06_结构模型试验(简化版)
- 格式:pdf
- 大小:971.19 KB
- 文档页数:30
收稿日期:2022-12-06ꎮ基金项目:国家自然科学基金项目(52064037㊁51704166)ꎻ江西省自然科学基金项目(20202BAB204030)ꎮ作者简介:李建龙(1988 )ꎬ男ꎬ副教授ꎬ博士ꎬ研究方向为大气污染控制ꎮE ̄mail:jlli@ncu.edu.cnꎮ李建龙ꎬ赵艺ꎬ孙泽文ꎬ等.环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟[J].南昌大学学报(工科版)ꎬ2023ꎬ45(1):9-15.LIJLꎬZHAOYꎬSUNZWꎬetal.Numericalsimulationofimprovedpulsejetperformancebyannularslitnozzleforthefiltercartridgewithaninnerconedeflector[J].JournalofNanchangUniversity(Engineering&Technology)ꎬ2023ꎬ45(1):9-15.环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟李建龙ꎬ赵艺ꎬ孙泽文ꎬ吴庆ꎬ钟乙琪ꎬ吴泉泉ꎬ马志飞ꎬ吴代赦(南昌大学资源与环境学院ꎬ江西南昌330031)㊀㊀摘要:为提高除尘滤筒脉冲喷吹性能ꎬ研究了环形缝隙喷嘴对导流内锥式除尘滤筒清灰性能的改进作用ꎬ采用CFD数值模型对喷吹性能进行模拟ꎬ考察了除尘滤筒内部流场特征ꎬ研究了喷吹距离㊁文丘里管增设对喷吹效果的影响ꎮ结果表明:相比于普通喷嘴ꎬ使用环缝喷嘴后滤筒上部的负压几乎消失ꎬ滤筒内压力增大ꎬ喷吹强度提升ꎻ喷吹强度随着喷吹距离的增大呈先增后降的趋势ꎬ且喷吹均匀性逐渐改善ꎬ环缝喷嘴在喷吹距离为400mm时ꎬ滤筒的清灰性能最佳ꎬ喷吹强度提升了44%ꎻ在滤筒上方开口处增设文丘里管可以使滤筒内压力峰值得到较大的提升ꎬ随着文丘里管安装高度升高ꎬ滤筒内的喷吹强度先升高再缓慢降低ꎬ变异系数呈先增后降的趋势ꎬ文丘里管安装高度为-30mm时对喷吹强度提升最大(29%)ꎮ关键词:环形缝隙喷嘴ꎻ导流内锥式除尘滤筒ꎻCFD数值模拟ꎻ喷吹距离ꎻ文丘里管中图分类号:X701.2㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1006-0456(2023)01-0009-07NumericalsimulationofimprovedpulsejetperformancebyannularslitnozzleforthefiltercartridgewithaninnerconedeflectorLIJianlongꎬZHAOYiꎬSUNZewenꎬWUQingꎬZHONGYiqiꎬWUQuanquanꎬMAZhifeiꎬWUDaishe(SchoolofResourcesandEnvironmentꎬNanchangUniversityꎬNanchang330031ꎬChina)Abstract:Inordertoimprovethepulsejetperformanceofthedustremovalfiltercartridgeꎬtheeffectofthean ̄nularslitnozzleonthefiltercleaningperformanceofthedustremovalfiltercartridgewithaninnerconedeflectorintheguideflowwasstudied.TheCFDnumericalmodelwasusedtosimulatethepulsejetperformanceꎬtheinternalflowfieldcharacteristicsofthedustremovalfiltercartridgewasinvestigatedꎬandtheeffectsoftheinjectiondistanceandVenturitubeadditionontheinjectioneffectwerestudied.Theresultsshowedthatꎬcomparedwiththeordinarynozzleꎬthenegativepressureintheupperpartofthefiltercartridgealmostdisappearedafterusingtheannularslitnozzleꎬthepressureinthefiltercartridgeincreasedꎬandthepulsejetintensityincreased.Thepulsejetintensityin ̄creasedfirstandthendecreasedwiththeincreasingofthesprayingdistanceꎬandthesprayinguniformitygraduallyimprovedꎬandthecleaningperformanceofthefiltercartridgewasthebestwhenthejetdistancewas400mmꎬandthejetintensityincreasedby44%.WiththeincreasingoftheinstallationheightoftheVenturitubeꎬthejetintensityinthefiltercartridgefirstincreasedandthenslowlydecreasedꎬandthecoefficientofvariationshowedatrendoffirstincreasingandthendecreasingꎬandtheinstallationheightoftheVenturitubewas-30mmwhenthejetintensityincreasedthemost(29%).第45卷第1期2023年3月㊀㊀㊀㊀㊀㊀南昌大学学报(工科版)JournalofNanchangUniversity(Engineering&Technology)Vol.45No.1Mar.2023㊀KeyWords:annularslitnozzleꎻfiltercartridgewithinnerconedeflectorꎻCFDnumericalsimulationꎻjetdis ̄tanceꎻVenturitube㊀㊀近年来城市化和工业化的迅猛推进ꎬ带动着能源消耗的增加[1-2]ꎬ煤炭㊁矿山㊁水泥㊁电力等行业生产过程中产生大量的粉尘颗粒物[3]ꎬ导致空气中颗粒物污染尤为严重ꎬ高质量浓度的PM2.5会产生雾霾ꎬ影响环境质量和空气能见度ꎬ干扰交通运输㊁生产作业ꎬ危害人类身心健康[4-6]ꎮ在当前除尘领域中ꎬ滤筒除尘器因其除尘率高㊁过滤面积大㊁价格低和占地面积小等优点ꎬ广泛应用于各行业[7]ꎮ滤筒清灰作为除尘器运行中的关键一环ꎬ直接影响设备的除尘效率和稳定性[8]ꎮ目前ꎬ除尘行业使用的清灰技术主要为脉冲喷吹清灰[9]ꎬ但此种清灰技术存在滤筒上部压力小导致清灰效果差的问题[10-11]ꎮ为改善滤筒的脉冲喷吹清灰性能ꎬ国内外学者对此开展诸多研究ꎮShim等[12]研究发现使用普通喷嘴对滤筒进行脉冲喷吹时容易出现清灰不均匀㊁不彻底和滤筒尘饼残留等问题ꎮ张硕等[13]通过对单拉瓦尔喷嘴和双拉瓦尔喷嘴脉冲喷吹气体动力学特性的对比模拟ꎬ发现双拉瓦尔喷嘴脉冲喷吹可使滤筒顶端的脉冲峰值压力增加182%ꎬ有效解决滤筒顶端清灰难的问题ꎮ郗元等[14]提出在喷嘴上加装锥形散射器ꎬ采用计算流体力学数值方法对除尘器清灰过程的流场进行模拟ꎬ研究发现加装锥形散射器后ꎬ滤筒上中下侧壁的正压峰值呈现出随喷吹距离增加先提升后降低的变化趋势ꎬ在喷吹距离为200mm时ꎬ喷吹强度提升13%ꎮ薛峰等[15]对比研究了普通直角喷嘴㊁上部开口散射器㊁诱导喷嘴条件下滤筒清灰效果ꎬ结果表明在喷吹压力为0.4MPa时ꎬ上部开口散射器可有效提升清灰强度㊁延长清灰周期ꎬ平均清灰间隔相比使用普通直角喷嘴和诱导喷嘴分别延长了48%㊁23%ꎮLi等[16]在滤筒顶部和底部安装了2个喷嘴ꎬ进行对撞脉冲喷吹清灰ꎬ实验发现脉冲喷射强度比仅顶部安装喷嘴提高了156%ꎮ在滤筒结构优化方面ꎬ李建龙等[9]提出了导流内锥式除尘滤筒ꎬ即在普通圆筒形滤筒内增设锥形过滤面ꎬ增加了单位空间的过滤面积ꎬ并且通过内锥的导流作用ꎬ提高了滤筒内压力分布的均匀性ꎮ该研究对导流内锥式除尘滤筒进行了脉冲喷吹数值模拟ꎬ发现滤筒内喷吹压力的蓄积效果更好ꎬ清灰不足的区域更小ꎮ另外ꎬ文丘里管经常被用于改善滤筒清灰性能的研究中ꎬ安装文丘里管可延缓滤筒气体出流ꎬ提升气流在滤筒内的蓄积时间ꎮ张情等[17]通过实验对比了加装文丘里管前后滤筒内脉冲喷吹清灰性能ꎬ研究发现在喷吹压力0.6MPa时ꎬ加装文丘里管ꎬ滤筒上中下测点的压力峰值分别提高了63%㊁72%㊁40%ꎮLiu等[18]采用典型文丘里管和新型文丘里管对过滤袋进行实验ꎬ实验证明新型文丘里管改变了袋口附近的清洗压力分布ꎬ有效延长了清洗周期ꎬ降低了能耗ꎮ本研究选择导流内锥式除尘滤筒作为研究对象ꎬ探究环形缝隙喷嘴(以下简称环缝喷嘴)改进滤筒脉冲喷吹清灰