最新导数的概念练习题
- 格式:doc
- 大小:425.00 KB
- 文档页数:3
高考数学导数的概念与运算选择题1. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率2. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的导数是()A. 2B. 3C. 4D. 53. 下列关于导数的定义,错误的是()A. 函数f(x)在某一点x0处的导数定义为f(x0+h)-f(x0)/h,当h趋近于0时B. 导数表示函数在某一点的瞬时变化率C. 导数可以表示函数在某一点的切线斜率D. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率4. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值25. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-16. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率7. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值28. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-19. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率10. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值211. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-112. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率13. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值214. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-115. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率16. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值217. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-118. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率19. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2C. 最大值2,最小值1D. 最大值3,最小值220. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-121. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率22. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1D. 最大值3,最小值223. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-124. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率25. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值126. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-127. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率28. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值229. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-130. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率31. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值232. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-133. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率34. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值235. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-136. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率37. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值238. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()B. y=2x+1C. y=-2x+1D. y=-2x-139. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率40. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值241. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1C. y=-2x+1D. y=-2x-142. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率43. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值244. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1D. y=-2x-145. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率46. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值247. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+148. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率49. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值250. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-1。
导数的概念及计算、定积分检测题(试卷满分100分,考试时间90分钟)一、选择题(每小题5分,共40分)1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2等于( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C 因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π×(-1)=-3π. 2.(2020·沈阳一中模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =xD .y =-2x解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x (sin x +cos x ),∴f ′(0)=2,∴所求切线方程为y =2x .3.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末解析:选D ∵s =13t 3-32t 2+2t ,∴v =s ′(t )=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1=1或t 2=2.4.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B.310 C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛0 1 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.5.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B. [-1,0] C. [0,1]D. ⎣⎡⎦⎤12,1解析:选A 设P (x 0,y 0),P 点处切线倾斜角为α, 则0≤tan α≤1,由f (x )=x 2+2x +3,得f ′(x )=2x +2, 令0≤2x 0+2≤1,得-1≤x 0≤-12.故选A.6.