当前位置:文档之家› 电力系统故障的智能诊断综述

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述
电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21

电力系统故障的智能诊断综述

李再华1 刘明昆2

(1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086)

摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。

关键词:电力系统;智能故障诊断;专家系统;发展趋势

Review of Intelligence Fault Diagnosis in Power System

Li Zaihua 1 Liu Mingkun 2

(1.China Electric Power Research Institute ,Beijing 100192;

2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086)

Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually.

Key words :power system ;intelligence fault diagnosis ;expert system ;development trend

1 引言

电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技

术,包括专家系统(Expert System ,ES )、人工神

经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support

Vector Machine ,SVM )、仿生学理论(Bionics

Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。

2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

2010年第8期·智能电网技术及装备专刊

22

极开展故障诊断研究。目前,美国在航空、航天、核工业以及军事部门中诊断技术占有领先地位,英国在汽车和飞机工业、发电机监测和诊断方面具领先地位,日本在钢铁、化工和铁路等行业的诊断技术方面处于领先地位。据日本统计,在采用诊断技术后,事故率减少了75%左右,维修费降低了25%~50%;英国对2000个大型工厂的调查表明,采用诊断技术后每年节省维修费3亿英镑,而用于诊断技术的费用仅为0.5亿英镑。随着设备与系统的复杂程度的增加,故障诊断的成本也不断增加,促使人们开始转向寻求更具“智能”的故障诊断。

智能故障诊断是相对于传统的故障诊断而言的。传统的故障诊断方法可分为基于信号处理的方法和基于数学模型的方法两类,需要人工进行信息处理和判断分析,没有自学习能力。智能故障诊断是融合了人工智能技术的新方法,对故障信息有初步的自动分析和学习能力。智能故障诊断是故障诊断技术发展进程中的新里程碑。1956年人工智能学科正式诞生,1965年出现了专家系统雏形,1970年以后,人工智能逐步实用化。电网的故障过程难以用数学模型来进行描述,运行状态信息也复杂多变,信号处理极其复杂,而人工智能技术能够存储和利用专家长期积累的经验,能够模拟人脑的逻辑思维过程进行推理以解决复杂诊断问题;可以不受外界干扰地提供高质量的服务,所以得到了广泛的应用。

电网故障诊断领域常用的人工智能技术包括专家系统、人工神经网络、决策树理论等,此外近几年也出现了数据挖掘、模糊理论、粗糙集理论、Petri 网络、贝叶斯网络、信息融合、信息论、支持向量机、仿生学的应用及多智能体系统等技术以及上述方法的综合应用。

专家系统可以汇集若干位专家的知识和经验,进行分析、推理,最终得出正确的结论,决策水平可以超过单个专家。所以故障诊断专家系统近年来成为热门研究课题,尤其适合应用于电力系统。1991年,故障诊断专家系统就已经占美国电力工业中专家系统的总数的41%。故障诊断专家系统除了具备专家系统的一般结构外,还具有自己的特殊性。它具有如下特点:①知识可以从类似系统、设备或工作实际、诊断实例中获取,即知识来源比较规范;②诊断的对象是复杂的,行为是动态的,故障是随机的,普通人很难判断,这时就需要通过讨论或请专家来进行诊断。

故障诊断专家系统中常用的推理机制可以划分

为正向推理、反向推理、正反向混合推理三种基础推理结构。正向推理的过程:系统发生故障时,根据断路器和保护的动作信息,按照知识指导的推理策略调动知识库在相关空间中搜索。当规则的条件部分与诊断输入信息相匹配,就将该规则作为可用规则放入候选队列中,再通过冲突消解,将其作为进一步推理的证据直至求得诊断结果。反向推理是首先提出假设,然后寻找支持该假设的证据,若所需证据都能够找到,则表明该假设成立,反之假设不成立。正反向混合推理机是首先根据跳闸断路器的保护信息进行初步推理,得到故障设备的假设,然后根据所得假设以及断路器和保护设备之间的逻辑规则进行反向推理,验证假定的故障设备的正确性,有效的缩小查找故障范围。几十年以来,专家系统得到了大量深入的研究,具体实现方法很多,但是其推理过程的逻辑原理不外乎这三种。

目前已研究的故障诊断专家系统模型有:基于规则的诊断专家系统、基于案例的诊断专家系统、基于行为的诊断专家系统、基于故障树的诊断专家系统、基于模糊逻辑的诊断专家系统、基于ANN 的诊断专家系统和基于数据挖掘的诊断专家系统等。