效果ꎬ通过构建CFD数值模型研究了滤筒内脉冲喷吹流场ꎬ考察了喷嘴的喷吹距离及文丘里管的增设对喷吹性能的影响ꎬ研究结果对于除尘滤筒的设计与优化具有重要意义ꎮ1㊀试验方法1.1㊀实验系统与模型构建模拟以脉冲喷吹滤筒除尘器实验系统为原型ꎬ实验系统主要结构见已报道文献[11]ꎬ其中原除尘器内安装为普通滤筒(滤筒长度660mmꎬ直径240mmꎬ滤料厚度0.6mm)ꎬ现将普通滤筒更改为导流内锥式除尘滤筒(内锥高度760mm㊁底部开口直径200mm)ꎬ如图1(a)所示ꎮ滤筒上方设置有普通喷嘴ꎬ喷嘴直径为25mmꎮ现设计了环缝喷嘴(内环直径92.00mm㊁外环直径95.34mmꎬ如图1(b)所示)对喷吹性能进行改进ꎮ普通喷嘴和环缝喷嘴喷吹出口的截面积相同ꎬ均为490.6mm2ꎮ(a)导流内锥式除尘滤筒(b)环缝喷嘴图1㊀导流内锥式除尘滤筒与环缝喷嘴实物图Fig.1㊀Physicaldiagramoftheinnerconedustfiltercartridgeandtheannularslitnozzleintheguideflow01 南昌大学学报(工科版)2023年㊀在数值模拟中ꎬ由于滤筒除尘器为中心轴对称结构ꎬ为节省计算量ꎬ将其简化为二维模型ꎬ简化后的模型如图2所示ꎬ二维模型绕对称轴旋转360ʎ即为全尺寸滤筒除尘器ꎮ文丘里管图2㊀数值模拟几何模型Fig.2㊀Geometryofthenumericalsimulation1.2㊀模拟的边界条件本次研究采用AnsysFluent软件进行数值模拟ꎬ模拟边界条件如下:喷嘴设置为压力入口ꎬ除尘器的顶面和底面分别设置为压力出口ꎬ滤筒滤料层设置为多孔介质区ꎬ经课题组相关实验测试与计算[11]ꎬ所用滤筒黏性损失系数1/α为2.0ˑ1011m-2ꎮ模拟使用的流体假设为理想气体ꎬ认为流体可压缩㊁非稳态㊁等温㊁湍流ꎬ选择Realizablek-ε湍流模型和压力-速度耦合算法ꎬ并且不考虑粉尘的运移及滤筒形变对模拟的影响ꎮ1.3㊀研究方案1)选取初始气包压力0.5MPa㊁脉冲宽度0.15s对应的喷嘴出口压力作为模拟的入口边界ꎬ入口压力的设置参考已有文献[19]ꎬ在喷吹距离400mm条件下对比使用普通喷嘴和环缝喷嘴时滤筒内喷吹压力的时空分布ꎮ2)在滤筒内壁设置压力测点P1~P5用于监测滤筒内喷吹压力的变化ꎬ各测点离滤筒顶部距离分别为110㊁220㊁330㊁440㊁550mmꎮ考察200~700mm的喷吹距离对喷吹压力的影响ꎬ对比普通喷嘴和环缝喷嘴条件下的喷吹强度与变异系数ꎬ确定最佳喷吹距离ꎮ喷吹强度是指滤筒内各测点压力峰值的平均值ꎬ变异系数是指各测点压力峰值标准差与平均值比值ꎬ变异系数越小ꎬ说明滤筒内压力分布均匀性越好[11]ꎮ3)在环缝喷嘴最佳喷吹距离条件下ꎬ对比增设文丘里管(高120mm㊁上部开口直径136mm㊁下部开口直径210mm㊁中间喉部直径110mmꎬ安装位置如图2所示)前后滤筒内喷吹压力ꎬ考察文丘里管安装高度h为-120~60mm时对喷吹压力的影响ꎮ其中ꎬ安装高度h为文丘里管底部距滤筒顶部的距离ꎬ文丘里管与滤筒间用挡板连接ꎮ1.4㊀网格独立性与实验验证为验证网格的独立性ꎬ选取普通喷嘴在喷吹距离l为300mm条件下对网格进行加密ꎬ加密前后的网格节点总数分别为31322和46977个ꎮ在喷吹压力为0.5MPa㊁脉冲宽度为0.15s条件下ꎬ对比了加密前后滤筒中间测点的压力P变化ꎬ如图3所示ꎮ可以发现网格加密前后的压力变化曲线几乎重合ꎬ认为网格已达到网格独立性要求ꎬ选择加密前网格的划分策略ꎮ为了验证模型的准确性ꎬ对比了模拟与实验结果ꎬ如图3(a)所示ꎮ模拟压力与实验值变化趋势基本吻合ꎬ但相比于模拟值的压力变化曲线ꎬ实验值波动较剧烈ꎬ主要是因为喷吹过程中滤筒的震动ꎬ引起压力传感器的震动ꎬ从而导致数据的波动ꎮ总体认为ꎬ模拟的结果符合实际分析要求ꎮ模拟值1(网格加密前)模拟值2(网格加密后)实验值12001000800600400200P/Pa0.250.200.150.100.0500.30t/s(a)实验与模拟数据对比普通喷嘴内锥(b)网格加密前(c)网格加密后图3㊀网格独立性与实验验证Fig.3㊀Gridindependenceandexperimentalvalidation11第1期㊀㊀㊀㊀㊀李建龙等:环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟2㊀结果与分析2.1㊀喷吹压力的时空分布图4和图5分别为在喷吹距离l为400mmꎬ气包压力为0.5MPaꎬ脉冲宽度为0.15s条件下ꎬ采用普通喷嘴和环缝喷嘴时静压力云图和流线图ꎮ(a)(b)(c)(d)(