为正偏态分布,也称右偏态分布。
统计学概述一、统计学的意义统计学是研究数据的收集、整理、分析的一门科学,是认识社会和自然现象客观规律数量特征的重要工具。
统计学方法就是帮助人们透过偶然现象认识其内在的规律性,揭示疾病或现象发生、发展规律,为预防疾病、促进健康提供客观依据。
二、统计学的基本概念(一)同质与变异同质是指被研究指标的影响因素相同。
变异是同质基础上的观察单位(亦称为个体)之间的差异。
(二)总体与样本总体是指根据研究目的确定的同质观察单位的全体。
样本从总体中随机抽取的部分观察单位,其测量值(或变量值)的集合。
(三)变量与变量值变量:确定总体后,研究者应对每个观察单位的某些特征进行测量或观察,这种特征称为变量,如:身高、体重等。
变量值:变量的测得值。
如身高150cm,体重50Kg等。
(四)参数与统计量参数是指总体特征的统计指标。
如某地健康成年男性的平均血红蛋白值。
统计量是指样本特征的统计指标。
如从某地健康成年男性中抽取一部分人的平均血红蛋白值。
(五)误差误差泛指测量值与真实值之差。
根据误差的性质和来源,统计工作中产生的误差主要有三种类型,即系统误差、随机测量误差、抽样误差。
1.系统误差:测量结果有倾向性。
查明原因,可以避免。
特点:①测量结果有倾向性。
如仪器、试剂、判定标准等。
②查明原因,可以避免。
2.随机测量误差:收集资料的过程中,即使避免了系统误差,但由于各种偶然因素造成的测量值与真实值不完全一致,这种误差称为随机测量误差。
特点:①随机误差没有大小和方向。
②不可避免。
3.抽样误差:由于随机抽样所引起的样本统计量与总体参数之间的差异以及各样本统计量之间的差异称为抽样误差。
特点:变异是绝对的,抽样误差不可避免。
原因:个体之间的差异;抽样时只能抽取总体中的一部分作为样本。
(六)概率(P)概率是描述某随机事件发生可能性大小的量值,常用符号P表示。
随机事件的概率在0~1之间,即0≤P≤1。
小概率事件:P≤0.05或P≤0.01的事件。
第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
总体population根据研究目的而确定的同质观察单位的全体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
样本sample从总体中随机抽得的部分观察单位,其实测值的集合。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。
医学统计学总复习1、几种集中趋势指标的适用条件均数—正态分布或近似正态分布;几何均数—呈正偏态分布,但数据经过对数变换后呈正态分布的资料,也可用于观察值之间呈倍数或近似倍数变化(等比关系)的资料;中位数—偏态分布资料以及频数分布的一端或两端无确切数据资料。
几种离散程度指标的适用条件:极差(全距)—常用于描述单峰对称分布小样本资料的变异程度或用于初步了解资料。
四分位数间距—常用于描述偏态分布资料、两端无确切值或分布不明确资料的离散程度。
方差和标准差—正态分布和近似正态分布。
变异系数—比较计量单位不同以及均数相差悬殊的几组资料。
21.标准正态分布(u分布)与t分布的异同:相同点;集中位置都是0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)。
不同点:t分布是一簇分布曲线,t分布的曲线形态是随自由度的变化而变化,标准正态分布的曲线的形态不变,是固定不变的,因为它的形状参数为1。
3.为什么不可以说“总体均数有95%的概率落在这个区间里”?样调查的成本会更高5.t检验的应用条件为:▪①在单样本检验中,总体标准差未知且样本含量较小(n<50)时,要求样本来自正态分布总体;▪②成组检验要求两组资料相应的总体分别服从正态分布且方差齐。
当不满足这些条件时可使用变量变换将数据转换成正态或者近似正态分布,或使用秩和检验。
两小样本均数比较时,若两总体方差不相等,还可使用t’检验。
6.假设检验中的注意事项▪要保证组间的可比性▪要根据研究目的、设计类型和资料类型选用适当的检验方法▪正确理解假设检验中概率P值的含义▪结论不能绝对化▪单、双侧检验应事先确定7.方差分析的基本思想把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。
8.方差分析的应用条件▪ 1. 各样本是相互独立的随机样本,均服从正态分布▪ 2. 各样本的总体方差相等,即方差齐性独立、正态、方差齐性如果方差不齐时,可采用F’检验或秩和检验。
..第一章绪论1、数据/资料的分类:①、计量资料,又称定量资料或者数值变量;为观测每个观察单位某项治疗的大小而获得的资料。