(1)基于规则的诊断方法是根据以往专家诊断的经验,将其归纳成规则,通过启发式经验知识进行故障诊断,适合于已具有丰富经验的专业领域的故障诊断。基于规则的诊断具有知识表述直观、形式统一、易理解和解释方便等优点,诊断知识可以通过领域专家获取和继承。但复杂系统所观测到的症状与所对应诊断之间的联系是相当复杂的,通过归纳专家经验来获取规则,准确度和通用性不佳。

(2)基于案例的诊断方法适用于领域定理难以表示成规则形式,而是容易表示成案例形式并且已积累丰富案例的领域(如医学诊断)。

(3)基于行为的诊断方法本质也是基于规则的诊断。该方法的关键问题是:故障行为征兆(语义征兆、图形征兆)的自动获取难度较大;新故障自动识别和分类,尤其是如何解决多故障情况下的诊断,是该方法的难点。

(4)基于故障树的诊断专家系统的实质是一种改进的基于规则的专家系统,计算机依据故障与原因的先验知识和故障率知识自动辅助生成故障树。基于故障树的诊断方法类似于人类的思维方式,同时吸纳了决策树技术的优点,易于理解,在设备诊断中应用较多。

智能电网技术及装备专刊·2010年第8期 23

(5)基于模糊逻辑推理的诊断方法是先建立故障和征兆的模糊规则库,再进行模糊逻辑推理的诊断过程。但是故障与征兆的模糊关系较难确定,且系统的诊断能力依赖模糊知识库,学习能力差,容易发生漏诊或误诊。

(6)基于神经网络专家系统的诊断方法有较好的容错性、响应快、强大的学习能力、自适应能力和非线性逼近能力等,但是也存在固有的弱点:①系统性能受到所选择的训练样本集的有效性的限制;②不能解释自己的推理过程和推理依据及其存储知识的意义;③利用和表达知识的方式单一,通常只能采用数值化的知识;④最根本的一点是神经网络在模拟人类复杂层次的思维方面远远不及传统的专家系统。

(7)基于数据挖掘的方法是随着计算机技术的发展而逐步完善的,自从1989年8月由第11届国际联合人工智能学术会议提出这一概念以来,数据挖掘技术已经取得了很大的进步。数据挖掘可以是基于数学理论的,也可以是非数学的,可以是演绎的,也可以是归纳的。电力系统的故障信息包括故障征兆和故障性质,信息量大而且基本规律稳定,适合利用数据挖掘技术进行处理。基于数据挖掘的比较新的应用成果有:①2004年,负荷预测专家系统在安徽省电力公司得到应用;②2006年,发电机故障诊断专家系统在某300MW 机组得到应用;③2008年,电网故障诊断专家系统在廊坊电力公司得到应用。如何提高数据挖掘的适应性,还需要更多的探索研究。

3 智能故障诊断面临的问题和对策

电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展,已经比较成熟,而系统级的故障诊断才初露头角。目前,在故障诊断领域的研究中,对单个设备或者某个具体的故障现象的研究较多,对系统或综合故障的研究较少;对定量信息利用的研究较多,对定性信息或不确定信息利用的研究较少;依靠单一智能技术的系统多,信息(特别是多源混合信息)的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。基于人工智能的故障诊断技术能够提高对信息的利用广度和深度,必将成为诊断技术发展的主流。

目前而言,基于规则的诊断专家系统是最为成熟的专家系统,但是投入实际应用并取得良好效果的专

家系统还不多,主要瓶颈是专家系统在规则库的快速

搜索、更新、扩充等方面存在困难。如何高效地利用日益增加的监控信息来完善规则库,是专家系统实用化面临的关键问题。通常把基于浅层知识(人类专家的经验知识)的故障诊断专家系统称为第一代专家系统,而把基于深层知识(诊断对象的模型知识)的故障诊断专家系统称为第二代专家系统。近年出现的混合结构的专家系统,是将上述两层知识结合使用,以取长补短。计算机技术和人工智能技术的快速发展,是故障诊断技术进步的契机。

智能故障诊断专家系统技术在应用中存在的问题有:

(1)知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。

(2)推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。

(3)故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。

(4)故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。

为了解决上述问题,人们进行了大量研究,提出了一些对策,总结如下:

(1)对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如ANN 、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。

(2)对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;