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 021(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选D ∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=f 2′(x )=-sin x -cos x , f 4(x )=f 3′(x )=-cos x +sin x , f 5(x )=f 4′(x )=sin x +cos x ,…, ∴f n (x )的解析式以4为周期重复出现,∵2 021=505×4+1,∴f 2 021(x )=f 1(x )=sin x +cos x .7.已知函数f (x )=12x 2sin x +x cos x ,则其导函数f ′(x )的图象大致是( )解析:选C 由f (x )=12x 2sin x +x cos x ,得f ′(x )=x sin x +12x 2cos x +cos x -x sin x=12x 2cos x +cos x . 由此可知,f ′(x )是偶函数,其图象关于y 轴对称,排除选项A 、B.又f ′(0)=1,故选C.8.[数学抽象、逻辑推理]若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.二、填空题(每小题5分,共25分)9.若函数f (x )=⎩⎪⎨⎪⎧x +1,x <0,cos x ,0≤x ≤π2,则f (x )与x 轴围成封闭图形的面积为________. 解析:S =⎠⎛0-1(x +1)d x +∫π20cos x d x =⎝⎛⎭⎫12x 2+x |0-1+sin x |π20=12+1=32. 答案:3210.(2020·重庆质检)若曲线y =ln (x +a)的一条切线为y =e x +b ,其中a ,b 为正实数,则a +e b +2的取值范围为________.解析:由y =ln (x +a),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b=a e -2.∵b>0,∴a>2e,∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)11.若一直线与曲线y =ln x 和曲线x 2=ay(a>0)相切于同一点P ,则a 的值为________. 解析:设切点P(x 0,y 0),则由y =ln x ,得y ′=1x ,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 2=ay 0,解得a =2e .答案:2e12.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________.解析:g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2.由已知图象可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12. 由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,所以f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316.答案:-31613.设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12.答案:⎣⎡⎭⎫12,+∞三、综合题(3个题,共35分)14.(11分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.15.(12分)设f(x)是定义在R 上的奇函数,且当x ≥0时,f (x )=2x 2. (1)求x <0时,f (x )的表达式;(2)令g (x )=ln x ,问是否存在x 0,使得f (x ),g (x )在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由.解:(1)当x <0时,-x >0, f (x )=-f (-x )=-2(-x )2=-2x 2. ∴当x <0时,f (x )的表达式为f (x )=-2x 2. (2)若f (x ),g (x )在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x >0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得x 0=±12.故存在x 0=12满足条件.16.(12分)已知函数f (x )=ax +bx (x ≠0)在x =2处的切线方程为3x -4y +4=0.(1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.16.解:(1)由f (x )=ax +b x ,得f ′(x )=a -bx 2(x ≠0).由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎨⎧a -b 4=34,5-2⎝⎛⎭⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝⎛⎭⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20, 曲线在P 处的切线方程为y -⎝⎛⎭⎫x 0+1x 0=⎝⎛⎭⎫1-1x 20(x -x 0). 即y =⎝⎛⎭⎫1-1x 20x +2x 0.当x =0时,y =2x 0. 即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎫0,2x 0. 由⎩⎪⎨⎪⎧y =⎝⎛⎭⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪2x 0=2. 即切线l 与l 1,l 2围成的三角形的面积为定值.。
数学 导数的概念及运算1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=03.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .84.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .45.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B .2 C .22D .36.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.7.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-23.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.4.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.【参考答案】1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=( )A .-3π2B .-1π2C .-3πD .-1π解析:选C .因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C .由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7.所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14.又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B .由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1B .2C .22D .3解析:选B .因为定义域为(0,+∞),令y ′=2x -1x =1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 6.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.解析:由题意知,y ′=2x ,所以曲线在点(1,0)处的切线斜率k =y ′|x =1=2,故所求切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -27.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1.答案:19.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.因为f ′(x )=1x ,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 3.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:44.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0, 所以3a -6-6a =0, 所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线, 则设切点为(x 0,3x 20+6x 0+12). 因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
