3 基于模型的决策支持系统
- 格式:ppt
- 大小:155.50 KB
- 文档页数:35
智能决策支持系统一、智能决策支持系统的定义决策支持系统〔Decision Support System,简称DSS〕,是以管理科学、运筹学、控制论、和行为科学为根底,以计算机技术、仿真技术和信息技术为手段,针对半构造化的决策问题,支持决策活动的具有智能作用的人机系统。
该系统能够为决策者提供所需的数据、信息和背景资料,帮助明确决策目标和进展问题的识别,建立或修改决策模型,提供各种备选方案,并且对各种方案进展评价和优选,通过人机交互功能进展分析、比较和判断,为正确的决策提供必要的支持。
它通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求和设想,从而到达支持决策的目的。
决策支持系统一般由交互语言系统、问题系统以及数据库、模型库、方法库、知识库管理系统组成。
在*些具体的决策支持系统中,也可以没有单独的知识库及其管理系统,但模型库和方法库通常则是必须的。
由于应用领域和研究方法不同,导致决策支持系统的构造有多种形式。
传统DSS 采用各种定量模型,在定量分析和处理中发挥了巨大作用, 它也对半构造化和非构造化决策问题提供支持, 但由于它通过模型来操纵数据,实际上支持的仅仅是决策过程中构造化和具有明确过程性的局部. 随着决策环境日趋复杂,DSS的局限性也日趋突出, 具体表现在:系统在决策支持中的作用是被动的, 不能根据决策环境的变化提供主动支持, 对决策中普遍存在的非构造化问题无法提供支持,以定量数学模型为根底,对决策中常见的定性问题、模糊问题和不确定性问题缺乏相应的支持手段。
[1]DSS应具备以下特征[2]:●系统的主要功能是为管理人员提供决策支持,其目的是帮助管理人员进展决策而不是代替他们,是为了提高决策的效能而不是组织的管理效率;●传统数据管理技术与有关的模型技术、分析技术相结合;●系统应该有很强的灵活性、适应性、便于用户使用。
智能决策支持系统〔IDSS〕是决策支持系统与人工智能技术相结合的系统[3],他包括决策支持系统所拥有的组件,包括数据库系统、模型库系统和人机交互系统,同时集成了最新开展的人工智能技术,如专家系统、多代理以及神经网络和遗传算法等。
决策支持系统管理的核心是“决策”。
全球经济一体化的进程以及信息技术的发展,消除了许多流通壁垒。
企业比以往任何时候都面临着更为复杂的生存环境,更难以形成并维护其竞争壁垒。
竞争的压力对企业制定决策的质量、速度都有更高要求。
决策支持系统作为一种新兴的信息技术,能够为企业提供各种决策信息以及许多商业问题的解决方案,从而减轻了管理者从事低层次信息处理和分析的负担,使得他们专注于最需要决策智慧和经验的工作,因此提高了决策的质量和效率。
现代企业的管理决策一、管理和决策制定60年代末,明茨伯格(Mintzberg)对5位总经理的工作进行一项仔细的研究。
他发现,管理者扮演着十种不同的但却是高度相关的角色。
这十种角色可以进一步分为三方面:人际关系、信息传递和决策制定,如下表所示:在这三方面中,决策制定是管理最核心、最实质性的角色。
所有的管理活动都围绕着决策。
决策的整体质量对企业的成败有重大影响。
二、现代企业决策的挑战在过去许多年,管理者制定决策是一门纯粹的艺术,是通过很长一段时间的经验所获得的一项天赋。
管理之所以被看成一门艺术,是因为许多个体风格被用于处理并成功地解决了同一类型的管理问题。
这些风格源于创造力、判断力、直觉和经验,而不是建立在科学方法基础上的系统化的定量分析方法。
但是,今天管理所面临的外部环境正在发生迅速变化。
商业及其本身的环境也比以往更加复杂,而且这种复杂性日益增加。
这些都对现代企业的管理决策带来了新的挑战:1. 决策质量的要求更高随着技术的迅速发展,客户获得产品和服务的渠道更为畅通,客户的选择余地更大。
同时大规模生产使得产品出现了供过于求的状态。
客户成为最稀缺的资源。
这迫使企业必须采取“以客户为中心”的经营策略,努力提高产品和服务的质量。