e)(f)(a)t=0.01sꎻ(b)t=0.02sꎻ(c)t=0.03sꎻ(d)t=0.06sꎻ(e)t=0.10sꎻ(f)t=0.12sꎮ图4㊀普通喷嘴条件下除尘器内静压力云图和流线Fig.4㊀Staticpressureclouddiagramandstreamlineofdustcollectorundernormalnozzleconditions(a)(b)(c)(d)(e)(f)(a)t=0.01sꎻ(b)t=0.02sꎻ(c)t=0.03sꎻ(d)t=0.06sꎻ(e)t=0.10sꎻ(f)t=0.12sꎮ图5㊀环缝喷嘴条件下除尘器内静压力云图和流线Fig.5㊀Staticpressureclouddiagramandstreamlineofdustcollectorunderannularslitnozzleconditions在普通喷嘴条件下ꎬ气流从喷嘴喷出后ꎬ产生卷吸作用ꎬ诱导周围气体进入滤筒ꎬ静压在滤筒自下而上蓄积ꎬ到t=0.03s时基本达到稳定ꎬ滤筒中下部的静压明显大于上部ꎮ主要是因为气流进入滤筒后ꎬ撞击滤筒底部后发生蓄积反弹ꎮ滤筒上部出现负压ꎬ容易造成滤筒上部清灰不足ꎬ其主要原因为喷吹气流在未充分膨胀的情况下高速进入滤筒ꎬ在滤筒上部依然存在较大的气流卷吸作用ꎮ在环缝喷嘴条件下ꎬ气流从喷嘴喷出后会卷吸中心气流ꎬ形成负压ꎬ负压使得环形喷吹气流向中心聚拢ꎬ同时通过环缝喷嘴中心卷吸上方气流ꎮ在t=0.02s时刻ꎬ喷嘴下方产生一个较大范围的负压区域ꎬ主要是因为在相同喷嘴断面积条件下ꎬ环缝喷嘴边缘较长ꎬ喷吹气流与周围空气接触面显著增大ꎬ气流卷吸作用进一步增强ꎮ从喷吹气流随空间的变化特征中可以发现ꎬ滤筒内部几乎不存在负压ꎬ主要是因为环形喷吹气流携带大量气体进入滤筒ꎮ与普通喷嘴相比ꎬ使用环缝喷嘴可以提升滤筒内部的喷吹压力ꎬ缓解滤筒上部清灰不足ꎬ增加滤筒内较高喷吹压力持续时间ꎬ清灰性能更佳ꎮ2.2㊀喷吹距离对清灰性能的影响为探究喷嘴在不同喷吹距离下的脉冲喷吹清灰性能ꎬ对比了喷吹距离l为200~700mm时滤筒内各测点压力峰值Pkꎬ如图6所示ꎮ12001000800600400200P k /P a600500400300200700l/mm(a)普通喷嘴12001000800600400200P k /P a600500400300200700l/mm(b)环缝喷嘴图6㊀测点压力峰值随喷吹距离的变化Fig.6㊀Peakpressureofthemeasurementpointchangeswiththespraydistance使用普通喷嘴条件下ꎬ在喷吹距离l为200~500mm范围内ꎬ随着喷吹距离的增加ꎬP1㊁P2测点压力峰值呈现增大趋势ꎬP3测点压力峰值呈现先减小后增大的趋势ꎬP4㊁P5测点压力峰值呈现减小趋势ꎬ即增加喷吹距离可以显著提升滤筒上部喷吹压力ꎬ但会略微减小滤筒下部喷吹压力ꎮ主要是因为在喷吹距离较小时ꎬP1㊁P2测点在喷吹气流的卷吸区ꎬ喷吹气流膨胀效果较差ꎬP4㊁P5在喷吹气流的扩21 南昌大学学报(工科版)2023年㊀散区ꎬ喷吹气流膨胀充分且存在气流的蓄积反弹作用ꎬ而P3同时受此两区域影响ꎮ增加喷吹距离使得喷吹气流的卷吸区与扩散区上移ꎮ当喷吹距离超出500mm后ꎬ喷吹气流的扩散区逐渐上移到滤筒外部ꎬ因此各测点的喷吹压力都下降ꎮ使用环缝喷嘴条件下ꎬ在喷吹距离l为200~400mm时ꎬ随着喷吹距离的增加ꎬP1㊁P2㊁P3测点压力峰值呈现增大趋势ꎬP4㊁P5压力峰值呈现减小趋势ꎮ当喷吹距离超过400mm后ꎬ除了P3先增大后减小外ꎬ其余测点压力均下降ꎮ造成这些现象的原因与上述普通喷嘴条件下类似ꎬ均与喷吹气流的卷吸与扩散位置相关ꎮ对比2种喷嘴可以发现ꎬ使用环缝喷嘴的滤筒内压力峰值都大于普通喷嘴ꎬ尤其增大了滤筒上部的喷吹压力ꎬ主要是环缝喷嘴具有更强的卷吸作用ꎮ1000800600400200P /P a600500400300200700PCV0.40.30.20.10C Vl/mm(a)普通喷嘴1000800600400200P /P a600500400300200700P CV0.40.30.20.10C