1.曲线(A)2.曲线导数的概念练习题3y=x-2x+1在点(1,0)处的切线万程为()y=x-1 (B)y=_x+1(C)y=2x—2A解析:y'=3x2—2,所以k=(A)y=2x+1(D)y=_2x2y‘坦=1,所以选A.x在点(-1,-1)处的切线万程为()x2(B)y=2x-1(C)y=-2x-3(D)y=-2x-2【答案】A解析:y'2-,所以k=yxm(x+2)'=2,故切线方程为y=2x+1.另解:将点(―1,—1)代入可排除B、D,而y= x2-22=1,由反比例函数的图像,再根据图像平移得在点(-1,-1)处的切线斜率为正,排除C,从而得A.3.若曲线y=x2+ax+b在点(0,b)处的切线方程是x—丫+1=0,则()(A)a=1,b=1(B)a--1,b=1(C)a=1,b--1(D)a--1,b--1【解析】A:y=2x.a xz0=a a=1,(0,b)在切线x-y+L0,1x2、4.曲线y=e2在点(4,e)处的切线与坐标轴所围三角形的面积为(A.9e221x.11x2【答案】:D【分析】:=y'=(e2)'=—e2,曲线在点(4e)处的切线斜率为2 12r、▼一e2,因此切线方程2为y-e2122、~=-e(x-4),则切线与坐标轴交点为A(2,0),B(0,—e2),所以:2-122S/AOB=-|-e|2=e.5.若曲线1iy=x2在点a,a 处的切线与两个坐标围成的三角形的面积为18,则a=()(A)64 (B)32 (C)16 (D)81f1Jj.A[解析]y'=--x2,,k=—a2,切线方程是y-a222 1一一a234ccy=—a2,令y=0,x=3a,26.已知点p在曲线y=(A)[0,=)(B),三角形的面积是s=-3a a18,解得a=64.故选A.上,a为曲线在点p处的切线的倾斜角,则大) (C) (-马(2,4(D)的取值范围是()3二丁)IC.DK命题立意】本题考查了导致的几何意义.求导运首以及三角的额■的知识aE解*斤3因为y'=―T二^_—>—1>即tan"三一1,所以江二小v忿,既选_2_J_42437.观祭(x)=2x,(x)=4x,(cosx)=—sinx,由归纳推理可得:右定义在R上的函数f(x)满足f(—x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()(A)f(x)(B)-f(x)(C)g(x)(D)-g(x)【答案】D【解析】由给出的例子可以归纳推理得出:若函数f(x)是偶函数,则它的导函数是奇函数,因为定义在R上的函数f(x)满足f(-x)=f(x),即函数f(x)是偶函数,所以它的导函数是奇函数,即有g(-x)=-g(x),故选D=8.若f(x)=ax4+bx2+c满足f'(1)=2,贝Uf'(-1)=()A.-4【答案】B【解析】考查函数的奇偶性,求导后导函数为奇函数,所以选择9.函数y=x2(x>0)的图像在点(a k,a k2)处的切线与x轴交点的横坐标为a1+a3+a5=▲【答案】21[解析]考查函数的切线方程B.-2C.2D.4Ba k+b k为正整数,a1=16,则、数列的通项。
试卷第1页,共1页导数概念练习题(含解析)一、填空题1.若函数()f x 在R 上可导,()()2e ln f x xf x +'=,则()e f '=.2.若函数()sin 22cos f x x x =+的导函数为()f x ',则π6f ⎛⎫= ⎪⎝⎭'.3.设函数()f x =,则()f x '=4.函数()2πsin π32f x x ⎛⎫=- ⎪⎝⎭在3x =处的导数()3f '=.5.函数()ln 2f x x x =⋅的导函数()f x '=.6.函数2y x =的极值点为.7.函数()322f x x x =-的图象在点()()22f ,处的切线方程为.8.已知函数()cos f x x =,则()f x '=.9.某汽车启动阶段的路程函数为32()355S t t t =-+,则2t =秒时,汽车的加速度是.10.曲线21e x y x-=在点()01,y 处的切线方程为.11.已知函数()a y f x x x ==-在1x =处的导数()12f '=,则a 的值为.12.若函数2()f x x c =-在区间[]1,m 上的平均变化率为3,则m 等于.13.已知函数2()3f x x x =-,则曲线()y f x =在点(1,2)-处的切线方程为.14.函数21y x =-在区间[]3,4上的平均变化率为.15.函数2()f x x =-在2x =处的导数为16.函数232y x =-在1x =处的导数为.17.已知()cos f x x =,则π3f ⎛⎫'= ⎪⎝⎭.18.函数πcos(3)4y x =-的导数为.19.函数y =是由两个函数复合而成的.。
2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。
答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。
答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。
解:首先求导数f'(x) = 3x^2 - 12x + 9。
然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。
2. 已知函数y = ln(x),求y'。
解:根据对数函数的导数公式,y' = 1/x。
四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。
五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。
解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。
然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。
因此,该物体在t = 3时的瞬时速度为0。
六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。
导数练习题一第I 卷(选择题)一、选择题1.函数2()4f x x =的导函数是( )A .'()2f x x =B .'()4f x x =C .'()8f x x =D .'()16f x x =2.函数f (x )=sin 2x 的导数f′(x )=( )A .2sinxB .2sin 2xC .2cosxD .sin2x3.函数y=x cos x ﹣sin x 的导数为( )A .x sin xB .﹣x sin xC .x cos xD .﹣xcos x4.已知函数f (x )=sinx+lnx ,则f′(1)的值为( )A .1﹣cos1B .1+cos1C .cos1﹣1D .﹣1﹣cos15..若f′(x 0)=2,则k 2)x(f )k x (f 000k lim --→等于( )A .﹣1B .﹣2C .1D .6.下列各函数的导数:①;②(a x )′=a 2lnx ;③(sin2x )′=cos2x;④()′=.其中正确的有( )A .0个B .1个C .2个D .3个7.下列求导运算正确的是( )A .(x )′=1B .(x 2cosx )′=﹣2xsinxC .(3x )′=3x log 3eD .(log 2x )′=8.设x x y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .x xx x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .xx x x sin )1(sin 22---9.过抛物线y=x 2上的点的切线的倾斜角( ) A .30° B .45° C .60° D .135°9.若()sin cos f x x α=-,则'()f α等于( )A .sin αB .cos αC .sin cos αα+D .2sin α10.已知f(x)=xln x ,若f ′(x 0)=2,则x 0等于 ( ).A .e 2B .eC .ln 22D .ln 211.已知函数f (x )=2ln (3x )+8x+1,则的值为( )A .10B .﹣10C .﹣20D .2012.已知函数,则其导函数f′(x )的图象大致是( )A .B .C .D .二、填空题13.已知函数y=f (x )在定义域内可导,其图象如图,记y=f (x )的导函数为y=f′(x ),则不等式f′(x )≥0的解集为 ______________14.已知函数=+=)4(,cos sin )2()('ππf x x f x f 则_______. 15.函数()ln 1f x x =+在点(1,1)处的切线方程为 .16.若函数()(1)(2)(3)(4)f x x x x x =----,则(2)=f ' .三、解答题17. 用导数的定义求函数121)(+=x x f 在0x x =处的导数18. 用导数公式求函数121)(+=x x f 的导数)('x f ,并求)(0'x f19.已知函数2321)(x x x f +=.(1)求)(x f 在))34(,34(--f 处的切线方程; (2)函数x e x f y )(=的导数.20.已知函数f(x)=ae x+bxlnx图象上x=1处的切线方程为y=2ex﹣e.求实数a和b的值;21.已知函数f(x)=(2x﹣1)2+5x(1)求f′(x)(2)求曲线y=f(x)在点(2,19)处的切线方程.22.已知抛物线1=xfx(2+2)(1)抛物线上哪一点处的切线的倾斜角是︒45。
