硅酸盐热工基础---3.2燃烧计算
- 格式:pdf
- 大小:1.38 MB
- 文档页数:54
燃烧热计算公式
燃烧热是化学反应中使物质生成更多反应物和产物的核心机械能量包。
它可以
用燃烧热公式来计算,即Q=∆H。
这其中Q表示热量,∆H表示反应物和产物改变的
热化学吸热量,单位是焦耳或千卡。
换句话说,燃烧热就是决定化学反应的温度,以及输入的热量改变其它物质的量。
这个公式经常应用在工业过程的优化中。
例如,当分子氧化时,它的反应物是一氧化二氢,产物是二氧化碳和水。
一氧
化二氢吸收的热量(Q1)比产物(Q2)多的部分就是燃烧热。
对于燃料的燃烧,燃料转化为气体和烟雾,燃料以及产物是质量改变,而反应是由H2O、CO2和其他化
学物质组成,反应热Q就是燃料转化所需要的热量。
另一方面,像水溶液中的悬浮物或溶解物就称之为溶解热,它是指反应物溶在
溶剂中的特性,而产物的总能量可以用Q=∆G(改变的标准熔化能)来计算。
当引
入溶质时,其能量变化可以用下面的等式来表示:Q=∆Hdiss(溶解热)+∆V(改变
的体积)-∆Gi(改变的标准熔解能)。
其中溶解热就是物质溶质从固体转变为溶
质所转化的能量。
很明显,燃烧热和溶解热对化学反应起着非常重要的作用,他们两个的计算公
式使得工业过程制定者可以评估更好地掌控化学反应的节能性和经济性。
因此,燃烧热计算公式是影响技术发展的重要工具,它可以高效有效地优化化学反应的效率,实现节能减排的目标。
总而言之,燃烧热和溶解热计算公式对于科学技术的发展来说是非常重要的一
个工具,它不仅可以准确地测量某物和物质之间反应的能量,还能成功地实现经济和节能的目标。
希望今后可以在更多的领域使用这种方法有效地增进科技进步。
第三节燃烧过程基本理论一、燃烧过程概述燃料的种类很多,由状态来分,有固体、液体及气体燃料三种。
它们的化学组成也各不相同,但从燃烧的角度来看,各种不同燃料均可归纳为两种基本组成;一种是可燃气体如H2、CO及C m H n等,另一种是固态炭。
例如:气体燃料的燃烧,亦即可燃气体的燃烧;液体燃料燃烧时,由于加热后气化形成气态烃类以后在高温缺氧时,有一部分烃类裂解生成固态炭粒及较小分子量的烃类或氢,因此液体燃料的燃烧,可以看作是可燃气体及固态炭的燃烧。
固体燃料在受热时,挥发分逸出,剩下的可燃物为固态炭,因此固体燃料的燃烧实质上也是可燃气体及固态炭的燃烧,所以研究燃料的燃烧过程,可以从分别研究两种基本燃料组成的燃烧过程着手。
燃烧,是指燃料中的可燃物与空气产生剧烈的氧化反应,产生大量的热量并伴随着有强烈的发光现象。
燃烧有两种类型,一种是普通的燃烧,亦即正常的燃烧现象,靠燃烧层的热气体传导传热给邻近的冷可燃气体混合物层而进行火焰的传播。
正常燃烧的火焰传播速度较小,仅每秒几米,燃烧时压力变化较小、一般可视为等压过程。
另一种是爆炸性燃烧,系靠压力波将冷的可燃气体混合物加热至着火温度以上而燃烧,火焰传播速度大,约为l000~4000米/秒。
通常是在高压、高温下进行。
一般窑炉中燃料的燃烧属于普通的(正常的)燃烧。
燃烧的条件除要有燃料及空气存在外,尚需达到燃烧所需的最低温度~着火温度。
二、可燃气体反应机理连锁反应:CO 、H 2、CH 4。
三、碳的燃烧机理碳的燃烧是两相(气-固相)反应的物理—化学过程。
氧气扩散至炭粒表面与它作用,生成CO 及CO 2气体再从表面扩散出来。
一部分学者认为氧气扩散至碳表面时,并不立即产生化学反应,而是被碳吸附生成结构不确定的吸附络合物C X O Y ,当温度升高时, 或在新的氧分子的冲击下可分解放出CO 及CO 2,其过程是:y x O C yO xC =+221}yx y x O C O O C 2+ 2nCO mCO +=生成的CO 与CO 2的比例(即m 、n 的数值)与温度有关。
燃烧热的计算燃烧热是指单位质量物质在完全燃烧过程中所释放的热量。
燃烧是一种氧化反应,常见的燃料有煤、油、天然气等。
燃烧热的计算对于能源利用和环境保护具有重要意义。
燃烧热的计算首先需要知道燃料的化学式和反应方程式。
以甲烷(CH4)为例,其完全燃烧的反应方程式可以表示为:CH4 + 2O2 -> CO2 + 2H2O在这个反应中,一个甲烷分子和两个氧气分子反应生成一个二氧化碳分子和两个水分子。
这个反应是放热反应,也就是燃烧反应。
燃烧热的计算可以通过两种方法进行:实验测定和热力学计算。
实验测定方法是将已知质量的燃料完全燃烧,测量燃烧过程中释放的热量,并除以燃料的质量得到单位质量的燃烧热。
这种方法相对准确,但需要实验设备和技术支持。
热力学计算方法是通过燃料的化学式和反应方程式,利用热力学数据计算燃烧热。
热力学数据包括燃料和产物的标准生成焓,可以通过参考书籍或数据库查询得到。