Vl/mm(b)环缝喷嘴图7㊀喷吹强度与变异系数随喷吹距离的变化Fig.7㊀Changeofsprayintensityandcoefficientofvariationwithspraydistance图7为普通喷嘴与环缝喷嘴在不同喷吹距离l下的喷吹强度P与变异系数CV变化ꎮ使用普通喷嘴条件下ꎬ喷吹强度随着喷吹距离的增大呈现先增大后减小的趋势ꎬ且喷吹均匀性逐渐改善ꎬ在喷吹距离l为500mm时ꎬ其喷吹强度达到最大值ꎬ为709Paꎬ对应的变异系数为0.04ꎮ使用环缝喷嘴条件下ꎬ喷吹强度呈现先增大后减小的变化趋势ꎬ并且其喷吹均匀性得到一定程度的改善ꎬ在喷吹距离l为400mm时滤筒清灰性能最佳ꎬ对应的喷吹强度为935Pa㊁变异系数为0.05ꎬ喷吹强度较普通喷嘴提升了44%ꎮ由此可见ꎬ使用环缝喷嘴可以增加滤筒内喷吹强度ꎬ并且在更小的喷吹距离下实现其喷吹强度最大值ꎬ这主要是由于环缝喷嘴使喷吹气流进入滤筒时已实现更充分的扩散ꎮ在喷吹距离较小(200~400mm)时对均匀性的改善显著ꎬ有利于解决滤筒上部清灰不足ꎬ下部清灰过度的情况ꎮ2.3㊀文丘里管的增设对清灰性能的影响图8为环缝喷嘴在最佳喷吹距离400mm㊁文丘里管安装高度0mm条件下的静压力云图和流线图ꎮ滤筒内部压力先整体升高ꎬ在t=0.02s时刻ꎬ在文丘里管外侧产生一个较大范围的负压区域ꎬ主要是因为气流通过文丘里管ꎬ由粗变细ꎬ气体流速加快ꎬ导致气体在文丘里管外侧形成一个负压区ꎬ从而加强了气流的卷吸作用ꎮ(a)(b)(c)(d)(e)(f)(a)t=0.01sꎻ(b)t=0.02sꎻ(c)t=0.03sꎻ(d)t=0.06sꎻ(e)t=0.10sꎻ(f)t=0.12sꎮ图8㊀增设文丘里管条件下除尘器内静压力云图和流线Fig.8㊀StaticpressureclouddiagramandstreamlineofdustcollectorundertheconditionofaddingVenturitube图9为增设文丘里管前后各测点喷吹压力峰值1400120010008006004002000P k /P aP4P3P2P1P5增设文丘里管前增设文丘里管后图9㊀增设文丘里管后喷吹压力对比Fig.9㊀ComparisonofinjectionpressureafteraddingVenturitube31 第1期㊀㊀㊀㊀㊀李建龙等:环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟Pk对比ꎮ增设文丘里管后ꎬ各测点的喷吹压力均得到较大的提升ꎮ因为文丘里管可以汇聚卷吸周围空气ꎬ更均匀地混合喷吹与卷吸的气流ꎬ提升滤筒内部的喷吹压力ꎬ进一步加强了滤筒清灰性能ꎮ进一步考察了文丘里管在不同安装高度h(-120~60mm)时各测点压力峰值Pk变化ꎬ如图10所示ꎮ文丘里管安装高度h在-120~-60mm时ꎬ随着文丘里管安装高度升高ꎬP1~P5测点压力均呈现升高趋势ꎬ文丘里管安装高度h在-60~60mm时ꎬ随着文丘里管安装高度升高ꎬP1~P2测点喷吹压力下降ꎬP3~P5测点喷吹压力变化较小ꎮ观察图10(b)可以发现ꎬ随着文丘里管安装高度升高ꎬ滤筒内部的喷吹强度先升高再缓慢降低ꎬ变异系数呈现先增大后减小的趋势ꎮ14001300120011001000900800P k /P a300-30-60-90-12060P1P2P3P4P5h/mm(a)测点压力峰值14001300120011001000900P /P a300-30-60-90-12060P CV0.100.080.060.040.02C Vh/mm(b)喷吹强度和变异系数变化图10㊀文丘里管安装高度对喷吹性能影响Fig.10㊀InstallationheightoftheVenturitubehasaneffectontheinjectionperformance造成这种现象主要是因为ꎬ文丘里管安装高度较低时ꎬ文丘里管与滤筒的内锥阻碍了喷吹气流进入滤筒内部ꎬ导致滤筒内部气流量减少ꎮ因此ꎬ文丘里管安装高度h在-30~60mm时ꎬ可以得到较好的喷吹强度及均匀性ꎬ在安装高度为-30mmꎬ喷吹强度最大ꎬ提升了29%ꎮ环缝喷嘴和文丘里管改善滤筒喷吹性能的原理如图11所示ꎬ可见文丘里管有汇聚气流㊁均匀混合喷吹气流与卷吸气流的效果ꎬ并且进一步加强了气流的卷吸作用ꎬ环缝喷嘴和文丘里管组合可优化滤筒清灰性能ꎮ文丘里管图11㊀环缝喷嘴和文丘里管改善喷吹性能的原理Fig.11㊀PrincipleofcircumferentialnozzlesandVenturitubestoimprovesprayperformance41 南昌大学学报(工科版)2023年㊀3 结论㊀㊀1)环缝喷嘴显著提升了喷吹气流与周围空气的接触面ꎬ增强了气流卷吸作用ꎻ相较于普通喷嘴ꎬ使用环缝喷嘴条件下滤筒上部的负压几乎消失ꎬ滤筒内部的喷吹压力明显提升ꎬ较高喷吹压力持续时间延长ꎬ脉冲清灰性能更佳ꎮ2)普通喷嘴和环缝喷嘴条件下ꎬ喷吹强度均随着喷吹距离呈先增后降的趋势ꎬ其中环缝喷嘴对应的喷吹强度更大ꎬ且在较小喷吹距离(200~400mm)时喷吹均匀性的改善显著ꎬ主要是因为环缝喷嘴喷吹气流与周围空气接触面更大ꎬ具有更强的卷吸作用ꎻ在喷吹距离l为400mm时ꎬ对滤筒的清灰性能改善最佳ꎬ喷吹强度提升了44%ꎮ3)文丘里管的增设可汇聚并均匀混合卷吸空气ꎬ进一步加强气流的卷吸作用ꎬ环缝喷嘴和文丘里管组合可提高滤筒内的喷吹压力ꎻ文丘里管安装高度在-30mm时对喷吹强度提升最大ꎬ为29%ꎮ参考文献:[1]㊀刘媛ꎬ张蕾ꎬ陈娱ꎬ等.2003 2016年中国PM2.5质量浓度时空格局演变及影响因素解析[J/OL].