第1讲导数的概念及运算一、选择题1.设y=x2e x,则y′=() A.x2e x+2x B.2x e xC.(2x+x2)e x D.(x+x2)e x解析y′=2x e x+x2e x=(2x+x2)e x.答案 C2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于() A.-e B.-1C.1 D.e解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案 B3.曲线y=sin x+e x在点(0,1)处的切线方程是() A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0.答案 C4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为()A.e B.-e C.1e D.-1e解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案 C5.(2017·昆明诊断)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a等于()A.-1 B.1 2C.-2 D.2解析∵y′=-1-cos xsin2x,∴=-1.由条件知1a=-1,∴a=-1.答案 A二、填空题6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 27.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 08.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x ,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1. 又该切线与y =ax 2+(a +2)x +1相切, 消去y ,得ax 2+ax +2=0, ∴a ≠0且Δ=a 2-8a =0,解得a =8. 答案 8 三、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53, 所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,所以切线方程为x +y -113=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0. 11.(2016·山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析 若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x ,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x2;对于D:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案 A12.(2017·合肥模拟)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y =x-2的最小距离为()A.1 B.32 C.52 D. 2解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 D13.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
导数概念与计算1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( )A .1-B .2-C .2D .02.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( )A .(0,0)B .(1,1)C .(0,1)D .(1,0)3.已知()ln f x x x =,若0'()2f x =,则0x =( )A .2eB .eC .ln 22D .ln 24.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1B .2C .eD .1e5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等于( )A .sin xB .sin x -C .cos xD .cos x -6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( )A .e -B .1-C .1D .e7.曲线ln y x =在与x 轴交点的切线方程为________________.8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1()2ln f x ax x x=--(2)2()1xe f x ax =+(3)21()ln(1)2f x x ax x =--+(4)cos sin y x x x =-(5)1cos xy xe-=(6)11x x e y e +=-10.已知函数()ln(1)f x x x =+-.(Ⅰ)求()f x 的单调区间; (Ⅱ)求证:当1x >-时,11ln(1)1x x x -≤+≤+.11.设函数()bf x ax x =-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(Ⅰ)求()f x 的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.12.设函数2()x x f x x e xe =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)若当[2,2]x ∈-时,不等式()f x m >恒成立,求实数m 的取值范围.导数作业1答案——导数概念与计算1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( )A .1-B .2-C .2D .0选B .2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( )A .(0,0)B .(1,1)C .(0,1)D .(1,0)解:由题意知,函数f (x )=x 4-x 在点P 处的切线的斜率等于3,即f ′(x 0)=4x 30-1=3,∴x 0=1,将其代入f (x )中可得P (1,0). 选D .3.已知()ln f x x x =,若0'()2f x =,则0x =( )A .2eB .eC .ln 22D .ln 2解:f (x )的定义域为(0,+∞), f ′(x )=ln x +1,由f ′(x 0)=2, 即ln x 0+1=2,解得x 0=e. 选B .4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1B .2C .eD .1e解:∵y ′=e x ,故所求切线斜率k =e x |x =0=e 0=1. 选A .5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等于( )A .sin xB .sin x -C .cos xD .cos x -解:∵f 0(x )=sin x ,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,… ∴f n (x )=f n +4(x ),故f 2 012(x )=f 0(x )=sin x , ∴f 2 013(x )=f ′2 012(x )=cos x . 选C .6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( )A .e -B .1-C .1D .e解:由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 选B .7.曲线ln y x =在与x 轴交点的切线方程为________________.解:由y =ln x 得,y ′=1x ,∴y ′|x =1=1,∴曲线y =ln x 在与x 轴交点(1,0)处的切线方程为y =x -1,即x -y -1=0.8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 解:y ′=e x ,设切点的坐标为(x 0,y 0)则y 0x 0=e x 0,即e x 0x 0=e x 0,∴x 0=1.因此切点的坐标为(1,e ),切线的斜率为e.9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1()2ln f x ax x x=-- (2)2()1xe f x ax =+(3)21()ln(1)2f x x ax x =--+(4)cos sin y x x x =-∵y =x cos x -sin x ,∴y ′=cos x -x sin x -cos x =-x sin x . (5)1cos x y xe -=∵y =x e 1-cos x,∴y ′=e 1-cos x+x e 1-cos x(sin x )=(1+x sin x )e 1-cos x.