以甲烷为例,其燃烧热的计算公式为:燃烧热= ∑(产物的标准生成焓) - ∑(燃料的标准生成焓)其中,∑表示求和,燃料的标准生成焓为负值,产物的标准生成焓为正值。
通过代入相应数值进行计算,即可得到甲烷的燃烧热。
燃烧热的计算不仅可以用于燃料的能量利用,还可以用于环境保护。
例如,通过计算煤炭的燃烧热,可以评估煤炭的热值,从而确定其能源利用效率。
此外,燃烧热的计算还可以用于评估燃料的环境污染程度。
燃烧过程中产生的热量和产物的生成焓与燃料的化学性质密切相关,通过计算燃烧热可以评估燃料的热效应和环境影响。
燃烧热的计算是能源利用和环境保护领域的重要内容。
通过实验测定或热力学计算,可以准确评估燃料的燃烧热,从而指导燃料的能源利用和环境管理。
在能源资源日益紧缺和环境污染日益严重的背景下,燃烧热的计算对于推动可持续发展具有重要意义。
《硅酸盐工业热工基础》教学大纲二、课程目的和任务硅酸盐工业热工基础课程是一门理论性较强的专业学科基础课,通过热工基础的学习,要求学生掌握燃料与燃烧(其中包括固体燃料、气体燃料、液体燃料的燃烧计算及燃烧设备)、气体流动(主要是气体流动的基本原理及排烟系统的设计计算)和传热(其中包括三种基本的传热方式、换热器的设计计算等)及干燥等方面的基本概念、基本理论和计算,为分析窑炉设备的热工性能、为设计窑炉和研究新型窑炉打下理论基础。
三、本课程与其它课程的关系本课程是在高等数学、物理、物理化学、工程研究基础等课程的基础上,综合运用先修课程的基础知识,分析和解决硅酸盐工业生产中各种操作问题的工程学科,是基础课程向专业课程、理论到工程过渡的桥梁课程之一,并与水泥工艺学、水泥厂工艺设计概论、陶瓷工艺学、陶瓷厂工艺设计概论等课程共同构成一个完整的硅酸盐过程的知识体系,为粉体工程、水泥工业热工设备等课程的学习奠定坚实的基础。
四、教学内容、重点、教学进度、学时分配(一)绪论(1学时)了解本课程的性质、任务和内容,了解无机非金属材料工程学科的发展。
(二)气体力学及其在窑炉中的应用(9学时)1、主要内容气体力学基础;窑炉系统内的气体流动;烟囱。
2、重点窑炉系统内的气体流动规律和烟囱的设计计算。
3、教学要求了解窑炉系统的气体流动特点;理解气体流动的基本规律、气体流动和窑炉的操作和设计的关系;掌握窑炉系统内的气体流动规律和烟囱的设计。
(三)燃料与燃烧(10学时)1、主要内容燃料的分类和组成;燃料的热工性质及选用原则;燃烧计算;燃烧过程的基本理论;燃料的燃烧过程及燃烧设备。
2、重点燃烧计算及固体、气体燃料的燃烧过程。
3、教学要求了解各类燃料的热工特性;理解燃烧过程及燃烧设备的特点,合理地选用燃料燃烧设备及组织燃烧过程,达到高产、优质、低消耗的生产效果;掌握燃料燃烧计算的方法。
(四)传热(30学时)1、主要内容传导传热;对流换热;辐射换热;综合传热;不稳定导热。
硅酸盐工业热工基础作业答案2-1解:胸墙属于稳定无内热源的单层无限大平壁单值条件tw1=1300C tw2=300Cδ=450mm F=10 m2胸墙的平均温度Tav=(Tw1+TW2)/2=(1300+300)/2=800C 根据平均温度算出导热系数的平均值λav=0.92+0.7x0.001 x800=1。
48w/m.cQ=λF(Tw1-Tw2)/δ=1.48X10X(1300-300)/0.48=3.29X104W2-2解:窑墙属于稳定无内热源的多层平行无限大平壁由Q=t∆/R或q=t∆/Rt知,若要使通过胸墙的热量相同,要使单位导热面上的热阻相同才行单值条件δ1=40mm δ2=250mm λ1=0.13W/m.C λ2=0.39W/m.硅藻土与红砖共存时,单位导热面热阻(三层)Rt1=δ1/λ1+δ2/λ2+ δ3/λ3=0.04/0.13+0.25/0.39+δ3/λ3若仅有红砖(两层)Rt2=δ/λ2+δ3/λ3=δ/0.39+δ3/λ3Rt1=Rt2⇒0.04/0.13+0.25/0.39=δ/0.39得δ=370mm,即仅有红砖时厚度应为370mm。
2—3 解:窑顶属于稳定无内热源的单层圆筒壁单值条件δ=230mm R1=0.85m Tw1=700C Tw2=100C粘土砖的平均导热系数λav=0.835X0.58X103-X(Tw1+Tw2)/2=0.835+0.58X400X103-=1.067W/m.CR2=R1+δ=1.08m当L=1时,Q=2λ∏( Tw1-Tw2)/4Ln21d d=2X3.14X1.067X1X600/4Ln1.080.85=4200W/m因为R2/R1≤2,可近似把圆筒壁当作平壁处理,厚度δ=R2-R1,导热面积可以根据平均半径Rav=(R1+R2)/2求出。
做法与2-1同。
2-4解:本题属于稳定无内热源的多层圆筒壁单值条件λ1=50W/m。
C λ2=0.1 W/m。