各厂家空调末端技术比较
- 格式:ppt
- 大小:15.67 MB
- 文档页数:28
大温差空调系统与常规空调系统的对比分析及个人见解经过对生产厂家的技术咨询、网上论文、实际案列的分析对大温差空调系统总结如下:
1、大温差空调系统末端应配置大温差空调末端(除特灵外的厂商大多如此建议);
2、大温差空调主机比常温空调主机造价约贵8%~10%,大温差空调末端比常规空调末端造价约贵30%;以本项目为例:空调总造价约为1900万,空调主机约增加48万,末端增加45万,总共增加约93万;
3、大温差系统主机能耗较常温主机增加约10%,水泵节能约25%,末端能耗增加约30%,冷却塔能耗减少20%;则:整体能耗增加约8%,本项目总能耗电增加110度/h,年运行费用增加约26.4万,设备寿命30年,约增加电费792万;
4、大温差系统空调流量变小,水泵流量变小,扬程增加(除特灵),冷却塔减少,空调水管管径变小(DN40以下的管维持不变),水管及设备的保温厚度增加,则:水泵初投资减少10%(5万),冷却塔初投资减少20%(10万),水管初投资减少15%(30万),保温初投资增加30%(9万),安装部分初投资减少36万。
本项目初投资及运行费用分析对比表
综上所述:
1、初投资增加57万,年运行费用增加26.4万(除特灵外,其他品牌配备的水泵能耗均会增加,年运行费用将增加);
2、大温差空调系统在国内的运用项目不多;
3、建议采用比较成熟的常温空调系统。
空调末端(风机盘管)的计算与选择(1)根据风量:房间吊顶后的体积×房间气体循环次数=房间面积×层高(吊顶后)×房间气体循环次数=房间的循环风量。
其对应的风机盘管高速风量,即可确定风机盘管型号。
(2)根据冷负荷:单位面积冷负荷指标×房间面积=房间所需的冷负荷值。
利用房间冷负荷对应风机盘管的中速风量时的制冷量即可确定风机盘管型号。
一般采用第二种方法——根据冷负荷选择风机盘管,在特殊场合如对噪音要求较高的场所,可用第一种方法进行校核。
确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。
房间面积较大时应考虑使用多个风机盘管;房间单位面积负荷较大,对噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。
注意:对于风盘风管超过一定长度的风盘,应采用中、高静压的风盘,且出风管道上不宜多于两个出风口。
(3)风机盘管的选择风机盘管分类按形式:卧式暗装、卧式明装、立式暗装、立式明装、卡式五种按厚度:超薄型、普通型按有无冷凝水泵:普通型、豪华型按机组静压:0Pa、12Pa、30Pa、50Pa、80Pa (机外静压)按排管数量:两排管、三排管按制式:两管制、四管制确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。
房间面积较大时应考虑使用多个风机盘管,房间单位面积负荷较大,对噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。
考虑所接风管的沿程阻力、出风口的阻力、软接的阻力,低静压(12pa)直接接风口或接不超过1米的风管,中静压的风盘(30pa)接不超过四米的风管,高静压(50pa)的风盘接不超过七米的风管。
酒店空调末端技术规格表一.计算参数湿球温度(℃)26.6夏季(室外)干球温度(℃)34.7干球温度(℃)-12冬季(室外)相对湿度(℃)60供水温度(℃) 5冷冻水回水温度(℃)12供水温度(℃)60空调热水回水温度(℃)45采用干蒸气加湿,蒸汽参数:表压0.20MPa,饱和蒸汽。