(6)11x x e y e +=-y =e x +1e x -1=1+2e x -1∴y ′=-2e x (e x -1)2=-2e x (e x -1)2. 10.已知函数()ln(1)f x x x =+-. (Ⅰ)求()f x 的单调区间; (Ⅱ)求证:当1x >-时,11ln(1)1x x x -≤+≤+. 解:(1)函数f (x )的定义域为(-1,+∞). f ′(x )=1x +1-1=-x x +1f ′(x )与f (x )随x 变化情况如下:x (-1,0)0 (0,+∞)f ′(x ) +0 -f (x )因此f (x )的递增区间为(-1,0),递减区间为(0,+∞). (2)证明 由(1) 知f (x )≤f (0). 即ln (x +1)≤x设h (x )=ln (x +1)+1x +1-1h ′(x )=1x +1-1x +12=x x +12可判断出h (x )在(-1,0)上递减,在(0,+∞)上递增. 因此h (x )≥h (0)即ln (x +1)≥1-1x +1.所以当x >-1时1-1x +1≤ln (x +1)≤x .11.设函数()bf x ax x =-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(Ⅰ)求()f x 的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由f ′(x )=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得,y =-6x 0,从而得切线与直线x =0交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,此定值为6.12.设函数2()x x f x x e xe =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)若当[2,2]x ∈-时,不等式()f x m >恒成立,求实数m 的取值范围. 解 (1)函数f (x )的定义域为(- ∞,+∞), f ′(x )=2x +e x -(e x +x e x )=x (2-e x ),(2)由(1)可知因为,(0)1f =,(2)4241f e e e =+-=-< 所以,2min ()(2)4f x f e ==- 故24m e <-.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
导数专项训练 例题讲解【1】导数的几何意义及切线方程1.已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是________.2. 曲线y =3x -x 3上过点A (2,-2)的切线方程为___________________.3. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 . 4.若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.5.已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______. 6. 等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+,则曲线()y f x =在点(0,(0))f 处的切线方程为_____________.7.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为________. 8. 若点P 、Q 分别在函数y =e x 和函数 y =ln x 的图象上,则P 、Q 两点间的距离的最小值是_____. 9. 已知存在实数a ,满足对任意的实数b ,直线y x b =-+都不是曲线33y x ax =-的切线,则实数a 的取值范围是_________.10. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是_____________. 11. 函数f (x)=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g(x )在它们的交点(1, c )处具有公 共切线,则c 的值是___________.【2】常见函数的导数及复合函数的导数1.f(x)=2 , 则f ’(2) =______. 2. 设曲线y =ln 1xx +在点(1, 0)处的切线与直线x -ay +1=0垂直,则a =_______.3.函数333()(1)(2)(100)f x x x x =+++在1x =-处的导数值为___________.4. 已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1, f (1))处的切线方程是____________.5. 若函数()1*()n f x x n N +=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为 .6. 设f 1(x )=cos x ,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是______.【3】导数与函数的单调性22x xe e -⎛⎫+ ⎪⎝⎭1. 函数21ln 2y x x =-的单调递减区间为______. 2. 已知函数()ln ()f x x a R =∈,若任意12[2,3]x x ∈、且12x x >,t =()2121()f x f x x x --,则实数t的取值范围____________.3. 已知函数f (x )=x 3-6x 2+9x +a 在x R ∈上有三个零点,则实数a 的取值范是 .4.设'()f x 和'()g x 分别是f (x )和()g x 的导函数,若'()'()0f x g x ≤在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性相反.若函数f(x)=3123x ax -与g (x )=x 2+2bx 在开区间(a , b )上单调性相反(a >0),则b -a 的最大值为 . 【4】导数与函数的极值、最值1. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += . 2. 已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 .3. 已知函数f (x )=x 4+ax 3+2x 2+b ,其中a , b R ∈.若函数f (x )仅在x =0处有极值,则a 的取值范围是______________.4. 设曲线(1)x y ax e =-在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点02(,)B x y 处的切 线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围为____________.5.已知函数f (x )=e x -1, g(x )= -x 2+4x -3若有f (a )=g (b ),则b 的取值范围为______.6. '()f x 是函数3221()(1)3f x x mx m x n =-+-+的导函数,若函数['()]y f f x =在区间[m ,m+1]上单调递减,则实数m 的取值范围是__________. 【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左 右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造 费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米 建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r2. 已知函数f (x )=2ax -(a +2)x +ln x .(1)当a =1时,求曲线y = f(x )在点(1, f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e )上的最小值为-2,求a 的取值范围.3. 已知函数x a x x f ln )()(-=,(0≥a ).(1)当0=a 时,若直线m x y +=2与函数)(x f y =的图象相切,求m 的值; (2)若)(x f 在[]2,1上是单调减函数,求a 的最小值;(3)当[]e x 2,1∈时,e x f ≤)(恒成立,求实数a 的取值范围.(e 为自然对数的底).4.已知函数2()ln ,af x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围; (2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.5.