2010年第8期·智能电网技术及装备专刊

24

建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。

(3)对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的增量数据,有在线应用的潜力。

4 智能故障诊断技术的发展趋势

智能故障诊断技术的发展趋势主要有:多信息融合、多智能体协同、多种算法结合。

信息融合最早用于军事领域,定义为一个处理探测、互联、估计以及组合多源信息和数据的多层次多方面过程,以便获得准确的状态和身份估计、完整而及时的战场态势和威胁估计。它强调信息融合的三个核心方面:第一,信息融合是在几个层次上完成对多源信息的处理过程,其中每一层次都表示不同级别的信息抽象;第二,信息融合包括探测、互联、相关、估计以及信息组合;第三,信息融合的结果包括较低层次上的状态和身份估计,以及较高层次上的整个战术态势估计。多信息融合技术用于故障诊断是指故障诊断用到的信息的来源多样化,而且信息处理的广度和深度均有扩展,信息的加工过程中,强调既能够克服单一数据源的信息不足和丢失或错误的问题,又能够解决多数据源的信息冗余或重复或矛盾的问题,是一种有机的、智能的融合。大连理工大学2001年发表的研究成果表明,多信息融合技术的应用能够明显提高故障诊断的准确性。

一个智能体就是一个专家系统,多智能体也被称为群专家系统。多智能体协同包括多种推理方法或计算功能之间的协同,以及分布式计算中不同区域之间的协同。在电网的故障诊断中,多智能体协同还可以用于协调电网不同区域之间的协同。区域间协同是通过把大电网分为几个小电网进行协同推理计算,降低推理计算的维度和知识存储来提高速度;功能协同是利用相互可以交换数据和计算结果的多个子系统同时协作计算,并行完成不同的子功能,以提高整体的速度。2007年,中国电力科学研究院的学者结合利用基于规则推理的方法和基于贝叶斯网络的诊断方法,对含不确定性信息的复杂故障的诊断进行了多智能体协同诊断的研究,结果表明,能够实现更快更准确的诊断。

随着智能诊断技术的发展和研究的深入,人们陆续提出了大量的新思路和新算法。例如基于规则的算法、基于案例的算法、基于行为的算法、基于故障树的算法、基于模糊逻辑的算法、基于ANN 的算法和基于数据挖掘的算法,还有支持向量机算法、Petri 网算法、遗传算法、鱼群算法、蚁群算法、鸟群算法等,各种算法都有其特点和长处。专家系统技术应用最广,最为成熟,缺点是学习能力不强;ANN 技术和专家系统技术相比,其最大的特点是不需要为专业知识与专家启发性的知识转化、知识形成、知识表达方式和知识库构造作大量工作,而只需以领域专家所提供的大量和充分的故障实例,形成故障诊断ANN 模型的训练样本集,运用一定的学习算法对样本集进行训练。它的推理是隐式的,执行计算速度很快。由于ANN 具有强的自组织、自学习能力,鲁棒性高,免去推理机的构造,且推理速度与规模大小无明显的关系,能够在很大程度上克服专家系统的缺点,因此成为了与专家系统结合应用最广的技术。但是ANN 技术难以适用于运行方式经常变化的电力系统;决策树技术能够对系统信息进行归类梳理,可以用于提高专家系统的速度,但是前提是需要建立清晰的数学模型;数据挖掘可以用于量化分析诊断的准确度,但是数据挖掘技术本身还需要进一步完善。研究和实践表明,这几种技术的结合应用有助于提高故障诊断系统的智能水平、效率或准确度。智能故障诊断技术的进一步完善,在一定程度上依赖多种算法的结合紧密度和有效度。