二.风机盘管技术规格表序号设备编号数量风量(m3/h)制冷量(KW)高速冷量中速冷量噪声dB(A)工作压力(MPa)备注(台) 制热量(KW)电功率(W)全热(kW)显热(kW)全热(kW)显热(kW)104CD-AS20456 2.412.1 5130 1.6 一、二层房间、走廊206CD-AS34684 3.963.22 7538 1.6一、二层房间、走廊308CD-AS35941 5.574.74 11439.5 1.6一、二层房间、走廊412CD-AS121425 7.225.61 15041.5 1.6一、二层房间、走廊504CD-AS13456 2.412.1 5133 1.6 三、四层房间、走廊606CD-AS54684 3.963.22 75381.6 三、四层房间、走廊7 08CD-AS67941 5.574.74 11439.51.6 三、四层房间、走廊8 12CD-AS231425 7.225.61 15041.51.6 三、四层房间、走廊9 04-AS(四管制)3456 2.412.1 51331.6地下室房间、走廊10 06-AS(四管制)15684 3.963.22 75381.6 地下室房间、走廊11 08-AS(四管制)51941 5.574.74 11439.51.6 地下室房间、走廊12 12-AS(四管制)21425 7.225.61 15041.51.6 地下室房间、走廊13 07-AS(四管制)25798 4.313.82 99401.6 地下室房间、走廊14 FCU-1 108 500 2.75 2.20 58 1.6 酒店主楼15 FCU-2 173 670 3.39 2.67 71 1.6 酒店主楼16 FCU-3 485 1010 5.07 4.00 108 1.6 酒店主楼17 FCU-4 26 1350 7.10 5.65 150 1.6 酒店主楼18 FCU-5 28 1680 7.19 5.87 5.65 1.6 酒店主楼说明:1、风机盘管类型:卧式暗装,3+1盘管,带后回风箱。
大温差空调末端系统(一)2.2 空调水大温差系统在空调系统的运行中,目前水系统的输配用电量一般占系统总耗电量的15%~20%。
而且按名义工况设计的空调系统,在实际运行中,大多是采用定流量系统,全年大部分时间处于非设计工况运行,且运行时间内冷水温差很小,有时仅为0.5~1.0℃,在小温差大流量情况下工作,造成冷水泵能量的大量损耗[7]。
采用冷水大温差运行,因其冷水特性为小流量大温差,可降低冷水泵输送能耗,容易满足部分负荷运行的特性,实现系统节能运行。
2.2.1 冷水大温差设计的特点大温差冷水系统可以节约系统的循环水量,相应减少水泵的扬程及运行费用,减少管道的尺寸,节约系统的初投资。
冷却水大温差设计时,可以减少冷却塔尺寸,节约冷却塔的占地面积,减少水泵的流量和水管的尺寸,当冷却水温度比常规水温高2℃时,可减少运行费用3%—7%,节省一次投资10%—20%[8]。
2.2.2 大温差水系统的运行分析与风机的性能分析相似,用水泵的相似理论进行分析,当冷水供回水温差增大一倍时,冷却水泵的运行能耗减少68.5%。
国内已有这方面的文献,这说明采用冷水大温差运行的经济效益是非常明显的。
但这种分析方法只对水泵的能耗进行分析,而没有考虑管道系统的阻力变化对系统能耗的影响,是片面的,在实际的工程设计中,管内水速一般采用1~2m/s(国际上允许的管内流速比国内高得多)。
因此,流速不变时,由于管径减少,单位管长的磨擦阻力增加,实际运行时不能达到68.5%的节能效果。
与常规空调设计相比,在相同冷负荷的情况下,冷冻水大温差时的冷水量较常规温差时小,冷冻水泵和冷冻水管道的型号规格相应地需要减小,当系统内水管布置、水量分配和水流速不变时,系统的局部阻力变化很小。
当水管布置、水量分配和管内水速相等时,管内局部阻力基本不变,供回水温差增加一倍,即水量减少一半,水管直径D2=0.707D1,水管摩擦阻力增加了50%,而水泵电机功率降为原来的75%。
风冷水系统VS多联机氟系统风冷模块式冷热水机组一一水系统VS VRVII系统多联机机组一一氟系统一、系统介绍二、初投资三、设计灵活性四、环保五、安装六、维修七、压缩机寿命八、泄漏问题九、运行费用十、舒适度1、水系统此类系统由室外主机和室内末端装置组成,通过室外主机提供空调冷/热水,由水管系统输送到室内末端装置,水与空气在室内末端处进行热交换来消除房间冷/热负荷。