地理科学ꎬ2023:1-11(2023-01-20)[2023-02-03].https://kns.cnki.net/kcms/detail/22.1124.P.20230118.1914.006.ht ̄ml.[2]LIANGCSꎬDUANFKꎬHEKBꎬetal.Reviewonrecentprogressinobservationsꎬsourceidentificationsandcoun ̄termeasuresofPM2.5[J].EnvironmentInternationalꎬ2016ꎬ86:150-170.[3]庄学安.小保当矿井粉尘高效治理技术探讨[J].煤炭技术ꎬ2022ꎬ41(2):149-152.[4]ZHANGSGꎬLUWGꎬWEIZQꎬetal.Airpollutionandcardiacarrhythmias:fromepidemiologicalandclinicalevi ̄dencestocellularelectrophysiologicalmechanisms[J].FrontiersinCardiovascularMedicineꎬ2021ꎬ8:736151[5]李德文ꎬ赵政ꎬ郭胜均ꎬ等. 十三五 煤矿粉尘职业危害防治技术及发展方向[J].矿业安全与环保ꎬ2022ꎬ49(4):51-58.[6]罗敏ꎬ李建龙ꎬ吴代赦ꎬ等.滤膜泄漏对颗粒物过滤性能影响的实验[J].南昌大学学报(理科版)ꎬ2020ꎬ44(1):70-75.[7]杨燕霞ꎬ张明星ꎬ秦文茜ꎬ等.脉冲喷吹内置锥形滤筒的清灰性能[J].中国粉体技术ꎬ2019ꎬ25(1):76-80. [8]LIQQꎬZHANGMXꎬQIANYLꎬetal.Therelationshipbetweenpeakpressureandresidualdustofapulse ̄jetcartridgefilter[J].PowderTechnologyꎬ2015ꎬ283:302-307.[9]李建龙ꎬ陈源正ꎬ林子捷ꎬ等.除尘滤筒脉喷清灰技术研究进展与展望[J].金属矿山ꎬ2022(11):23-35. [10]牛兵兵ꎬ樊越胜ꎬ李哲然ꎬ等.滤筒除尘器环形射流脉冲喷吹清灰的模拟研究[J].煤气与热力ꎬ2021ꎬ41(8):5-8.[11]艾子昂ꎬ吴泉泉ꎬ孙燕ꎬ等.气流隔板改善滤筒脉喷清灰性能的数值模拟[J].南昌大学学报(工科版)ꎬ2021ꎬ43(4):384-391.[12]SHIMJꎬJOEYHꎬPARKHS.Influenceofairinjectionnozzlesonfiltercleaningperformanceofpulse ̄jetbagfil ̄ter[J].PowderTechnologyꎬ2017ꎬ322:250-257. [13]张硕ꎬ谭志洪ꎬ刘丽冰ꎬ等.脉冲喷吹流动对带双拉瓦尔喷嘴滤筒除尘特性的影响[J].环境污染与防治ꎬ2021ꎬ43(4):411-415.[14]郗元ꎬ姜文文ꎬ代岩ꎬ等.基于CFD的锥形散射器强化清灰特性数值模拟及优化[J].轻工机械ꎬ2021ꎬ39(1):98-103.[15]薛峰ꎬ李朋ꎬ黄琬岚ꎬ等.喷嘴型式对滤筒脉冲定阻清灰效果的影响[J].中国粉体技术ꎬ2022ꎬ28(5):48-56. [16]LIJLꎬWUDSꎬWUQQꎬetal.Designandperformanceevaluationofnovelcollidingpulsejetfordustfilterclean ̄ing[J].SeparationandPurificationTechnologyꎬ2019ꎬ213:101-113.[17]张情ꎬ钱云楼ꎬ刘东ꎬ等.文丘里对脉冲滤筒除尘系统清灰影响的实验研究[J].环境科学与技术ꎬ2015ꎬ38(7):133-137.[18]LIUXCꎬSHENHG.EffectofVenturistructuresonthecleaningperformanceofapulsejetbaghouse[J].AppliedSciencesꎬ2019ꎬ9(18):3687.[19]WUQQꎬLIJLꎬWUDSꎬetal.EffectsofoveralllengthandODonopposingpulse ̄jetcleaningforpleatedfiltercartridges[J].AerosolandAirQualityResearchꎬ2020ꎬ20:432-443.51第1期㊀㊀㊀㊀㊀李建龙等:环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟。