总而言之,智能故障诊断技术正向提高智能性、快速性、全局性、协同性的方向发展,从而产生更加高效和准确的诊断结果。

5 结论

智能故障诊断是故障诊断技术发展进程中的新里程碑。常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。

作者简介

李再华(1974-),男,博士,从事电力系统故障诊断、运行分析和控制的研究工作。

电力系统故障诊断的研究现状与发展趋势 郑姝康

电力系统故障诊断的研究现状与发展趋势郑姝康 发表时间:2019-06-27T16:41:24.690Z 来源:《防护工程》2019年第6期作者:郑姝康 [导读] 电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 国网内蒙古东部电力有限公司乌兰浩特市供电分公司内蒙古兴安盟 137400 摘要:电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 关键词:电力系统;故障;发展趋势 引言 随着我国经济的发展和用电量的急速增加,整个电力系统所承受的压力也越来越大。我们的日常生活以及工农业的生产之所以能够正常的进行都是依赖于整个电力系统能够稳定的运行。所以安全可靠的电力系统是经济发展和人们正常生活最基本的保障。但是由于我国技术条件、气候以及周围环境的影响等造成电力系统出现故障,这都是无法避免的。但是在故障发生时,快速准确的判断故障发生的位置以及找出解决的办法并保证电路能够快速的恢复正常的运行以便将这种损失降到最小是对电力工作人员最基本的要求。现在我国电力系统的发展规模越来越大,随之复杂程度也越来越高,所以出现故障的概率也越来越高。因此,我国针对于电力系统中所出现的故障进行合理的快速的诊断很重要,并且针对这方面的研究也很有意义。 1 我国电力系统中经常出现的主要故障 我国的电力系统中存在的故障主要是指电力系统中的设备不能正常的实现它的功能,并且导致整个电力系统不能按照预期的指标进行正常的工作。在整个电力系统中任何一个设备或者元件出现故障,如果不能及时的解决都会造成的很大的损失。下面介绍我国电力系统中经常出现的主要故障问题。 首先介绍的是电力系统中输电线路的故障。在人们的日常生产和生活中存在的输电线路的问题主要是由于风吹日晒等原因造成输电线外露的绝缘体的破坏,再在遇到大风天气的时候引起线路的接触造成电路的短路,虽然当输电线分离开以后这些故障会暂时的解除,但是这种输电线的故障依然存在。其次是电力设备中变压器的故障。在整个电力系统之中变压器是核心。所以如果整个电力系统中变压器出现故障,那么这对于整个电力系统造成的危害是难以估计的,变压器所出现的故障主要是由于高电场强度所引起的。关于变压器的故障诊断是很复杂的。因此,电力系统的工作人员在日常工作中要高度重视变压器中存在的各种故障隐患,这不仅是因为变压器价格成本昂贵,更重要的是变压器在整个电力系统中的重要作用。最后介绍在电力系统存在的母线故障和全厂或者全所停电。电力系统中存在的母线故障主要包括母线的短路、母线中所存在的保护误动作等等。当电力系统中核心变电站出现母线故障的时候,会造成很严重的后果。比如:在使用这个电力系统的所有的用户都会停电,这种情况造成的损失时无法估计的。还有全所的停电、系统联络的跳闸等都会造成严重的损失。 2 电力系统故障诊断的研究现状 关于电力系统故障诊断的研究,国外进行的较早,早在上个世纪八十年代,美国就已经有了对电站的一些设备的故障诊断工作在进行,也是自此之后,美国关于电力系统故障诊断的研究逐渐成为各电力研究科研机构以及各发电站的研究项目,尤其是在发电站事故诊断和性能的检测方面,美国一直掌握着最先进的研究成果和技术。 相比美国,我国的电力系统故障诊断研究起步就较晚,与美国等发达国家的电力系统故障诊断研究相比几乎晚了近20~30年,也正因为此,我国的电力系统故障诊断研究工作很多方面都是在借鉴国外的研究成果基础上进行的研究。笔者认为,我国的电力系统故障诊断研究可以分为两个阶段,首先,第一个阶段是研究的起步阶段,大概从1980年到1990年,在这近10年代的时间里,主要是对国外电力故障诊断的一些基础技术和理论知识进行了系统的学习和认识,研究内容主要包括快速傅里叶变换、谱分析、信号处理等等,通过对这些基础的理论知识和技术的研究主要是为了更好的研究在线监测系统的应用。其次,第二个阶段主要是从1990年~1999年末,这一时期我国各项事业也经历了翻天覆地的发展变化,我国的工业化发展也取得了显著地成绩,各种先进的技术逐渐产生和并用,电力故障诊断技术也取得了较快的发展,包括故障分类、模式识别、智能化专家系统和电脑计算机的应用等等,在这一时期我国对电力系统已经可以独立的进行全面的故障诊断研究,同时也摆脱咯受国外基础理论和研究成果的限制,也在研究过程中逐渐形成了与我国电力事业发展相符合的故障诊断理论和技术。再次,就是现阶段的研究,我国的研究已经基本上跟上了世界的脚步,在研究内容上也与各国基本相同,主要是对专家系统、人工神经网络、优化技术、Perti网络、模糊集理论以及粗糙集理论等。 3 电力系统故障诊断所面临的问题与研究发展方向 目前针对电力系统故障诊断研究主要呈现出以下的几种趋势: 一是信息不完整情况下的电力系统故障诊断方法研究。现在的一些方法的更重要的情况是在很多是电力系统是不能满足的,应用这些方法必须给出一些假定,举例来说假定假定状态信息不可获取继电保护均处于未动作状态,这样做与真实情况可能会不相符的,有可能引起错误的诊断结果。到目前为止,对继电保护信息不完整情况下的电力系统故障诊断还没有提出比较系统的解决方法,这是电力系统诊断领域中有待解决的主要难题之一。 二是采用单一智能方法进行诊断存在着很大的局限性。将多种智能方法融合来实行故障诊断,将会变成故障诊断的一个趋势。比如可以采用多种智能的理论来构建电网诊断模型;在诊断知识提取(故障数据信息预处理)方面引入现在研究更多的数据挖掘理论、粗糙集理论等,以适应大量地故障信息、信息冗余以及被噪音污染等特性。 三是电网系统的复杂性使得从静态故障诊断到动态诊断成为故障诊断的一个发展趋势。同时,随着Internet的发展,基于网络的故障诊断将成为现实,通过对设备状态的远程检测和网络化跟踪,可以实现故障设备的早期诊断和及时维修。 四是电网故障诊断理论的实用化方面的研究。由于诊断理论大多数是基于智能化方法的,所以实用化进程的推进不仅针对诊断领域,