2. 决策时要考虑的因素更复杂随着经济全球化的趋势,尤其是中国加入WTO之后,无论是否愿意,企业都将面对全球的竞争者和全球范围的消费市场;随着环境的恶化、消费者权益意识的增强等,政府颁布了更详尽的法令和制度来约束企业的经营行为。
决策支持系统名词解释管理学决策支持系统(Decision Support System,简称DSS)是管理学领域中的一个重要概念,指的是一种基于计算机技术的系统,旨在辅助管理者在复杂的决策环境中进行决策制定和分析。
本文将详细解释决策支持系统的概念、特点、构成以及在管理学中的应用。
一、决策支持系统的概念决策支持系统是一种集成了数据仓库、数学模型、人工智能等技术手段的信息系统。
其核心目标是为决策者提供必要的信息和分析工具,支持其在信息不完整、不确定的决策环境中,实现决策的科学化、合理化和高效化。
二、决策支持系统的特点1.针对性:决策支持系统针对特定的决策问题,提供定制化的信息支持。
2.交互性:系统允许决策者与系统进行交互,调整参数、假设,观察决策结果的变化。
3.集成性:系统集成了多种数据来源和分析工具,为决策者提供全面的决策支持。
4.智能性:利用人工智能等技术,实现对数据的自动分析和处理,减轻决策者的工作负担。
三、决策支持系统的构成决策支持系统主要由以下几个部分构成:1.数据仓库:存储和管理大量数据,为决策提供数据基础。
2.模型库:集成了多种数学模型,用于对数据进行分析和预测。
3.知识库:存储了专家的知识和经验,为决策提供智力支持。
4.人机交互界面:决策者与系统进行交互的界面,允许决策者输入指令、查看结果等。
四、决策支持系统在管理学中的应用在管理学中,决策支持系统被广泛应用于企业的战略决策、市场营销、生产管理等领域。
例如,企业战略决策者可以利用决策支持系统分析市场环境、竞争对手情况,制定合适的战略方向。
市场营销人员可以通过系统分析消费者行为、市场需求,制定精准的市场营销策略。
生产管理人员可以利用系统优化生产流程,提高生产效率和质量。
五、总结综上所述,决策支持系统是一种基于计算机技术的信息系统,具有针对性、交互性、集成性和智能性等特点。
它主要由数据仓库、模型库、知识库和人机交互界面等部分构成,在管理学中被广泛应用于企业的各个领域,为企业决策提供科学有效的支持。
浅析决策支持系统发展趋势[摘要] 本文首先提出了决策支持系统(DSS)的基本概念,并结合现代新技术的发展趋势,提出了新一代DSS 的主要发展方向:群决策支持系统(GDSS);分布式决策支持系统(DDSS);智能决策支持系统(IDSS);决策支持中心(DSC)及行为导向的决策支持系统(BODSS)。
结合各种决策支持系统的具体内容,全面、系统地阐述了各决策支持系统的特点及应用方向。
DSS是当前信息系统研究的最新发展阶段,DSS的各类研究成果为各级各类决策提供了科学的方法和依据,因此DSS成为软科学中的一个重要分支。
本文简要评述了近20年来DSS 研究的理论成果与应用现状,分析了DSS研究存在的问题和不足,重点介绍了DSS研究发展趋势。
[关键词] 管理系统决策支持系统发展趋势决策质量决策支持系统/软科学/数据仓库/数据开采一、决策支持系统的兴起决策是时时处处存在的一种社会现象。
任何行动都是相关决策的一种结果。
正是这种普遍性,使人们一直致力于开发一种系统,来辅助或支持人们进行决策,以便促进提高决策的效率与质量。
尤其是随着现代信息技术和人工智能技术的发展和普及应用,更有力地推动了决策支持系统(Decision Support System)的发展。
DSS是决策支持系统(Decision Support System)的简称。
其概念最早由Scott Morton和Keen 于20世纪70年代中期提出,是20世纪70年代末期兴起的一种新的管理系统。
它是一种以计算机为工具,应用决策科学及有关学科的理论与方法,以人机交互方式辅助决策者解决半结构化或非结构化决策问题的信息系统,是以特定形式辅助决策的一种科学工具。
它通过人机对话等方式为决策者提供了一个将知识性、主动性、创造性和信息处理能力相结合,定性与定量相结合的工作环境,协助决策者分析问题、探索决策方法,进行评价、预测和选优。
