材料力学-扭转-计算公式及例题
- 格式:xlsx
- 大小:126.23 KB
- 文档页数:50
扭转强度计算公式
扭转强度是指材料可以承受持续转变外力的能力,它也是衡量材料结构强度的一个重要指标。
由于它对于确定材料性能及其结构安全性起着重要作用,因此了解扭转强度和计算其值非常重要。
扭转强度的计算可以通过以下公式来实现:T=F * r / J,其中T为扭转强度,F为外力,r为外力的作用半径,J为扭转截面积矩,即材料主轴线上的横截面积。
通过上述公式可以看出,要计算扭转强度,必须先确定外力F和扭转截面积矩J的大小。
外力F是指作用在材料上的外力,可以通过实验来确定。
而扭转截面积矩J是指材料的横截面积,可以通过实验或理论计算来确定。
在实际应用中,扭转强度的计算还受到水平和垂直外力的影响,因此,在计算扭转强度时,必须考虑外力的方向和强度。
在计算扭转强度时还要考虑材料的尺寸、形状和结构,以及外力的作用点。
这些因素都会影响材料的扭转强度,因此,在计算扭转强度时,必须将这些因素考虑在内。
要计算材料扭转强度,必须先确定外力F和扭转截面积矩J,还要考虑材料尺寸、形状和结构以及外力方向和强度等因素。
通过恰当的计算,可以准确地测量出材料的扭转强度,从而为结构的安全性
提供可靠的参考。
材料力学基础公式一、轴向拉压。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(轴力等于截面一侧外力的代数和,拉力为正,压力为负)2. 应力 - 正应力(σ)- σ=(N)/(A)(A为横截面面积)3. 变形 - 轴向变形(Δ L)- 胡克定律:Δ L=(NL)/(EA)(L为杆件原长,E为弹性模量)- 线应变:varepsilon=(Δ L)/(L),且σ = Evarepsilon二、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(扭矩等于截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线为正)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p)(ρ为所求点到圆心的距离,I_p为极惯性矩)- 在圆轴表面:τ_max=(T)/(W_t)(W_t为抗扭截面系数)3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(G为剪切弹性模量)三、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:- 剪力V=∑ F_y(截面一侧y方向外力的代数和)- 弯矩M=∑ M_z(截面一侧对z轴外力矩的代数和)- 剪力图和弯矩图:- 集中力作用处,剪力图有突变(突变值等于集中力大小),弯矩图有折角。
- 集中力偶作用处,弯矩图有突变(突变值等于集中力偶大小),剪力图无变化。
2. 弯曲正应力(σ)- σ=(My)/(I_z)(y为所求点到中性轴的距离,I_z为截面对z轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z为抗弯截面系数)3. 弯曲切应力(τ)- 对于矩形截面:τ=(VQ)/(Ib)(Q为所求点以上(或以下)部分面积对中性轴的静矩,b为截面宽度)- 对于圆形截面:τ=(4V)/(3A)(A为圆形截面面积)四、梁的变形。
1. 挠曲线近似微分方程。
- EIfrac{d^2y}{dx^2} = M(x)(y为挠度,x为梁轴线坐标)2. 用叠加法求梁的变形。
扭转角度计算公式哎呀,说起扭转角度计算公式,这可真是个有点复杂但又超级有趣的话题。
我还记得有一次,在学校的实验室里,我们一群学生和老师一起研究一个机械模型的扭转角度问题。
那个模型看起来普普通通,但要准确算出它的扭转角度,可真不是一件容易的事儿。
咱们先来说说扭转角度的基本概念哈。
简单来讲,扭转角度就是一个物体在受到扭矩作用时发生扭转的程度。
比如说,一根轴在力的作用下转了一定的角度,这个角度就是扭转角度。
在实际应用中,扭转角度的计算常常涉及到材料的性质、轴的直径、扭矩的大小等等因素。
常见的计算公式里,会有像极惯性矩这样的概念。