电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21 电力系统故障的智能诊断综述 李再华1 刘明昆2 (1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086) 摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。 关键词:电力系统;智能故障诊断;专家系统;发展趋势 Review of Intelligence Fault Diagnosis in Power System Li Zaihua 1 Liu Mingkun 2 (1.China Electric Power Research Institute ,Beijing 100192; 2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086) Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually. Key words :power system ;intelligence fault diagnosis ;expert system ;development trend 1 引言 电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技 术,包括专家系统(Expert System ,ES )、人工神 经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support Vector Machine ,SVM )、仿生学理论(Bionics Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。 2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

电力系统故障诊断算法概述

电力系统故障诊断算法概述 摘要:本文概述了目前电力系统故障诊断的算法研究现状,总结了当前的主流研究算法——专家系统法、模糊理论法、人工神经网络法、遗传算法、petri 网的方法、粗糙集理论、多代理系统、贝叶斯网络法以及近似熵算法,并对他们在电力系统故障诊断应用中存在的一些缺点做出了概括。 关键词:申力系统;故障诊断;专家系统;人工神经网络;溃传算法; 0引言 当前,电力系统在国民经济中的地位越来越突出,因而对电力系统的安全性、可靠性提出了更高的要求。现在电网的规模庞大,结构趋于复杂,区域之间的联系密切,对电力系统故障诊断的研究意义重大。电力系统故障诊断是通过各类保护装置产生的信息,基于一定的理论和经验来对故障发生的区段、故障元器件、故障性质作出快速、准确的处理。虽然国家电网的SCAD/EMS系统在电力系统故障的获取方面起到了一定的作用,但是电网故障时大量的信息远远超出了运行人员的能力,所以迫切的需要一套更加完整的智能电力系统故障诊断系统,实现对电网故障的自动快速诊断。 但是,电力系统中电力设备的种类繁多品种不一,保护装置配合的复杂性、电网结构的变化不确定性,导致了电网故障诊断是一个复杂的综合问题。近年来国内外许多学者提出了多种故障诊断的技术和方法,主要包括:专家系统法ES (Expert System)、模糊理论法ET(Fuzzy Theory)、人工神经网络法ANN (Artificial Neural Network)、遗传算法GA(Genetic Algorithms)、petri网法、粗糙集理论RST(Rough Set Theory)、多代理系统MAS(Multi-agentSystem)、贝叶斯法BN(belief network)以及近似熵算法。本文对上述方法归纳总结,阐述了各自在电力网中的故障诊断的应用,分析各种方法的特点,并对一些相关技术和方法的发展进行简要的介绍。 1电力系统故障诊断国内外研究发展现状 1.1基于专家系统的方法ES 专家系统ES(Expert System)是目前发展最早相对比较成熟的一种智能技术。它是一个智能计算机程序系统,内部含有大量的某个领域专家水平的知识与经验,具有大量的专业知识与经验的程序系统,利用人类专家的知识和解决问题的方法