②、计数资料,又称定性资料或者无序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后而得到的资料。
③、等级资料,又称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
2、统计学常用基本概念:①、统计学(statistics )是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population )指的是根据研究目的而确定的同质观察单位的全体。
③、医学统计学(medical statistics ):用统计学的原理和方法处理医学资料中的同质性和变异性的科学和艺术,通过一定数量的观察、对比、分析,揭示那些困惑费解的医学问题背后的规律性。
④、样本(sample ):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable ):对观察单位某项特征进行测量或者观察,这种特征称为变量。
⑥、频率(frequency ):指的是样本的实际发生率。
⑦、概率(probability):指的是随机事件发生的可能性大小。
用大写的P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个方面。
第二章计量资料的统计描述1. 频数表的编制方法,频数分布的类型及频数表的用途①、求极差(range ):也称全距,即最大值和最小值之差,记作R ;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L ,上限为U ,变量X 值得归组统一定为L ≤X <U ,最后一组包括下限。
《医学统计学》复习资料一、名词解释1.计量资料( measurement data):是用定量方法测量观察对象指标数值的大小所得到的资料。
通常有单位。
又称为数值变量资料。
2.计数资料(enumeration data):通常先将研究对象按观察指标的性质和类别分类,然后清点个数得到的资料。
又称分类变量资料。
如患病未患病。
3.等级资料(ranked data,等级分组资料):指研究资料既有计数资料的特性,又有半定量的性质,称等级(分组)资料,又称半定量资料。
4、同质(homogeneity)指观察单位研究指标的影响因素相同(即同质指研究指标的影响因素性质相同)。
5、变异(heterogeneity/variance):指同质的个体之间的差异,来源于一些未加控制或无法控制的甚至不明原因的因素。
6、总体(population):根据研究目的确定的同质观察单位的全体,即按研究目的确定的同质观察单位某项变量值的集合。
7、样本(sample):从总体中随机抽取的有代表性的一部分观察单位组成样本(是某项指标的实测值组成样本)。
8、抽样( sampling ):从总体中抽取部分个体的过程。
9、完全随机设计(completely random design):指将受试对象随机分配到处理组、对照组中,或从不同总体中随机抽样进行研究。
10、配对设计(paired design):指将受试对象按配对条件配成对子,称为配对样本。
11、●随机区组设计(randomized block design):随机区组设计是配对设计的扩展。
●随机事件(random event):是指随机现象的某个可能的观察结果或可能发生也可能不发生的事件。
12、误差(error):泛指观测值与真实值之差,统计量与总体参数之差。
13、系统误差(system error):观测值倾向性的偏大或偏小。
影响准确性,须克服。
14、抽样误差(sampling error) :由抽样不同引起的样本均数(或其他统计量)与总体均数(或其他参数)之间的差异称作抽样误差;产生原因包括个体差异和抽样时只能抽取部分总体做样本;虽然不可避免,但可以用统计方法进行分析。
---------------------------------------------------------------最新资料推荐------------------------------------------------------医学统计学教学资料医学统计学复习1、随机抽样调查上海市区某年男孩出生体重,得下表数据,问:(1)理论上95%男孩出生体重在什么范围?(2)估计全市男孩出生体重均数在什么范围?(3)该市某男孩出生体重为4.51kg,怎样评价?(4)以前上海市区男孩平均出生体重为3kg,问现在出生的男孩是否更重些? 