2024届广东省顺德区普通高中高三上学期教学质量检测物理试题(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.第19届亚运会于2023年9月在杭州举行,以“中国特色、亚洲风采、精彩纷呈”为目标,秉持“绿色、智能、节俭、文明”办会理念,下列说法正确的是()A.对参加首次列入亚运会正式竞赛项目的霹雳舞竞赛的运动员打分时,可以把运动员看成质点B.忽略空气阻力,17岁“天才少女”黄雨婷,在射击比赛中打出的子弹在空中做匀速直线运动C.张亮以6分57秒06的成绩获得赛艇男子单人双桨冠军,6分57秒06指时间D.参加4×100米混合泳接力赛的四名运动员比赛游过的总位移大小为400m2.有关高楼坠物的事故报道屡屡见诸报端,一次次事故引发全民关注这“悬在城市上空的痛”,关于坠物,以下说法正确的是()A.坠物下落过程处于超重状态B.坠物对被砸物体的作用力等于其重力C.被砸物体很危险是因为坠物的动量变化很大D.被砸物体很危险是因为坠物的动量变化很快3.如图所示,顺德商场常见的两种电梯,图甲为阶梯式电梯,图乙为斜面式电梯,设同一个乘客在两种电梯中随电梯匀速上行,下列说法正确的是()A.两种电梯对乘客支持力的方向相同B.两种电梯对乘客作用力的大小与方向均相同C.两种电梯对乘客摩擦力的方向相同D.两种电梯对乘客支持力的大小相等4.如图所示,起重机以额定功率将地面上质量为800kg的重物由静止沿竖直方向吊起,4秒后,重物开始以1m/s的速度向上做匀速直线运动,忽略空气阻力,重力加速度取210m/sg=,以下说法正确的是()A.0~4秒内重物所受起重机牵引力逐渐变大B.0~4秒内重物的加速度大小恒为20.25m/sC.0~4秒内重物克服重力做功41.610J⨯D.起重机的额定功率为8kW5.如图为钓鱼时鱼漂静浮于水面的示意图.某次鱼咬钩时将鱼漂往下拉一小段距离后松口,鱼漂做上下振动,一定时间内鱼漂在竖直方向近似做简谐运动,取竖直向上为正方向,鱼松口时为计时起点,用t、x、a分别表示鱼漂运动的时间、位移和加速度,关于鱼漂此过程中的运动,下列图像可能正确的是()A.B.C.D.6.如图所示,“羲和号”是我国首颗可24小时全天候对太阳进行观测的试验卫星,该卫星绕地球可视为匀速圆周运动,轨道平面与赤道平面垂直。
第6章结构模型试验主要内容⏹1、概述⏹2、相似理论⏹3、结构模型设计⏹4、模型的材料、制作与试验6.1 概述⏹在工程实践和理论研究中,结构试验的对象大多是实际结构的模型(如振动台试验)⏹模型一般是参照原型按一定比例制成的小的试件;模型具有原型结构的全部或部分特征;模型试验的目的就是为了试图从模型试验结构推测出原型结构的性能⏹模型试验的理论基础是相似理论!相似性要求将模型结构和原型结构联系起来6.1 概述⏹结构模型试验的特点☐模型试验可以根据需要控制试验对象的主要参变量而不受原型结构或其它条件的限制(针对性强)☐模型一般比原型小,制作成本降低,占用场地及加载设备能力要求降低。
有利于节约资金等(经济性好)☐可以用来预测尚未建造的结构的性能☐可在实验室进行,测试精度较高(数据准确)⏹模型试验分类:☐按目的:小结构试验和相似模型试验☐按研究范围:弹性模型试验、强度模型试验、间接模型试验☐按分析方法:定性试验、半分析试验和定量分析试验☐按模拟程度:节段模型、局部结构模型和整体模型☐按加载方法:静力模型试验、动力模型试验、拟静力模型试验和拟动力模型试验等6.2 相似理论⏹相似理论是模型试验的基础☐在进行物理变化的系统中,第一过程和第二过程相应的物理量之间的比例保持着常数,这些常数间又存在相互制约的关系,这种现象称为相似现象☐最经常使用的材性试验?⏹在结构模型试验中,通过量纲分析确定模型结构和原型结构的相似关系6.2.1 模型的相似要求和相似常数什么是“相似”?结构模型试验中的“相似”是指原型结构和模型结构的主要物理量相同或成比例。
相同物理量之比称为相似常数(或称为相似比、相似系数)6.2.1 模型的相似要求和相似常数⏹4、应力和应变相似☐Sσ(应力)、S E(弹性模量)、Sτ(剪应力)、Sγ(剪切角)6.2.1 模型的相似要求和相似常数⏹5、时间相似☐S t,时间相似不是指时刻相似,而是指时刻的间隔相似。
