2019年中考数学选择填空压轴题 专题10 选择填空方法综述
- 格式:doc
- 大小:542.20 KB
- 文档页数:19
2019年中考数学选择题和填空题的解法技巧选择题解题技巧:1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
填空题解题技巧:中考数学填空题与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。
但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。
近几年全国20多个省市中考试题,发现它与选择题一样,都是分量不轻的常见题型。
考查内容多是“双基”方面,知识复盖面广。
但在考查同样内容时,难度一般比选择题略大。
中考填空题主要题型:一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
初中数学选择题、填空题、压轴题解题技巧!含例题分析01选择题解题技巧▼ 方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
▼方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
▼方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
▼方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元▼方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
▼方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
▼方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
▼方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
▼方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.同类题型1.1 如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=13,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD-DC-CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A.B.C.D.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264同类题型2.1 如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.同类题型2.2 如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29同类题型2.3例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH =3,则S△ADF=()A.6 B.4 C.3 D.2同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).同类题型3.2 如图,在矩形ABCD中,AB=2,AD=2 2 ,点E是CD的中点,连接AE,将△ADE 沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1 B.22C.23D.23同类题型3.3如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2 5 -2;④当线段DG最小时,△BCG的面积S=8+855 .其中正确的命题有____________.(填序号)同类题型4.1 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= 2 ;③DF=DC;④CF=2AF,正确的是()A.①②③B.②③④C.①③④D.①②④同类题型4.2 点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分成面积为S1、S2的两部分,将△CDF分成面积为S3、S4的两部分(如图),下列四个等式:①S1:S3=1:n②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)其中成立的有()A.①②④B.②③C.②③④D.③④同类题型4.3 如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D 重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF= 2 DP;④DP﹒DE=DH﹒DC,其中一定正确的是()A.①②B.②③C.①④D.③④例5.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 2 ,∠AOB=∠OBA=45°,则k的值为______________.同类题型5.1 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.专题10 选择填空方法综述例1.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y =110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是___________.解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S△BPQ =12BC﹒AB=40cm2,∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE =12AB﹒AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y =110-5t,故③正确;△ABP为等腰三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ 与△ABE 相似时,只有;△BPQ ∽△BEA 这种情况,此时点Q 与点C 重合,即PC BC =AE AB =34 ,∴PC =7.5,即t =14.5. 故⑤正确.综上所述,正确的结论的序号是①③⑤.同类题型1.1 如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sinA =sinB = 13 ,动点P 自A点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .解:过点Q 做QM ⊥AB 于点M . 