这极惯性矩呢,就好比是物体抵抗扭转的一种“能力”指标。
就拿一个简单的例子来说吧,假如我们有一根实心的圆柱形轴,它的直径是 D,长度是 L,受到的扭矩是 T。
那么,根据材料力学的知识,它的扭转角度φ 就可以通过公式φ = TL / (GIP) 来计算。
这里的 G 是材料的剪切模量,IP 就是极惯性矩。
可别小看这个公式,计算的时候可得仔细喽。
有一次,我们班的一个同学,在计算的时候把直径的值给搞错了,结果算出来的扭转角度那叫一个离谱。
老师一看就笑了,说:“你这算的不是扭转角度,是要把这轴扭成麻花啦!”全班同学都哈哈大笑起来。
再来说说不同材料对扭转角度的影响。
有些材料比较硬,像钢铁,它能承受的扭矩大,扭转角度相对就小。
而像一些塑料或者橡胶材料,就比较软,稍微一用力,扭转角度就大得很。
在工程实践中,准确计算扭转角度那是至关重要的。
比如说汽车的传动轴,如果扭转角度计算不准确,那开起来可就麻烦啦,说不定还会出危险呢。
还有啊,在建筑领域,一些钢结构的构件也需要精确计算扭转角度,以确保整个结构的稳定性和安全性。
总之,扭转角度计算公式虽然有点复杂,但只要我们认真学习,多做练习,掌握其中的规律,就能轻松应对各种相关的问题。
就像我们在实验室里,虽然一开始会犯错,但通过不断地尝试和学习,最终还是能得出准确的结果。
第三章扭转目录第三章扭转 3§3-1 扭转的概念 3一、定义 3二、基本概念 3三、实例 3§3-2 外力偶矩计算、扭矩和扭矩图 3一、外力偶矩计算 3二、扭矩和扭矩图 3§3-3 纯剪切 5一、薄壁圆筒扭转时的剪应力 5二、剪应力互等定理 5三、剪应变、剪切胡克定律 6§3-4 圆轴扭转时的应力 6一、圆轴扭转时的应力计算公式 6二、极惯性矩计算 7三、圆轴扭转强度条件 7§3-5 圆周扭转时的变形 9一、相邻截面扭转角计算公式 9第三章扭转§3-1 扭转的概念一、定义在杆两端作用两大小相等、方向相反、且作用面垂直于杆件轴线的力偶,使杆的任意两个截面发生绕轴的相对转动。
杆件的这种变形形式称为扭转。
二、基本概念轴:工程中一般将发生扭转变形的直杆称为轴扭转角:扭转时杆的任意两个横截面的相对角位移三、实例搅拌机轴、汽车传动轴等1、螺丝刀杆工作时受扭2、汽车方向盘的转动轴工作时受扭3、机器中的传动轴工作时受扭。
§3-2 外力偶矩计算、扭矩和扭矩图一、外力偶矩计算在工程实际中,作用于轴上的外力偶矩往往上未知的,已知的往往是轴的转速以及轴上各轮所传送的功率。
以下图所示的齿轮轴简图为例,主动轮B的输入功率经轴的传递,由从动轮A、C输出给其它构件。
1. 外力偶矩与功率、角速度关系2. 外力偶矩与功率、转速关系(1马力=735.5N?m/s)二、扭转杆件的内力——扭矩和扭矩图1、扭转杆件的内力(截面法)由平衡方程,,称为截面m-m上的扭矩。
按右手螺旋法则把表示为矢量,当矢量方向与截面的外法线的方向一致时,为正;反之,为负。
2、扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为负值。
以横轴表示横截面的位置,纵轴表示相应截面上的扭矩,绘成的图形称为扭矩图。
扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。
2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。
4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。
扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D 重量比21W W 9. 10. 矩形截面杆扭转变形的主要特征是 。
1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。
证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。
12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 式为:证:几何方面 d d xρϕγρ=物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。