⏹6、边界条件相似☐指支承与约束条件相似。
粘滞阻尼器的研究与应用摘要:粘滞阻尼器是根据流体运动,特别是当流体通过节流孔时会产生粘滞阻力的原理而制成的,是一种与刚度、速度相关型阻尼器。
一般由油缸、活塞、活塞杆、衬套、介质、销头等部分组成,活塞可以在油缸内作往复运动,活塞上设有阻尼结构,油缸内装满流体阻尼介质。
当外部激励(地震或风振)传递到结构中时,结构产生变形并带动阻尼器运动。
在活塞两端形成压力差,介质从阻尼结构中通过,从而产生阻尼力并实现能量转变(机械能转化为热能),达到减小结构振动反应的目的。
关键词:阻尼器;耗能减震;动力分析一、基本概念及构造特点(1)基本概念阻尼是结构振动衰减的根本原因,但由于实际结构中的阻尼复杂特性使得并不能精准定位阻尼,故在结构分析中一般认为结构阻尼为线性粘滞阻尼,也即是认为阻尼力与速度成正比,且假定结构中设置粘滞阻尼器后所附加给结构的阻尼与结构本身的阻尼基本一致。
粘滞阻尼器(墙)是根据流体运动,特别是当流体通过节流孔或在封闭空间中进行相对运动时与壁缸或壁筒产生相互作用,将流体运动产生的动能转化为热能,从而耗散地震输入的能量。
这种因流体运动将动能转化为热能所产生粘滞阻尼的耗能装置,即被称之为粘滞阻尼器,又称之为速度型阻尼器,其阻尼力的大小与流体运动的速率密切相关,速度越大,阻尼力越大,速度为0时,阻尼力为0,是一种刚度无关、速度相关的阻尼器。
(1—1)其中:F——粘滞阻尼器的粘滞阻尼力;C——阻尼系数,与壁缸或壁筒的具体尺寸、粘滞流体的粘度等因素密切相关。
粘滞阻尼器以其优异的抗风、抗震(振)能力和经济性,近年来在工程结构领域得到广泛应用。
其应用领域包括:民用建筑(如住宅、办公楼、商场等多层高层及大跨建筑结构)、生命线工程(如医院、学校、城市功能建筑)、工业建筑(如厂房、塔架、设备减振)、桥梁(人行桥、高架路桥)、军工行业等。
(2)构造组成粘滞阻尼器,是应用粘性介质和阻尼器结构部件的相互作用产生阻尼力的原理设计、制作的一种被动速度相关型阻尼器,一般由缸筒、活塞、阻尼孔、阻尼介质(粘滞流体)和导杆等部分组成。
建筑结构非线性时程分析摘要:非线性时程分析是目前模拟建筑结构罕遇地震性能最准确、最完善的方法,受理论水平和硬件条件所限,早期的非线性时程分析多采用了过多的简化,有悖于准确模拟的初衷。
在对当前国内外非线性时程分析技术研究前沿了解的基础上,对该技术最新进展进行介绍,并重点介绍非线性骨架曲线、剪力墙模拟、软件应用、计算收敛加速问题的最新应用情况。
关键词:非线性时程分析;构件骨架曲线;剪力墙abstract: nonlinear time-history analysis method is currently building structures under earthquake performance the most accurate, the most perfect, limited to the theoretical level and the hardware conditions, process analysis of early nonlinear multiple eases the excessive use, with the accurate simulation of the original. based on the nonlinear time-history analysis research in frontier technology on the knowledge, the introduction of the new progress of the technology, and introduces the latest application of nonlinear skeleton curves, shear wall model, software applications, convergence acceleration problem. keywords: nonlinear time-history analysis; component skeleton curve; shear wall中图分类号: f045.33文献标识码:a 文章编号:2095-2104(2013)0前言现代结构设计的发展对结构分析提出了更高的要求,随着计算技术的提高,更加精确的模拟真实结构成为越来越迫切的课题和要求。