当点Q 在线段AD 上时,如图1所示,∵AP =AQ =t (0≤t ≤5),sinA =13,∴QM =13t ,∴s =12AP ﹒QM =16t 2;当点Q 在线段CD 上时,如图2所示,∵AP =t (5≤t ≤8),QM =AD ﹒sinA =53 ,∴s =12AP ﹒QM =56t ;当点Q 在线段CB 上时,如图3所示,∵AP =t (8≤t ≤2023 +3(利用解直角三角形求出AB =2023 +3),BQ =5+3+5-t =13-t ,sinB =13,∴QM =13(13-t ),∴s =12AP ﹒QM =-16(t 2-13t ),∴s =-16(t 2 -13t )的对称轴为直线x =132 .∵t <13, ∴s >0.综上观察函数图象可知B选项中的图象符合题意.选B.同类题型1.2 如图1.在四边形ABCD中,AB∥CD,AB⊥BC,动点P从点B出发,沿B→C→D→A 的方向运动,到达点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为____________.解:根据题意,当P在BC上时,三角形面积增大,结合图2可得,BC=4;当P在CD上时,三角形面积不变,结合图2可得,CD=3;当P在DA上时,三角形面积变小,结合图2可得,DA=5;过D作DE⊥AB于E,∵AB∥CD,AB⊥BC,∴四边形DEBC是矩形,∴EB=CD=3,DE=BC=4,AE=AD2-DE2=52-42=3,∴AB=AE+EB=3+3=6.同类题型1.3 如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为⌒BD ,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),选D.同类题型1.4例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264解:如图,连接DP ,BD ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,B 、D 关于AC 对称,∴PB +PM =PD +PM ,∴当D 、P 、M 共线时,P ′B +P ′M =DM 的值最小,∵CM =13BC =2, ∵∠ABC =120°,∴∠DBC =∠ABD =60°,∴△DBC 是等边三角形,∵BC =6,∴CM =2,HM =1,DH =3 3 ,在Rt △DMH 中,DM =DH 2+HM 2=(33)2+12=27 , ∵CM ∥AD ,∴P ′M DP ′=CM AD =26=13 ,∴P ′M =14DM =72. 选A .同类题型2.1 如图,已知菱形OABC 的边OA 在x 轴上,点B 的坐标为(8,4),点P 是对角线OB 上的一个动点,点D (0,2)在y 轴上,当CP +DP 最短时,点P 的坐标为____________.解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .在Rt △OBK 中,OB =BK 2+OK 2=82+42=4 5 ,∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG =2 5 ,设OA =AB =x ,在Rt △ABK 中,∵AB 2=AK 2+BK 2 ,∴x 2=(8-x )2+42 ,∴x =5,∴A (5,0),∵A 、C 关于直线OB 对称,∴PC +PD =PA +PD =DA ,∴此时PC +PD 最短,∵直线OB 解析式为y =12 x ,直线AD 解析式为y =-25x +2, 由⎩⎪⎨⎪⎧y =12x y =-25x +2 解得⎩⎪⎨⎪⎧x =209y =109, ∴点P 坐标(209 ,109).同类题型2.2 如图,在平面直角坐标系中,反比例函数y = k x(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )A .6 2B .10C .2 26D .2 29解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,k 6 ),N (k 6,6), ∴BN =6-k 6 ,BM =6-k 6,∵△OMN 的面积为10,∴6×6-12×6×k 6-12×6×k 6-12×(6-k 6)2 =10, ∴k =24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4,∴BM ′=10,BN =2,∴NM ′=BM ′2+BN 2=102+22=226 ,选C .同类题型2.3例3.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°.∵△AEF 等边三角形,∴AE =EF =AF ,∠EAF =60°.∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF AB =AD, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF ,∴△CEF 是等腰直角三角形,∵AE =AF ,∴AC 垂直平分EF ,∴EG =GF ,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S△EGH=3,∴S△EFC=12,∴CF=2 6 ,EF=4 3 ,∴AF=4 3 ,设AD=x,则DF=x-2 6 ,∵AF2=AD2+DF2,∴(43)2=x2+(x-26)2,∴x=6+3 2 ,∴AD=6+3 2 ,DF=32- 6 ,∴S△ADF =12AD﹒DF=6.选A.同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).解:如图,连接BD ,在等腰Rt △ABC 中,点D 是AC 的中点,∴BD ⊥AC ,∴BD =AD =CD ,∠DBC =∠A =45°,∠ADB =90°,∵∠EDF =90°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠DBFAD =BD ∠ADE =∠BDF, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,DE =DF ,在Rt △DEF 中,DF =DE =m .∴EF =2DE = 2 m ,∴△BEF 的周长为BE +BF +EF =BE +AE +EF =AB +EF =2+ 2 m .同类题型3.2 如图,在矩形ABCD 中,AB =2,AD =2 2 ,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是( )A .1B .22C .23D .23解:过点E 作EM ⊥CF 于点M ,如图所示.在Rt △ADE 中,AD =2 2 ,DE =12AB =1, ∴AE =AD 2+DE 2 =3.根据折叠的性质可知:ED =EF ,∠AED =∠AEF .∵点E 是CD 的中点,∴CE =DE =FE ,∴∠FEM =∠CEM ,CM =FM .