设函数2()1x f x e x ax =---(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围导数专项练习答案 【1】导数的几何意义及切线方程1. 2;2. y =-2或9x +y -16=03.34; 4. 2e ; 5. 3; 6.201232y x =+; 7. 2; 8. 2; 9. 13a < 10. ()0,3e -11. 4【2】常见函数的导数及复合函数的导数 1. e -1e; 2. 12- 3. 3⨯99! 4. 2x -y -1=0; 5. -1 ; 6. 1;【3】导数与函数的单调性1. (0, 1);2. 11,32⎛⎫⎪⎝⎭; 3. (-4, 0); 4. 12【4】导数与函数的极值、最值1. 11;2. 2ln2-2;3. 88,33⎡⎤-⎢⎥⎣⎦; 4. 312a ≤≤; 5. []1,3 ; 6.0m ≥[5] 解答题 1. 答案解:(1)由题意可知()23480233r l r l r πππ+=≥,即2804233l r r r =-≥,则02r <≤. 容器的建造费用为2228042346433y rl r c r r r c rππππ⎛⎫=⨯+⨯=-+ ⎪⎝⎭, 即2216084y r r c rπππ=-+,定义域为{}02x r <≤. (2)2160168y r rc r πππ'=--+,令0y '=,得3202r c =-.令32022r c ==-,得92c =,①当932c <≤时,32022c ≥-,当02r <≤时,0y '<,函数单调递减,∴当2r =时y有最小值;②当92c >时,32022c <-,当32002r c <<-时,0y '<;当3202r c >-时,0y '>, ∴当3202r c =-时y 有最小值. 综上所述,当932c <≤时,建造费用最小时2r =;当92c >时,建造费用最小时3202r c =-2. 答案()()()()()()()22(2)2ln 0+22110220......5f x ax a x x ax a a f x ax a x x x =-++∞-+-'>=-++=>函数的定义域是,,当时,分()()()()()22212110=0,11..............................................................62ax a x ax f x f x x xx x a -+---''=====⋯⋯⋯令,即所以或分3. 解答4.若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.5. 解答导数专题复习(配详细答案)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。
高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。
答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。
答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。
答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。
答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。
答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。
8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。
导数的概念及其几何意义同步练习题一、选择题1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .02. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆ 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( )A.f (x 0+⊿x )B.f (x 0)+⊿xC. f (x 0)•⊿xD. f (x 0+⊿x )- f (x 0)4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( )A. 3Δt +6B. -3Δt +6C. 3Δt -6D. -3Δt -66.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关7. 函数y =x +1x在x =1处的导数是( ) A.2 B.1 C.0 D.-18.设函数f (x )=,则()()lim x a f x f a x a等于( ) A.1a B.2a C.21a D.21a 9. 下列各式中正确的是( )A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)ΔxB. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)ΔxC. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)ΔxD. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( ) A. f ′(1) B. 不存在 C. 13f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( )A. 2B. -2C. 3D. 不确定12. 已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 13413.曲线y=2x 2+1在点P (-1,3)处的切线方程是( )A.y =-4x -1B.y =-4x -7C.y =4x -1D.y =4x -714.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( )A.y =2x -1B.y =2x +1C.y =2x +4 D .y =2x -415. 下面四个命题:①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线;②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;④曲线的切线和曲线有且只有一个公共点.其中,真命题个数是( )A. 0B. 1C. 2D. 316. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )A. A 处下降,B 处上升B. A 处上升,B 处下降C. A 处下降,B 处下降D. A 处上升,B 处上升17. 曲线y =2x 2上有一点A (2,8),则点A 处的切线斜率为( )A.4B. 16C. 8D. 218. 曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A. y =3x -4B. y =-3x +2C. y =-4x +3D. y =4x -5 19.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δx →0 Δs Δt为( ) A .在t 时刻该物体的瞬时速度 B .当时间为Δt 时物体的瞬时速度C .从时间t 到t +Δt 时物体的平均速度D .以上说法均错误20. (2012·宝鸡检测)已知函数f (x )=x 3-x 在x =2处的导数为f ′(2)=11,则( )A .f ′(2)是函数f (x )=x 3-x 在x =2时对应的函数值B .f ′(2)是曲线f (x )=x 3-x 在点x =2处的割线斜率C .f ′(2)是函数f (x )=x 3-x 在x =2时的平均变化率D .f ′(2)是曲线f (x )=x 3-x 在点x =2处的切线的斜率21.已知函数y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定22.(2012·上饶检测)函数y =3x 2在x =1处的导数为( )A .2B .3C .6D .1223.设f (x )=ax +4,若f ′(1)=2,则a 等于( )A .2B .-2C .3D .-324.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1 25.已知曲线y =x 24的一条切线斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .426.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( ) A .at 0 B .-at 0 C.12at 0 D .2at 0 二、填空题27. 在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx为__ __. 28. 若质点M 按规律s =2t 2-2运动,则在一小段时间[2,2+Δt ]内,相应的平均速度_ .29.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=__ __. 30.曲线y =f (x )=2x -x 3在点(1,1)处的切线方程为________.31.