实数的性质及运算-课件
- 格式:ppt
- 大小:478.50 KB
- 文档页数:28
实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。
2. 实数的性质:实数的加法、减法、乘法、除法运算规则。
3. 实数的运算律:交换律、结合律、分配律。
4. 实数与数的比较:实数的大小比较、实数的绝对值。
二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。
2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。
3. 培养学生运用实数解决实际问题的能力。
三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。
2. 教学重点:实数的性质,实数的运算律。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。
2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。
3. 例题讲解:举例子说明实数的性质和运算律的应用。
4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。
5. 板书设计:列出实数的性质和运算律,方便学生记忆。
6. 作业设计:布置有关实数的运算题目,巩固所学知识。
六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。
通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。
在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。
实数的知识点总结课件一、实数的概念1.1 实数的定义实数是数学领域中的一种数字概念,包括有理数和无理数。
实数是可以用来度量和计算数量的数,是数学中最基本的数。
1.2 实数的分类实数可以分为有理数和无理数两类。
有理数是可以用整数或整数分数表示的数,而无理数是不能用有限的整数或整数分数表示的数。
二、实数的性质2.1 实数的加法实数的加法满足交换律、结合律和分配律。
即对于任意的实数a、b、c有:a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2.2 实数的减法实数的减法满足异减法a-b=a+(-b),其中-a称为a的相反数,满足a+(-a)=0。
2.3 实数的乘法实数的乘法满足交换律、结合律和分配律。
即对于任意的实数a、b、c有:ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
2.4 实数的除法实数的除法满足a÷b=a×(1/b),其中b≠0。
2.5 实数的乘方实数的乘方满足乘方的次序异法则:(a^m )^n=a^(mn),其中a为非零实数,m和n为任意实数。
三、实数的表示和比较3.1 实数的表示实数可以用数轴上的点表示,数轴上任意一点与原点的距离称为这个点的坐标。
3.2 实数的比较实数的比较可以通过数轴上的位置进行比较,即若a在b的左边,则a小于b,若a在b的右边,则a大于b。
四、实数的运算4.1 实数的加减运算实数的加减运算即是对实数进行加法和减法的操作,按照加法和减法的性质进行运算。
4.2 实数的乘除运算实数的乘除运算即是对实数进行乘法和除法的操作,按照乘法和除法的性质进行运算。
4.3 实数的乘方运算实数的乘方运算即是对实数进行乘方的操作,按照乘方的性质进行运算。
五、实数的应用5.1 实数在代数中的应用实数在代数中可以用来解方程、求根以及进行代数计算。
5.2 实数在几何中的应用实数在几何中可以用来表示线段、面积、体积等几何量,并进行几何计算。