电力系统故障诊断的研究现状与发展趋势

电力系统故障诊断的研究现状与发展趋势 随着我国经济建设的发展,电力的需求越来越大,电力系统的正常运行不仅关系到城乡百姓的生活质量,也关系到地区经济的发展。因此,提高电力系统故障诊断符合社会发展需求。本文将对电力系统故障诊断技术展开探讨,电力系统故障诊断现状和发展趋势进行分析。 标签:电力系统;故障诊断;现状;发展 电力系统故障产生的原因多种多样,气候的变化和人为因素都将导致电力系统故障的出现。今年来随着经济建设的发展,电网企业规模在不断扩大,电网结构越来越复杂,各个区域的联系也越来越紧密,故障的发生几率也在不断增加。加强电力系统故障诊断是确保电网企业正常运行的有效手段。 一、电力系统故障诊断概述 随着当前电网企业规模的不断扩大和业务量的增加,电网结构越来越复杂。在复杂的电网结构中,往往会由于各种因素的影响,在运行过程中发生各类故障。由于电网企业业务覆盖范围较大,故障的发生将给地区电力运营带来重要影响,因此,加强电力系统的故障诊断成为电网企业重要工作。变压器是电力系统的重要构成之一,是电力系统故障诊断中重点环节。在变压器故障诊断中,又有内部诊断和外部诊断之分,相比较而言,内部诊断更为复杂,主要对由于局部温度过高产生的故障和绝缘性能降低產生的故障进行诊断。 二、电力系统故障诊断的研究现状 从我国改革开放以来,我国电力系统故障诊断技术也在不断研究和探索中。由于我国此类工作开展较晚,依然存在较多的困难,但是在逐渐的探索中也取得了许多骄人的成绩,形成了一些符合我国电力系统实情的故障诊断理论。 (一)专家系统 1.专家系统的特点 我国电力系统诊断中专家系统理论被广泛应用,专家系统电力故障诊断利用了计算机技术,通过计算机程序对电力系统进行检测,具有较高的智能化特点,通过人工智能在一定的规则范围下进行推理,解决以往只有在专家层面才能够解决的现实问题。 2.专家系统的应用 随着我国电力技术的不断发展,电力系统所应用的设备越来越复杂,自动化程度越来越高,给电力系统故障诊断提出了更高的要求。专家系统充分发挥了自

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

电网故障诊断

电力变压器过热故障综合诊断 摘要:对电力变压器故障的常用诊断方法, 如油中溶解气体分析、绝缘试验、 油务试验及其它预防性试验等, 进行了全面论述, 重点分析和评价了这些故障诊断方法的有效性, 并对其未来发展方向, 提出了建议。 关键词:电力变压器故障诊断方法分析 引言 电力变压器是工矿企业中配电系统的枢纽设备,其运行可靠性直接关系到企业生产的安全与稳定。但由于电力变压器故障的原因复杂、多样且不明显,使得要准确地判断电力变压器故障类型相当困难。若能在电力变压器运行过程中通过某些检测和试验,及时有效的判断其状态,预先发现早期潜伏性故障,并避免某些重复、无必要的检修, 将对企业配电系统的安全经济运行产生重要的意义。DGA(油中溶解气体分析)方法作为一种有效的油浸式电力变压器异常监测手段得到广泛的应用。在1997年颁布执行的《电力设备预防性试验规程》把油中溶解气体色谱分析放到了首位。 变压器易发生的故障基本可分两大类:①电性故障;②热性故障。电力变压器故障,从发展过程上可分两大类,即突发性故障和潜伏性故障,突发性故障发展过程很快,瞬间就会造 成严重后果,如雷击、误操作、负荷突变等,突发性故障具有偶然性,只能通过避雷器、继电保护等手段,使突发性故障被限制在最小的范围内。潜伏性故障一般有三种,即变压器内部局部放电,局部过热和变压器绝缘的老化。故障诊断主要是针对这些潜伏性故障的诊断预测。 1 变压器运行状态的主要测试与监测手段 当前我国变压器运行状态监测在相当程度上主要依据传统的预防性试验来实现,包括:电气试验和油务试验 1.1电气试验 (1)直流电阻的测t:直流电阻虽然是一个测试方法比较简单的实验,但它比较直观地确认绕组、引线、调压开关等导电回路是否正常,能发现绕组导线的焊接质t,引线接头是否拧 紧接触是否良好,调压开关触头接触是否良好等等。 (2)绝缘性能测试:通过绝缘电阻、吸收比、极化指数、介损、电容t(包括电容套管)、泄诵测试等实验可掌握变压器的绕组绝缘水平和铁心对地绝缘。 (3)有载调压开关特性测试:通过有载调压开关切换时间、周期、切换的波形测f可以掌握变压器的有载调压开关的性能是否良好。 (4)绕组变形测试和低电压短路阻抗的测试。可以掌握变压器出口短路后变压器绕组有否变形和移位。 (5)铁心接地电流测试。可判断变压器是否多点接地。 (6)远红外测沮:通过红外线测温可以随时掌握各出线引 线接触是否良好。 1.2油务试验 定期对变压器充油设备的油采样进行油色谱分析,通过油色谱分析判断变压