函数y =x 2在x =________处的导数值等于其函数值.32. (2012·南昌调研)若一物体的运动方程为s =3t 2+2,求此物体在t =1时的瞬时速度是 .33.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是___ _.34.函数f (x )=3x 2-4x 在x =-1处的导数是 .三、解答题35. 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx; (3)求当x 1=4,且Δx =0.01时,函数增量Δy 和平均变化率Δy Δx;36. 已知自由落体的运动方程为s =12gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;(3)落体在t 0=2 s 到t 1=2.1 s 这段时间内的平均速度;(4)落体在t =2 s 时的瞬时速度.37. 求等边双曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2处的切线的斜率,并写出切线方程.38. 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.39.已知抛物线f (x )=ax 2+bx -7过点(1,1),且过此点的切线方程为4x -y -3=0,求a ,b 的值.40. (2012·榆林调研)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83。
导数的概念试题及解析一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx 无限趋近的常数,故应选C.2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( )A .6B .18C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt =18+3Δt .当Δt →0时,Δs Δt →18,故应选B.3.y =x 2在x =1处的导数为( )A .2xB .2C .2+ΔxD .1 [答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴Δy Δx =2+Δx当Δx →0时,Δy Δx →2∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt , ∴s ′(5)=li m Δt →0 Δs Δt =li m Δt →0(40+4Δt )=40.故应选D. 5.已知函数y =f (x ),那么下列说法错误的是( )A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量B.Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数在x 0到x 0+Δx 之间的平均变化率 C .f (x )在x 0处的导数记为y ′D .f (x )在x 0处的导数记为f ′(x 0)[答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( )A .f ′(x 0)=f (x 0+Δx )-f (x 0)B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)] C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( )A .4aB .2a +bC .bD .4a +b [答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -c Δx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 Δy Δx =li m Δx →0(4a +b +a ·Δx )=4a +b .故应选D. 8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A .圆B .抛物线C .椭圆D .直线 [答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( )A .0B .3C .-2D .3-2t[答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a等于( ) A .-1a B.2aC .-1a 2 D.1a 2[答案] C[解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1ax -a=li m x →a a -x(x -a )·xa =-li m x →a 1ax =-1a 2.二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则li m Δx →0f (x 0-Δx )-f (x 0)Δx =________;li m x →x 0 f (x )-f (x 0)2(x 0-x )=________.[答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx =-f ′(x 0)=-11;li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-112.12.函数y =x +1x 在x =1处的导数是________.[答案] 0[解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭⎪⎫1+11=Δx -1+1Δx +1=(Δx )2Δx +1,∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 ΔxΔx +1=0.13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______.[答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx =a ,∴f ′(1)=li m Δx →0 ΔyΔx =a .∴a =2.14.已知f ′(x 0)=li m x →x 0 f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →3 2x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f(3)-3f (3)x -3=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3.由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f(3)x -3=2-3×(-2)=8.三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).[解析] 由导数定义有f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2∴Δs Δt =at 0+12a Δt ,∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0,已知a =5.0×105m/s 2,t 0=1.6×10-3s ,∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)Δy Δx (2)f ′(1).[解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx=2+Δx .(2)f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧ x +x 2 (x ≥0)-x -x 2 (x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧ Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0)∴lim x →0+ Δy Δx =lim Δx →0+ (1+Δx )=1,lim Δx →0- Δy Δx =lim Δx →0- (-1-Δx )=-1,∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,ΔyΔx 无极限.∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)。
导数的概念练习题
1. 曲线2
y 21x x =-+在点(1,0)处的切线方程为( )
(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+
【答案】A 解析:2
32y x '=-,所以11x k y ='
==,所以选A .
2. 曲线2
x
y x =
+在点(-1,-1)处的切线方程为( ) (A )y=2x+1 (B)y=2x-1 (C) y=-2x-3 (D)y=-2x-2 【答案】A 解析:2
2
(2)
y x '=
+,所以1
2x k y =-'==,故切线方程为21y x =+.