∵∠DEA +∠AEF +∠FEM +∠MEC =180°,∴∠AEF +∠FEM =12×180°=90°. 又∵∠EAF +∠AEF =90°,∴∠EAF =∠FEM .∵∠AFE =∠EMF =90°,∴△AFE ∽△EMF ,∴MF FE =FE EA ,即MF 1=13 , ∴MF =13 ,CF =2MF =23. 选C .同类题型3.3如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =__________.解:∵四边形ABCD 是矩形,∴BC =AD =1,∠BAF =∠ABC =90°,∴∠ABE +∠CBF =90°,∵BE ⊥AC ,∴∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ABE =∠FCB ,在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°AB =CF ∠ABE =∠FCB, ∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1,∵BE ⊥AC ,∴∠BAF +∠ABF =90°,∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB ,∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB ,∴ABAE=1AB,∴AE=AB2,在Rt△ABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=5-12.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.解:如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt △ADM 中,DM =AD 2+AM 2=22+12= 5 ,∵AM ∥CD ,∴AM DC =MP PD =12 , ∴DP =253 ,∵PF =56, ∴DF =DP -PF =52 , ∵∠EDF =∠PDC ,∠DFE =∠DCP ,∴△DEF ∽△DPC ,∴DF DC =DE DP, ∴522=DE253 , ∴DE =56, ∴CE =CD -DE =2-56=76.例4.如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG 的最小值为2 5 -2;④当线段DG 最小时,△BCG 的面积S =8+85 5 .其中正确的命题有____________.(填序号)解:∵点E 、F 分别同时从A 、D 出发以相同的速度运动,∴AE =DF ,∵四边形ABCD 是正方形,∴AB =DA ,∠BAE =∠D =90°,在△BAE 和△ADF 中,⎩⎪⎨⎪⎧AE =DE∠BAE =∠ADF =90°AB =AD, ∴△BAE ≌△ADF (SAS ),∴∠ABE =∠DAF ,∵∠DAF +∠BAG =90°,∴∠ABE +∠BAG =90°,即∠AGB =90°,∴AF ⊥BE .故①正确;∵∠AGB =90°,∴点G 的运动路径是以AB 为直径的圆所在的圆弧的一部分,由运动知,点E 运动到点D 时停止,同时点F 运动到点C ,∴点G 的运动路径是以AB 为直径的圆所在的圆弧所对的圆心角为90°,∴长度为90π×2180=π,故命题②正确;如图,设AB 的中点为点P ,连接PD ,∵点G 是以点P 为圆心AB 为直径的圆弧上一点,∴当点G 在PD 上时,DG 有最小值,在Rt △ADP 中,AP =12AB =2,AD =4,根据勾股定理得,PD =2 5 , ∴DG 的最小值为2gh(5) -2,故③正确;过点G 作BC 的垂线与AD 相交于点M ,与BC 相交于N ,∴GM ∥PA ,∴△DMG ∽△DAP ,∴GM AP =DG DP , ∴GM =10-255, ∴△BCG 的高GN =4-GM =10+255, ∴S △BCG =12×4×10+255=4+455,故④错误, ∴正确的有①②③.同类题型4.1 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连结DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD =2 ;③DF =DC ;④CF =2AF ,正确的是( ) A .①②③ B .②③④ C .①③④ D .①②④解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F , ∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确; ∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF CF , ∵AE =12AD =12BC , ∴AF CF =12, ∴CF =2AF ,故④正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有b a =2a b,即b = 2 a , ∴tan ∠CAD =DC AD =b 2a =22.故②不正确; 正确的有①③④,选C .同类题型4.2 点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE =DF ,点P 在边AB 上,AP :PB =1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1 、S 2的两部分,将△CDF 分成面积为S 3 、S 4的两部分(如图),下列四个等式: ①S 1 :S 3=1:n ②S 1 :S 4=1:(2n +1) ③(S 1+S 4 ):(S 2+S 3)=1:n④(S 3-S 1 ):(S 2-S 4)=n :(n +1) 其中成立的有( )A .①②④B .②③C .②③④D .③④解:由题意∵AP :PB =1:n (n >1),AD ∥l ∥BC , ∴S 1S 1+S 2=(1n +1)2 ,S 3=n 2S 1,S 3S 3+S 4=(n n +1)2, 整理得:S 2=n (n +2)S 1 ,S 4=(2n +1)S 1, ∴S 1 :S 4=1:(2n +1),故①错误,②正确, ∴(S 1+S 4 ):(S 2+S 3)=[S 1+(2n +1)S 1]:[n (n +2)S 1+n 2S 1]=1:n ,故③正确, ∴(S 3-S 1 ):(S 2-S 4)=[n 2S 1-S 1]:[n (n +2)S 1-(2n +1)S 1]=1:1,故④错误, 选B .同类题型4.3 如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF =2 DP ;④DP ﹒DE =DH ﹒DC ,其中一定正确的是( )A .①②B .②③C .①④D .