故障诊断技术综述

故障诊断技术综述 一引言 故障诊断技术是一门紧密结合生产实际的工程科学,是现代化生产发展的产物。随着现代科学技术在设备上的应用,设备的结构越来越复杂,功能也越来越完善,自动化程度越来越高,由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的乃至灾难性的事故。不言而喻,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践证明,研究故障诊断技术具有重要的现实意义。 二故障诊断技术的定义 故障诊断技术就是在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,根据对被诊断对象测试所取得的有用信息进行分析处理,判断被诊断对象的状态是否处于异常状态或故障状态,判断劣化状态发生的部位或零部件,并判定产生故障的原因,以及预测状态劣化的发展趋势等。其目的是提高设备效率和运行可靠性,防患于未然,避免故障的发生。 三故障诊断技术的构成环节 从故障诊断的流程看,通常诊断系统由信号采集、信号处理、状态识别和诊断决策四大部分构成。其中,信号采集是基础,信号分析和处理是关键,状态识别(包括判断和预报)是核心,决策与管理是最终目标。前3个环节是基本环节。 1.信号采集 信息采集的基本任务是获取有用的信息。这是故障诊断的基础和前提,监测获取到的有用信息越多,监测数据越真实,越容易判断出故障原因。在运行过程中,必然会有力、热、振动及能量等各种量的变化,由此会产生各种不同的信息,根据不同的诊断需要,选择能表征设备工作状态的不同信息,如振动、压力及温度等,是十分必要的。这些信号一般是用不同的传感器来拾取的。只有采集到反映设备实际状态的信号,诊断的后续工作才有意义,因而信号采集是故障诊断技术中不可缺少的重要环节。 (1) 常用的设备状态监测技术分类 1) 振动信号监测技术 对设备的振动信号测试和分析,能获得机体、转子或其他零部件的振动幅值、频率和相位3个基本要素,经过对信号的分析、处理与识别,可了解到设备的振动特点、结构强弱、振动来源、故障部位和故障原因,为诊断决策提供依据。故利用振动信号诊断故障的技术较为普遍。 2) 声信号监测诊断技术 声信号监测诊断技术包括:噪声诊断、超声波诊断和声发射诊断技术。其中噪声的分析与诊断通常有两个目的:一是寻找机器发出噪声的主要声源,以便采取相应措施降低噪声;二是利用噪声信号判别故障。从噪声信号中提取特征信号,可以检测出故障的原因和发生故

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

故障诊断技术综述

故障诊断技术综述 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

故障诊断技术综述 一引言 故障诊断技术是一门紧密结合生产实际的工程科学,是现代化生产发展的产物。随着现代科学技术在设备上的应用,设备的结构越来越复杂,功能也越来越完善,自动化程度越来越高,由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的乃至灾难性的事故。不言而喻,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践证明,研究故障诊断技术具有重要的现实意义。 二故障诊断技术的定义 故障诊断技术就是在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,根据对被诊断对象测试所取得的有用信息进行分析处理,判断被诊断对象的状态是否处于异常状态或故障状态,判断劣化状态发生的部位或零部件,并判定产生故障的原因,以及预测状态劣化的发展趋势等。其目的是提高设备效率和运行可靠性,防患于未然,避免故障的发生。 三故障诊断技术的构成环节 从故障诊断的流程看,通常诊断系统由信号采集、信号处理、状态识别和诊断决策四大部分构成。其中,信号采集是基础,信号分析和处理是关键,状态识别(包括判断和预报)是核心,决策与管理是最终目标。前3个环节是基本环节。 1.信号采集 信息采集的基本任务是获取有用的信息。这是故障诊断的基础和前提,监测获取到的有用信息越多,监测数据越真实,越容易判断出故障原因。在运行过程中,必然会有力、热、振动及能量等各种量的变化,由此会产生各种不同的信息,根据不同的诊断需要,选择能表征设备工作状态的不同信息,如振动、压力及温度等,是十分必要的。这些信号一般是用不同的传感器来拾取的。只有采集到反映设备实际状态的信号,诊断的后续工作才有意义,因而信号采集是故障诊断技术中不可缺少的重要环节。 (1) 常用的设备状态监测技术分类 1) 振动信号监测技术 对设备的振动信号测试和分析,能获得机体、转子或其他零部件的振动幅值、频率和相位3个基本要素,经过对信号的分析、处理与识别,可了解到设备的振动特点、结构强弱、振动来源、故障部位和故障原因,为诊断决策提供依据。故利用振动信号诊断故障的技术较为普遍。