是一种集中产生冷/热量,但分散处理各房间负荷的空调系统型式。
2、氟系统:制冷剂系统以制冷剂为输送介质,采用变制冷剂流量技术,室外主机由室外侧换热器、压缩机和其他制冷附件组成,室内机由直接蒸发式换热器和风机组成。
一台室外机通过管路能够向若干个室内机输送制冷剂液体。
通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求。
:、初投资所以室外机冷量一般可小于室内机总冷量水系统初投资较低三、设计灵活性四、环保五、安装六、维修风冷模块式冷热水机组低压水系统,管路压力不超过5公斤,不易泄漏,一般不需维修系统管路。
机组全部使用通用零件,永远可以在市场上购买到维修所需的零配件。
未来发生系统增容时,由于末端的通用性,没有任何后顾之忧室外机冷媒系统一般不需定期维护;水系统定频压缩机的维修和更换费用较低,制冷回路及控制简单清晰,维修方便。
多联机高压冷媒管路系统(夏季运行时压力可达20公斤,不运行时也有约10公斤),易泄漏在安装维修工程中,需要使用大量的指定的配件。
不同品牌的系统配件不能相互匹配,即使是同一品牌的产品,不同时期的产品也不能相互通用;氟系统需专人定期维护,并需定期补充制冷剂以保证制冷效果;多联机系统压缩机的维修和更换费用较高,制冷回路及控制复杂,维修复杂。
在维修方面,水系统优于多联机氟系统七、压缩机寿命八、泄漏问题九、运行费用风冷模块式冷热水机组室内机可单独控制的系统在部分负荷时,压缩机通过启停控制,利用水系统的蓄冷/热作用来避免不必要的能耗;风冷模块式冷热水机组采用模块化设计,每个模块可以根据末端使用负荷大小,通过微电脑控制进行分级启动、卸载。
VRV、VAV、VWV、KRV概念与区别KRV:新风换气机,全热交换器。
VAV:变风量空调系统,是末端。
VWV:变水量(冷冻水)空调系统。
MRV:全变多联中央空调,实现上也是变制冷剂流量系统(还有些厂商取名MDV、GMV等等)VRV:变制冷剂流量系统空调,VRV技术是大金为代表,所以这个名字被大金注册掉了。
而现在我们身为制冷暖通人,需要注意平时针对变制冷剂流量系统的英文缩写,即VRF。
1、VRV名词解释VRV系统为变冷媒流量多联系统,即控制冷媒流通量并通过冷媒的直接蒸发或直接凝缩来实现制冷或制热的空调系统。
VRV是大金公司80年代发明了变制冷剂流量系统,由于VRV系统只是输送制冷剂到每个房间的分机,所以不需要设计独立的风道(新风系统另外安排风道),做到了设备的小型化和安静化。
系统结构上类似于分体式空调机组,采用一台室外机对应一组室内机(一般可达16台)。
控制技术上采用变频控制方式,按室内机开启的数量控制室外机内的涡旋式压缩机转速,进行制冷剂流量的控制。
VRV空调系统与全空气系统,全水系统、空气—水系统相比,更能满足用户个性化的使用要求,设备占用的建筑空间比较小,而且更节能。
VRV空调系统的设计包含两个部分:1)空调设备选型及空调管路设计;2)空调系统控制设计。
2、VAV名词解释VAV变风量空调系统,与定风量空调系统一样,变风量空调系统也是全空气系统的一种空调方式,它是通过改变送风量,而不是送风温度来控制和调节某一空调区域的温度,从而与空调区负荷的变化相适应。
其工作原理是当空调区负荷发生变化时,系统末端装置自动调节送入房间的送风量,确保室内温度保持在设计范围内,从而使得空气处理机组在低负荷时的送风量下降,空气处理机组的送风机转速也随之而降低,达到节能的目的。
变风量系统通常由空气处理设备、送(回)风系统、末端装置(变风量箱)及送风口和自动控制仪表等组成。
一般在下列系统宜采用VAV系统:1)同一个空气调节风系统中,各空调区的冷热、负荷差异和变化大、低负荷运行时间较长,且需要分别控制个空调区温度。