广泛用于企业管理、系统开发、经济分析与规划、战略研究、资源管理、投资规划等方面。
决策支持系统在管理中的应用随着信息化的发展,越来越多的企业开始使用决策支持系统(DSS)来帮助管理决策。
本文将介绍DSS的定义和作用,并解析DSS在企业管理中的应用。
一、DSS的定义和作用DSS是一种计算机辅助管理工具,旨在帮助人们做出更好、更有利的决策。
它可以帮助处理大量数据,提供有用的信息,用于决策制定与分析。
DSS通常包括数据仓库、决策模型、分析工具以及可视化展现。
DSS主要有三种类型:基于模型的DSS、基于数据仓库的DSS 和基于智能系统的DSS。
基于模型的DSS使用模型、方程式或者类似的算法,对数据进行分析和计算。
基于数据仓库的DSS将大量数据存储在一个单独的地方,供用户快速、方便地检索。
基于智能系统的DSS使用人工智能技术,通过学习以及识别模式,为决策者提供有效的决策支持。
DSS的作用有助于提高决策制定的质量和效率,减少决策错误的风险,改进组织的绩效、透明度和响应速度。
通过使用DSS,企业可以更好地实现战略规划,提高决策的准确性以及创造更高的价值。
二、DSS在管理中的应用1. 战略规划DSS可以帮助企业规划长期战略。
通过分析内部和外部因素,DSS可以为企业制定战略和业务计划提供全面的视角和预测分析。
同时,DSS还可以识别战略执行中的问题,提供预警信息和建议,以及实现跟踪和监视。
2. 风险管理DSS可以为企业的风险管理提供专业的帮助。
DSS可以识别和评估潜在的风险,提供决策支持工具帮助管理人员选择适当的风险管理方案和策略,以及实施和评估这些策略的效果。
3. 绩效管理DSS可以为企业的绩效管理提供数据分析和监控。
DSS可以跟踪和分析企业的经济和金融数据,以及其他关键性能指标。
管理人员可以使用这些数据,以了解业务的健康状况,进一步的制定合适的决策和行动计划。
4. 营销决策DSS可以优化企业的营销决策。
DSS可以从消费者群体中提取数据,以了解他们的偏好、行为和需求。
通过分析这些数据,企业可以更好地制定营销策略,明确目标客户群,提高销售收益。
数据分析与决策支持系统数据分析与决策支持系统(Decision Support System, DSS)是一种基于大数据技术的智能系统,通过收集、整理和分析各类数据,为管理者提供决策制定过程中的可靠信息和专业支持。
本文将从DSS的定义、功能、实施步骤及在各个领域中的应用等方面展开讨论。
一、DSS的定义数据分析与决策支持系统是一种集成了人工智能、计算机技术和管理理论等多学科知识的高效工具,旨在辅助管理者进行决策分析和决策制定。
它能够提供关键性的数据、模型和方法,帮助管理者快速、准确地进行决策。
二、DSS的功能数据分析与决策支持系统具有以下功能:1.数据收集与整理:通过各种方式收集和整理相关数据,为后续分析提供支持。
2.数据分析与挖掘:运用统计学、机器学习和数据挖掘等方法,对数据进行深入分析,发现数据背后的规律和趋势。
3.决策模型构建:根据分析结果,建立决策模型,帮助管理者做出更加科学和准确的决策。
4.决策辅助与评估:为管理者提供决策相关的信息和数据,同时通过评估模型对决策结果进行预测和评估。
5.决策结果可视化:将复杂的决策结果通过图表、报表等形式展示出来,直观清晰地呈现给管理者。
三、DSS的实施步骤数据分析与决策支持系统的实施通常包括以下步骤:1.需求分析:明确决策者的需求和目标,确定系统的设计和功能。
2.数据收集与整理:收集与决策相关的数据,并对其进行组织和整理。
3.数据分析与挖掘:利用统计学和数据挖掘等方法对数据进行深入分析,提取有价值的信息。
4.模型建立与评估:根据分析结果建立决策模型,并通过评估模型对决策结果进行评估和优化。
5.系统应用与维护:将系统应用到实际决策中,并进行系统的维护和更新。
四、DSS在各个领域中的应用数据分析与决策支持系统广泛应用于各个领域,如金融、医疗、物流、市场营销等,为决策者提供支持。
以下是几个具体的应用案例:1.金融行业:DSS可用于风险评估、投资决策、信贷管理等,提高金融机构的风险控制和决策效率。