129名男孩出生体重分布体重人数体重人数2.0- 13.6- 17 2.2- 23.8- 7 2.4- 54.0- 3 2.6- 10 4.2- 2 2.8- 12 4.4-4.6 1 3.0- 24 3.2- 23 3.4- 22 2、某地抽样调查100名正常成年男子红细胞数(万/立方毫米), 此资料符合正态分布 , 现计算其均数为537.8(万/立方毫米),标准差为40.9(万/立方毫米),, (1)理论上95%该地正常成年男子红细胞在什么范围?(2)估计该地正常成年男子红细胞的均数在什么范围?(95%) 3.从8窝大鼠的每窝中选出同性别,体重相近的2只,分别喂以水解蛋白和酪蛋白饲料,4周后测定其体重增加量,结果如下,若比较两种饲料对大鼠体重增加量有无显著性影响,应该用何种统计学方法?怎样做?窝编号 1 23 4 5 6 7 8 酪蛋白饲料组 82 6674 78 82 78 73 90 水解蛋白饲料组 15 28 291 / 428 24 38 21 37 4、某卫生防疫站对屠宰场及肉食零售点的猪肉,检查其表层沙门氏菌带菌情况,如下表,问两者带菌率有无差别?采样地点检查例数阳性例数带菌率(%)屠宰场28 2 7.14 零售点 14 5 35.71合计 42 7 16.67 5、某省在两县进行居民甲状腺抽样调查,得如下资料。
一、名词解释1。
概率:在重复试验中,事件A的频率,随着试验次数的不断增加将愈来愈接近一个常数p,这个常数p就称为事件A出现的概率(probability),记作P(A)或P。
2.抽样误差:由于抽样造成的统计量与参数之间的差别,特点是不能避免的,可用标准误描述其大小。
3。
医学参考值范围:是指绝大多数正常人的某指标值都在一定的范围内,其中最常用的是95%4。
总体:是指根据研究目的确定的、同质的全部研究的观测值,即某个随机变量X可能取的值得全体。
4。
总体:根据研究目的所确定的同质观察单位的全体。
5。
线性回归系数:直线回归方程y=a+bX的系数b称为回归系数,也就是回归直线的斜率(slope),表示X 每增加一个单位,Y 平均改变 b 个单位。
二、填空题1.统计资料的类型分:计量资料、计数资料、等级资料。
2。
统计工作的步骤分为:统计设计、收集资料、整理资料、分析资料.3。
统计表的结构为:标题、标目、线条、数字.4。
可信区间的两个要素是:准确度、精密度.5。
方差分析的应用条件为:①各组样本是相互独立的随机样本②来自正态总体③各组总体方差相等,即方差齐性。
6.描述正态分布曲线形态的指标是σ,描述t分布曲线形态的指标是ν。
7。
从集中趋势、离散趋势两个方面来描述计量资料的分布特征.三、单项选择题(请把正确答案写在下面的表格里,每题2分,共20分)1。
将90名高血压病人随机等分成三组后分别用 A、B 和 C 方法治疗,以服药前后血压的差值为疗效,欲比较三种方法的效果是否相同,正确的是 CA 作三个差值样本比较的 t 检验B 作三个差值样本比较的方差分析C 作配伍组设计资料的方差分析D 作两两比较的 t 检验2。
某地1952和1998年三种死因别死亡率绘制成统计图,宜用 BA 直条图B 百分条图C 圆图D 直方图3.下列哪个变量为标准正态变量 BA B C D4。
某医院对30名麻疹易感儿童经气溶胶免疫一个月后,测得其血凝抑制抗体滴度,最合适描述其集中趋势的指标是 B A 均数 B 几何均数 C 标准差 D中位数5。
医学统计复习资料一、名词解释[1].总体:根据研究目的确定的同质观察单位的全体。
是同质所有观察单位的某种变量值的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
[2].样本:从总体中随机抽取部分观察单位,其实测值的集合。
[3].计量资料:又称定量资料或数值变量资料。
为观测每个观察单位的某项指标的大小,而获得的资料。
其变量值是定量的,表现为数值大小,一般有度量衡单位。
根据其观测值取值是否连续,又可分为连续型或离散型两类。
[4].计数资料:又称定性资料或者无序分类变量资料,亦称名义变量资料,是将观察单位按照某种属性或类别分组计数,分组汇总各组观察单位数后得到的资料。
其变量值是定性的,表现为互不相容的性或类别。
分两种情形:(1)二分类:两类间相互对立,互不相容。
(2)多分类:各类间互不相容。
[5].等级资料:又称半定量资料或有序分类变量资料,是将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
其变量值具有半定量性质,表现为等级大小或属性程度。
[6].随机误差(偶然误差):是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起,观察值不按方向性和系统性变化,在大量重复测量中,它可呈现或大或小,或正或负的规律性变化。
[7].概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P (A),P(A)越大,说明A事件发生的可能性越大。