电力系统风险评估综述

电力系统风险评估综述 引言 随着电网规模的日益扩大,电力系统取得了巨大联网效益,但是同时电网结构也日益复杂,进而导致发输电元件的故障率不断增加,电网运行中的不确定性和随机性问题也越来越突出,对电力系统安全分析的要求也越来越高。 电力系统运行风险评估的目的是为了评估扰动事件对系统的潜在影响程度,评估的内容主要包括扰动事件发生的可能性与严重性两个方面的问题。这一概念由CIGRE 于1997年在文献[1]中第一次明确地提出,其目的是要对电力系统运行中的不确定性进行定量化分析。McCalley 在文献[2]中对运行风险评估的内涵和重要性进行了较全面的论述。具体来所,其目的是为了让调度运行人员更好的了解电网的运行状况及采取每项决策所要承担的风险,首先是评估电力系统运行中的不确定性因素,建立风险指标体系,然后是研究在调度运行中如何应对风险、合理决策,例如基于风险的最优潮流等[3]。 基本概念 1 定义 文献[4]中,著名电力专家Vittal 给出了风险评估的基本定义,即对电力系统面临的不确定性因素,给出可能性与严重性的综合度量,其数学表达式为 ()()(),isk f r i ev i f i R X P E S E X =?∑ (1) 式中:.f X 表示系统的运行方式; i E 表示第i 个故障; ()r i P E 表示故障i E 发生的概率; (),ev i f S E X 表示在f X 的运行方式下发生第i 个故障后系统的严重程度;

() R X表示系统在f X运行方式下的运行风险指标。 isk f 文献[4]中指出,区别于电网确定性分析方法,运行风险分析实质上是传统可靠性研究与电网调度自动化的有机结合与提升。 2 风险评估与传统安全分析的关系 对电力系统安全的研究经历了确定性评估方法、概率评估方法和风险评估方法三个阶段。 传统的能量管理系统(EMS)一直采用的是确定性模型及其分析方法,即最多在确定预想事故集时将最有可能发生的预想事故多考虑进来,按经验来考虑事故发生的可能性但并未进行量化分析,但是实际上电力系统运行中存在着很多不确定因素,采用确定性模型并不能严格描述电力系统的。虽然传统的EMS也是基于全局分析,但无法给出全网的不确定性量化指标,运行风险评估与之相比在于其科学性,运行风险指标既反映扰动发生的可能性又计及其影响后果的严重性,因而科学合理。 运行风险评估与传统电力可靠性分析都是用来研究电力系统的不确定性,所使用的不确定性模型是基本一致的,文献[5]中,从应用数学全空间认识的角度来看指出,风险评估问题与传统可靠性问题所要解决的模型是基本一致的。其主要区别是应用场合不同,基于概率的不确定性分析最早的应用是发电系统概率可靠性评估、发输电组合系统概率可靠性评估,其主要应用领域是电力系统中长期规划,适用于规划设计部门。运行风险评估面向调度运行部门,其主要功能是由当前的电网运行方式和设备信息来预测未来短时间内的运行风险信息并给出预防控制策略。 主要内容 电力系统风险评估主要包括以下几个方面的内容[6]: 1.确定元件停运模型; 2.选择系统状态和计算他们的概率; 3.评估所选状态的后果; 4.计算风险指标; 5.依据风险指标进行辅助决策。

相关主题
文本预览
相关文档 最新文档