另解:将点(1,1)--代入可排除B 、D ,而2221222x x y x x x +-===-
+++,由反比例函数2
y x
=-的图像,再根据图像平移得在点(1,1)--处的切线斜率为正,排除C ,从而得A . 3.若曲线2
y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )
(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=-
【解析】A :∵ 0
2x y x a
a
='=+=,∴ 1a =,(0,)b 在切线10x y -+=,∴ 1b =
4.曲线1
2
e
x y =在点2
(4e ),处的切线与坐标轴所围三角形的面积为( ) A.2
9e 2
B.2
4e
C.2
2e
D.2
e
【答案】:D 【分析】:112
2
1(),2x x y e e ''⇒==曲线在点2(4e ),处的切线斜率为212
e ,因此切线方程
为2
21(4),2y e e x -=
-则切线与坐标轴交点为2(2,0),(0,),A B e -所以:221
||2.2
AOB S e e ∆=-⨯= 5.若曲线1
2
y x
-=在点12,a a -⎛
⎫ ⎪⎝⎭
处的切线与两个坐标围成的三角形的面积为18,则a =( )
(A )64 (B )32 (C )16 (D )8
【答案】A 【解析】332211',22y x k a --=-∴=-,切线方程是13221
()2
y a a x a ---=--,令0x =,
12
32y a -=,令0y =,3x a =,∴三角形的面积是1
21331822
s a a -=⋅⋅=,解得64a =.故选A.
6.已知点p 在曲线4
1
x y e =
+上,α为曲线在点p 处的切线的倾斜角,则α的取值范围是( ) (A)[0,4π) (B)[,)42ππ (C)3(,]24ππ (D) 3[,)4
ππ
7. 观察2'
()2x x =,4'
3
()4x x =,'
(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )
(A )()f x (B)()f x - (C) ()g x (D)()g x -
【答案】D 【解析】由给出的例子可以归纳推理得出:若函数()f x 是偶函数,则它的导函数是奇函
数,因为定义在R 上的函数()f x 满足()()f x f x -=,即函数()f x 是偶函数,所以它的导函数是奇函数,即有()g x -=()g x -,故选D 。
8.若4
2
()f x ax bx c =++满足(1)2f '=,则(1)f '-=( )A .4-
B .2-
C .2
D .4
【答案】B 【解析】考查函数的奇偶性,求导后导函数为奇函数,所以选择B
9.函数y=x 2(x>0)的图像在点(a k ,a k 2
)处的切线与x 轴交点的横坐标为a k+b k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____
【答案】21 [解析]考查函数的切线方程、数列的通项。
在点(a k ,a k 2)处的切线方程为:
22(),k k k y a a x a -=-当0y =时,解得2k a x =
,所以1135,1641212
k k a
a a a a +=++=++=。
10.设函数1
()()f x ax a b x b
=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. 求()f x 的解析式。
解:2
1()()f x a x b '=-+,于是2
121210(2)
a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故 导数的概念练习题
1. 曲线2
y 21x x =-+在点(1,0)处的切线方程为( )
(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 解答过程:
2. 曲线2
x
y x =
+在点(-1,-1)处的切线方程为( ) (A )y=2x+1 (B)y=2x-1 (C) y=-2x-3 (D)y=-2x-2 解答过程:
3.若曲线2
y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )
(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 解答过程:
4.曲线12e x y =在点2
(4e ),处的切线与坐标轴所围三角形的面积为( ) A.2
9e 2
B.2
4e
C.2
2e
D.2
e
5.若曲线12y x -=在点12,a a -⎛
⎫ ⎪⎝⎭
处的切线与两个坐标围成的三角形的面积为18,则a =( )
(A )64 (B )32 (C )16 (D )8 解答过程:
6.已知点p 在曲线4
1
x y e =
+上,α为曲线在点p 处的切线的倾斜角,则α的取值范围是( ) (A)[0,4π) (B)[,)42ππ (C)3(,]24ππ (D) 3[,)4
ππ
解答过程:
7. 观察2'
()2x x =,4'
3
()4x x =,'
(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )
(A )()f x (B)()f x - (C) ()g x (D)()g x - 解答过程:
8.若4
2
()f x ax bx c =++满足(1)2f '=,则(1)f '-=( ) A .4-
B .2-
C .2
D .4
解答过程:
9.函数y=x2(x>0)的图像在点(a k,a k2)处的切线与x轴交点的横坐标为a k+b k为正整数,a1=16,则a1+a3+a5=____▲_____
解答过程:
10.设函数
1
()()
f x ax a b
x b
=+∈
+
Z
,,曲线()
y f x
=在点(2(2))
f
,处的切线方程为y=3.
求()
f x的解析式。