③④解:∵∠GPF =∠HPD =90°,∠ADC =90°,∴∠GPH =∠FPD ,∵DE 平分∠ADC ,∴∠PDF =∠ADP =45°,∴△HPD 为等腰直角三角形,∴∠DHP =∠PDF =45°,在△HPG 和△DPF 中,∵⎩⎪⎨⎪⎧∠PHG =∠PDFPH =PD ∠GPH =∠FPD, ∴△HPG ≌△DPF (ASA ),∴PG =PF ;∵△HPD 为等腰直角三角形,∴HD = 2 DP ,HG =DF ,∴HD =HG +DG =DF +DG ,∴DG +DF = 2 DP ;故③正确,∵DP ﹒DE =22 DH ﹒DE ,DC =22 DE , ∴DP ﹒DE =DH ﹒DC ,故④正确,由此即可判断选项D 正确,选D .例5.如图,在平面直角坐标系中,经过点A 的双曲线y = k x(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为 2 ,∠AOB =∠OBA =45°,则k 的值为______________.解:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD =MN ,DN =OM ,∠AMO =∠BNA =90°,∴∠AOM +∠OAM =90°,∵∠AOB =∠OBA =45°,∴OA =BA ,∠OAB =90°,∴∠OAM +∠BAN =90°,∴∠AOM =∠BAN ,在△AOM 和△BAN 中,⎩⎪⎨⎪⎧∠AOM =∠BAN∠AMO =∠BNA OA =BA, ∴△AOM ≌△BAN (AAS ),∴AM =BN = 2 ,OM =AN =k 2 , ∴OD =k2+ 2 ,BD =k 2- 2 , ∴B (k2+ 2 ,k2- 2 ),∴双曲线y =k x(x >0)同时经过点A 和B , ∴(k2+2)﹒(k 2- 2 )=k , 整理得:k 2-2k -4=0,解得:k =1± 5 (负值舍去),∴k =1+ 5 .同类题型5.1 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x和y = 9x 在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是________.解:∵点B 是y =kx 和y =9x 的交点,y =kx =9x,解得:x =3k ,y =3k ,∴点B 坐标为(3k,3gh(k) ), 点A 是y =kx 和y =1x 的交点,y =kx =1x, 解得:x =1k ,y =k ,∴点A 坐标为(1k,k ), ∵BD ⊥x 轴,∴点C 横坐标为3k ,纵坐标为13k =k 3, ∴点C 坐标为(3k ,k 3 ), ∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则(3k -1k )2+(3k -k)2=3k -k 3 , 解得:k =377; ②AC =BC ,则(3k -1k )2+(k -k 3)2=3k -k 3 , 解得:k =155; 故k =377 或155.。
中考数学填空题答题选用的几大法2019年中考数学填空题答题选用的几大法1、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
2、特殊化法3、数形结合法数缺形时少直观,形缺数时难入微。
数学中大量数的问题后面都隐含着形的信息,图形的特征上也表达着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到数促形的目的。
对于一些含有几何背景的填空题,假设能数中思形,以形助数,那么往往可以简捷地解决问题,得出正确的结果。
4、等价转化法要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
通过化复杂为简单、化陌生为熟悉,将问题等价地转化成便于解决的问题,从而得出正确的结果。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。
因此,不填、多填、填错、仅部分填对,严格来说,都计零分。
中考数学选择填空题解题技巧中考数学选择填空题解题技巧1. 理解题目•仔细阅读题目,确保理解清楚题目要求和条件。
•理解好问题,才能更好地解决问题。
2. 分析选项•逐个分析各个选项,排除明显错误的选项。
•利用已知条件逐个验证选项的准确性。
3. 利用计算技巧•对于数值计算题,可以利用心算或近似计算的方法快速估算结果。
•利用计算技巧迅速缩小选项范围,减少选择的可能性。
4. 利用题目结构特点•部分题目的选项有规律性或对称性,可以利用这些特点快速排除选项。
•经常遇到的题型有等式填空、图形填空等,掌握常见的解题思路和方法。
5. 借助辅助工具•对于几何题,可以使用尺规作图工具进行辅助构造,有助于更好地理解和解决问题。
•对于代数运算题,可以借助计算器进行计算,避免出错。
6. 多做练习题•多做选择填空题的练习题,熟悉各种解题思路和技巧,提高解题速度和准确性。
•掌握常见的解题思路和方法,遇到类似的题目更容易应对。
7. 注意细节和特殊条件•注意题目中的细节和特殊条件,这些条件可能会干扰解题过程。
•仔细审题,留意题目陈述的限制和条件。
8. 自信心•拥有自信心,相信自己的解题能力。
•相信自己的答案无论对错都有一定的道理和解释。
以上是中考数学选择填空题解题的一些技巧和方法,在解题过程中,通过理解题目、分析选项、利用计算技巧、题目结构特点、辅助工具等多种方式,有助于提高解题的准确性和速度。
祝愿大家在中考数学选择填空题中取得好成绩!9. 确定答案前再检查一遍•在确定最终答案前,再次检查已经做出来的选择,并仔细分析每个选项的准确性。
•可以逐个选项与已有的知识和条件进行对比,排除错误选项。
10. 掌握解题技巧的秘诀•多总结和整理解题过程中的技巧和方法,形成自己的解题秘诀。
•对于常见的题型,掌握解题模板,有助于提高解题效率。
11. 养成解题的良好习惯•解题前,先理清思路,拆解题目,并制定解题计划。
•在解题过程中,要有条理地进行思考和操作,避免困惑和混乱。
2019年中考数学填空题解题技巧
攻略一:概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。
所以,要把已经学过的四本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提升,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中注重思路、方法、技巧,要“苦做”更要“巧做”。
中考试中时间最宝贵,掌握了好的思路、方法、技巧,不但解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。
在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。
特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
攻略四:记录错题,避免再犯。
俗话说,“一朝被蛇咬,十年怕井绳”,不过同学们常会一次又一次地掉入相似甚至相同的"陷阱"里。