0< P (A)< 1。
频率:在相同的条件下,独立重复做n次试验,事件A出现了 m次,则比值m/n称为随机事件A在n次试验中出现的频率(freqency)。
当试验重复很多次时 P (A) = m/n 。
[8].平均数:描述一组变量值的集中位置或水平。
常用的平均数有算术平均数、几何平均数和中位数。
[9].算术均数(arithmetic mean )描述一组数据在数量上的平均水平。
总体均数用卩表示,样本均数用X表示。
[10].几何均数(geometric mean )用以描述对数正态分布或数据呈倍数变化资料的水平。
记为G。
[11].中位数(median ) Md将一组观察值由小到大排列,n为奇数时取位次居中的变量值;为偶数时,取位次居中的两个变量的平均值。
反映一批观察值在位次上的平均水平。
[12].方差(varianee ):方差表示一组数据的平均离散情况,由离均差的平方和除以样本个数得到。
[13].标准差(standard deviation )是方差的正平方根,使用的量纲与原量纲相同,适用于近似正态分布的资料,大样本、小样本均可,最为常用。
[14].变异系数(coefficient of variation )用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。
用CV表示。
计算:标准差/均数*100%。
[15].正态分布:正态分布又称高斯分布,是一种很重要的连续型分布,应用很广。
若指标 X的频率分布曲线对应于数学上的正态分布曲线,则称该指标服从正态分布。
(曲线下面积和分布规律) [16].标准误及X s :通常将样本统计量的标准差称为标准误。
许多样本均数的标准差X s称为均数的标准误(standard error of mean ,SEM ),它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
[17].可信区间:按预先给定的概率确定的包含未知总体参数的可能围。
该围称为总体参数的可信区间(con fide nee in terval , Cl)。
它的确切含义是:可信区间包含总体参数的可能性是1- a ,而不是总体参数落在该围的可能性为1- a 。
[18] •假设检验中P 的含义:指从H0规定的总体随机抽得等于及大于(或等于及小于)现有样本获 得的检验统计量值的概率。
[19] .相对数:两个有联系的指标之比,是分类变量常用的描述性统计指标,常用两个分类的绝对数 之比表示相对数学的大小。
如率、构成比、比等。
[20] .率:强度相对数,说明某现象发生的频率或强度。
[21] .构成比:结构相对数字,表示事物部某一部分的个体与该事物各个部分个体数的和之比。
用来 说明各构成部分在总体所占的比重或分布。
[22] .相对比:简称比,是两个相关联指标之比,说明两指标间的比例关系。
两指标可以性质相同, 也可以性质不同,通常以倍数或百分数表示。
两指标可以是绝对数、相对数或平均数。
(这几种相对数的差别)[23] .回归系数(regression coefficient )即直线的斜率(slope ),在直线回归方程中用 b 表示,b 的统计意义为X 每增(减)一个单位时,丫平均改变b 个单位。
[24] .相关系数r :用以描述两个随机变量之间线性相关关系的密切程度与相关方向的统计指标。
二、需要掌握的几个公式1. 均数的计算(1) 算术均数X Xn X (直接法)nn X f 1X 1 f 2X 2f k X k fx (加权法)(2) 几何均数 2. 中位数3力差4. 标准差(S ):将方差取平方根,还原为与原始观察值单位相同的变异量度/~X X 2(反映样本值的离散程度) S ---------------\ n 15•变异系数: 均数相差较大或单位不同的几组观察值的变异程度的比较 SCV = 100% (百分数,可能大于1)Xn 为奇数时,M(T ) n 为偶数时,MX (n)5. 正态分布: X 1.64S (90%); X 1.96S (95%); X 2. 58S (99%)6. 均数的标准误理论值 乂 . ;n 估计值 $ S ;n(1) 当c 未知时:按照t 分布双侧 1- a 的可信区间为(X t o.。
5/2' , X to05/2, Sx)当侧1- a 的可信区间为( X t , S x , X t , S X )(2) 当c 已知或c 未知,但是n 足够大(如n>90 ),按照u 检验双侧1- a 的可信区间为X 1. 96S x ,当侧1- a 的可信区间为X X ,X X三、计算和问答1. 总体均数的估计(1) 标准误:反映样本均数间变异的标准差。