所以,我建议大家在平时的做题中就要即时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。
毕竟,中考当中是“分分必争”,一分也失不得。
攻略五:集中兵力,攻下弱点。
每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。
所以一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。
中考数学填空压轴题解题方法和题型总结【题型一】:“翻折图形”④ 根据“勾股定理”或“比例式”列出方程,然后解之.【典型例题】 (直角三角形:勾股定理)如图,ABCD 为正方形,E 是BC 边上一点,将正方形折叠,使A 点与E 点重合,折痕为MN .如果1tan 3AEN ∠=,10DC CE +=,那么ANE ∆的面积为 .NME DC BA【典型例题】 (直角三角形:勾股定理)讨论如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,4cot 3B =,点P 为边AB 上一点,将BPC ∆沿着PC 翻折得到△B PC ',B C '与边AB 的交于点D ,如果△B PD '恰好为直角三角形,那么BP = .【典型例题】 (相似三角形:比例式)如图,已知在ABC ∆中,AB AC =,1tan 3B ∠=,将ABC ∆翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BD DC的值为 . ABC【题型二】:“旋转图形”③ 寻找图中相似三角形、直角三角形、三角比;④ 设关键的边为x ,然后表示出相似三角形的各边,列出比例式.【典型例题】 (相似三角形)如图,在ABC ∆中,90ACB ∠=︒,sin 35B =,将ABC ∆绕顶点C 顺时针旋转,得到△11A B C ,点A 、B 分别与点1A 、1B 对应,边11A B 分别交边AB 、BC 于点D 、E ,如果点E是边11A B 的中点,那么1BD B C= . AC B【典型例题】 (勾股定理)如图,在Rt ABC ∆中,90ACB ∠=︒,6AB =,2cos 3B =,先将ACB ∆绕着顶点C 顺时针旋转90︒,然后再将旋转后的三角形进行放大或缩小得到△A CB ''(点A '、C 、B '的对应点分别是点A 、C 、)B ,连接A A '、B B ',如果△AA B '和△AA B ''相似,那么A C '的长是 .【典型例题】 (三角比)如图,已知ABC ∆中,AB AC =,tan 2B =,AD BC ⊥于点D ,G 是ABC ∆的重心, 将ABC ∆绕着重心G 旋转,得到△111A B C ,并且点1B 在直线AD 上,联结1CC ,那么11tan CC B 的值等于 .B 1A 1E DC B AABC。
中考数学填空题答题技巧2019年中考数学填空题答题技巧1、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
2、特殊化法3、数形结合法数缺形时少直观,形缺数时难入微。
数学中大量数的问题后面都隐含着形的信息,图形的特征上也表达着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到数促形的目的。
对于一些含有几何背景的填空题,假设能数中思形,以形助数,那么往往可以简捷地解决问题,得出正确的结果。
4、等价转化法通过化复杂为简单、化陌生为熟悉,将问题等价地转化成便于解决的问题,从而得出正确的结果。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,〝死记硬背〞与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。
因此,不填、多填、填错、仅部分填对,严格来说,都计零分。
虽然近二年各省市中考填空题,难度都不大,但得分率却不理想,因此,打好基础,强化训练,提高解题能力,才能既准又快解题。
另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。
5单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
初中数学选择题、填空题、压轴题解题技巧!含例题分析01选择题解题技巧▼ 方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
▼方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
▼方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
▼方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元▼方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
▼方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
▼方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
▼方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
▼方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
选择、填空压轴题常考重难点知识及解题技巧一、规律型:数字的变化类、点的坐标探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.二、坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.三、动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.四、一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.五、反比例函数系数k的几何意义比例系数k的几何意义在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.六、反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.七、反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.八、二次函数图象与系数的关系、二次函数图象上点的坐标特征、二次函数的最值、抛物线与x轴的交点二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=..④确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.九、二次函数与不等式(组)二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.十、线段垂直平分线的性质三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.十一、圆周角定理(1)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(2)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.十二、扇形面积的计算(1)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(2)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(3)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.十三、面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.十四、轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.十五、翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.十六、坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.十七、相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.2019年中考选择题、填空题压轴小题精练一.选择题(共19小题)1.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【考点】垂径定理;圆周角定理;翻折变换(折叠问题).【专题】与圆有关的计算.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.2.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D 到弦OB的距离最大时,tan∠BOD的值是()A.2B.3C.4D.5【考点】坐标与图形性质;圆周角定理;解直角三角形.【专题】常规题型.【分析】直接连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.【点评】此题主要考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.3.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4B.2【考点】垂径定理;圆周角定理.【专题】计算题.【分析】根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【解答】解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.【点评】本题考查的是垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.4.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.6【考点】线段垂直平分线的性质;MO:扇形面积的计算.【专题】计算题.【分析】连接OD、BD,根据点C为OB的中点可得∠CDO=30°,继而可得△BDO为等边三角形,求出扇形BOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白BDC即可求出阴影部分的面积.【解答】解:如图,连接OD,BD,∵点C为OB的中点,∴OC=OB=OD,∵CD⊥OB,∴∠CDO=30°,∠DOC=60°,∴△BDO为等边三角形,OD=OB=12,OC=CB=6,∴CD=,6,∴S扇形BOD==24π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形BOD﹣S△COD=﹣﹣(24π﹣×6×6)=18+6π.或S阴=S扇形OAD+S△ODC﹣S扇形OEC=18+6π.故选:C.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.5.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【考点】三角形内角和定理.【专题】三角形.【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5B.4C.3D.2【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形;相似三角形的判定与性质.【专题】常规题型;图形的相似.【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH 得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.7.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5【考点】正方形的性质;翻折变换(折叠问题).【专题】常规题型;平移、旋转与对称.【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.8.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M 为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1D.2【考点】等腰直角三角形;轨迹.【专题】计算题.【分析】连接OC,OM、CM,如图,利用斜边上的中线性质得到OM=PQ,CM=PQ,则OM=CM,于是可判断点M在OC的垂直平分线上,则点M运动的轨迹为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:连接OC,OM、CM,如图,∵M为PQ的中点,∴OM=PQ,CM=PQ,∴OM=CM,∴点M在OC的垂直平分线上,∴点M运动的轨迹为△ABC的中位线,∴点M所经过的路线长=AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.9.如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3B.1:2C.2:7D.3:10【考点】反比例函数与一次函数的交点问题.【专题】反比例函数及其应用.【分析】(方法一)联立直线AB与反比例函数解析式成方程组,通过解方程组可求出点A、B的坐标,由BD∥x 轴可得出点D的坐标,由点A,D的坐标利用待定系数法可求出直线AD的解析式,联立直线AD与反比例函数解析式成方程组,通过解方程组可求出点C的坐标,再结合两点间的距离公式即可求出的值.