(反映样本均数间的离散程度,也反映样本均数与总 体均数的差异)理论值乂n ,但是在实际情况中,由于总体标准差常常未知,故用样本标准差 s 来估计,估 计值* S < n(2) 区间估计:按预先给定的概率,计算出一个区间,使它能够包含未知的总体均数。
① 当c 未知时:按照t 分布双侧1- a 的可信区间为(X 怙05/2 S X ,X to05/2, S X )当侧1- a 的可信区间为( X t , S X ,X t , S x ) ② 当c 已知或c 未知,但是n 足够大(如n>90),按照u 检验双侧1- a的可信区间为X 1. 96S X,当侧1- a的可信区间为X X ,X(3)t分布和u分布的区别t分布为抽样分布;u分布为标准正态分布,为理论分布。
t分布比标准正态分布的峰值低, 尾部翘得更高。
随自由度的增大,t分布逐渐趋近标准正态分布。
2.假设检验即显著性检验,是统计推断的重要容,比较总体参数之间有无差别。
首先对所需比较的总体提出一个无差别假设,然后通过样本数据去推断是否拒绝这一假设。
基本步骤:⑴建立假设和确定检验水准⑵选择检验方法和计算检验计量⑶确定P值,作出统计推断无效假设:H0,指需要检验的假设,如**值治疗前后无差别,即HO:yd=O通常与我们要验证的结论相反,是计算检验统计量和P值的依据备择假设:是在H0成立证据不足的情况下而被接受的假设,即 H1:yd工0双侧检验:无论正或负方向的误差,若显著超出检验水准则拒绝H0单侧检验:仅在向或负方向误差超出规定的水准时拒绝H0P值:假设检验下结论的主要依据,是指在原假设成立的条件下,观察到的样本差别是由于机遇所致的概率。
P>0.05不显著;0.01<Pv=0.05 显著;P<=0.01非常显著(1)t检验中的注意事项样本资料必须能代表相应总体t检验以正态分布为基础;非正态数据尝试变换为正态,或用非参数检验完全随机设计的两样本均数比较,要求两组方差齐对同一资料作单侧检验更容易获得显著结果假设检验用于推断总体均数间是否相同;可信区间用于估计总体均数所在围4.方差分析将全部观测值的总变异按影响因素分为相应的若干部分变异,在此基础上,计算假设检验的统计量F值,实现对总体均数是否有差别的推断。
条件:来自于正态分布总体,且总体方差相等的k个样本均数的比较(k>=3)完全随机设计:又称单因素方差分析,将实验对象随机分配到不同处理组的单因素设计方法。
只考虑一个处理因素总变异SS :门个观测值的离均差平方和组间变异S^R :组均值与总均值之差的平方和组变异SS E:组各个观测值与本组均值之差的平方和(反映各组样本的随机波动)随机区组设计:又称配伍组设计,先将受试对象按条件相同或相近组成m个区组,每个区组中有k个受试对象,再将其随机地分到 k个处理组中。
(属于无重复数据的两因素方差分析)两个有联系的指标之比,是分类变量常用的描述性统计指标,常用两个分类的绝对数之比表示相对数学的大小。
如率、构成比、比等。
相对数死亡概率q 某年内死亡人数某年年初人口数生存概率p 某年活满一年人数某年年初人口数生存率S(t k)P(T tk) t k时刻仍存活的例数观察总例数相对数使用的注意事项1•构成比只能说明某事物部各组成部分的比重和分布,不能说明该事物某一部分发生的强度和概率2•分母过小时相对数不稳定3•用以比较的资料应是同质的4•要考虑存在的抽样误差,对总体进行推断时应作统计学检验6.率的标准化为了比较两个不同人群的患病率、发病率、死亡率等资料时,消除其部构成(年龄、性别、工龄、病程长短等)的影响。
英国统计学家Peas on提出的一种用途广泛的假设检验方法。
该检验以2分布为理论依据,可以推断两个或者多个总体率以及构成比直接有无差异。
(1)四格表资料的2检验理论频数T RC (n R?n c)「n四格表资料2检验专用公式2(ad be)2n(a b)(e d)(a e)(b d)四格表2检验校正公式2(ad be n 2)2n(a b)(e d)(a e)(b d) 通常规则:①n 40且所有的T 5基本公式(或专用公式)②n 40但有1 T<5校正公式③*40,或T<1 Fisher确切概率法(2)配对四格表资料的2检验(3)行 列表资料的2检验条件:⑴1<T<5的格子数,不能超过总格子数的1/5 ;不能有T<1⑵与分类变量的顺序无关 ⑶对于有序的R C 表资料不宜用2检验 8. 秩转换的非参数检验如果已知计量满足或近似满足t 检验或者F 检验,优先选择t 检验秩转换的非参数检验适用于:⑴总体分布为偏态或分布未知的计量资料⑵等级资料⑶个别数据偏大,或数据的某一端无确定数值⑷各组离散程度相差悬殊,即各总体方差不齐特点:⑴适用围广,不限方差齐性、变量类型、样本量⑵损失了部分信息,检验效率低⑶极度偏态,犯第二类错误的概率较大非参数检验,与参数检验的区别。