(方法二)设点A的坐标为(a,﹣a),则点B的坐标为(﹣a,a),点D的坐标为(0,a),反比例函数解析式为y=﹣,由点A,D的坐标利用待定系数法可求出直线AD的解析式,联立直线AD与反比例函数解析式成方程组,通过解方程组可求出点C的坐标,再结合两点间的距离公式即可求出的值.【解答】解:(方法一)联立直线AB及反比例函数解析式成方程组,,解得:,,∴点B的坐标为(﹣,),点A的坐标为(,﹣).∵BD∥x轴,∴点D的坐标为(0,).设直线AD的解析式为y=mx+n,将A(,﹣)、D(0,)代入y=mx+n,,解得:,∴直线AD的解析式为y=﹣2x+.联立直线AD及反比例函数解析式成方程组,,解得:,,∴点C的坐标为(﹣,2).∴==.(方法二)设点A的坐标为(a,﹣a),则点B的坐标为(﹣a,a),点D的坐标为(0,a),反比例函数解析式为y=﹣.设直线AD的解析式为y=mx+n,将A(a,﹣a),D(0,a)代入y=mx+n,得:,解得:,∴直线AD的解析式为y=﹣2x+a.联立直线AD及反比例函数解析式成方程组,,解得:,,∴点C的坐标为(﹣a,2a).∵点A的坐标为(a,﹣a),点B的坐标为(﹣a,a),∴BC==a,AC==a,∴==.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题、两点间的距离公式以及待定系数法求一次函数解析式,联立直线与反比例函数解析式成方程组,通过解方程组求出点的坐标是解题的关键.10.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2【考点】二次函数的最值.【专题】二次函数图象及其性质.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.11.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】画出图象,利用图象可得m的取值范围【解答】解:∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.此时抛物线解析式为y=x2﹣4x+2.由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=.此时抛物线解析式为y=x2﹣2x.当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点评】本题考查了二次函数图象与系数的关系,抛物线与x轴的交点的求法,利用图象解决问题是本题的关键.12.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.【点评】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】数形结合.【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.14.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.5【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A .B .C .D .【考点】动点问题的函数图象.【专题】常规题型.【分析】根据题意表示出△PBQ 的面积 S 与 t 的关系式,进而得出答案.【解答】解:由题意可得:PB =3﹣t ,BQ =2t ,则△PBQ 的面积S = PB •BQ = (3﹣t )×2t =﹣t 2+3t ,故△PBQ 的面积 S 随出发时间 t 的函数关系图象大致是二次函数图象,开口向下.故选:C .【点评】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.16.如图,在Rt △PMN 中,∠P =90°,PM =PN ,MN =6cm ,矩形ABCD 中AB =2cm ,BC =10cm ,点C 和点M 重合,点B 、C (M )、N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1cm 的速度向右移动,至点C 与点N 重合为止,设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ,则y 与x 的大致图象是()A .B .C .D .【考点】动点问题的函数图象.【专题】数形结合.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD 以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,=CM•CE=;∴y=S△EMC故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,=CD•(DE+CM)==2x﹣2;∴y=S梯形EMCD③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+6x﹣10,∴y=S梯形EMCD故选项A正确;故选:A.【点评】此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.17.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【考点】函数的图象.【专题】常规题型;函数及其图像.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因。
学 习 资 料 专 题专题10 选择填空方法综述例1.如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③当14<t <22时,y =110-5t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤△BPQ 与△ABE 相似时,t =14.5. 其中正确结论的序号是___________.同类题型1.1 如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sin A =sin B = 13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .同类题型1.2 如图1.在四边形ABCD 中,AB ∥CD ,AB ⊥BC ,动点P 从点B 出发,沿B →C →D →A 的方向运动,到达点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 与x 的函数图象如图2所示,那么AB 边的长度为____________.同类题型1.3 如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C例2.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.72B.2 73C.3 55D.264同类题型2.1 如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.同类题型2.2 如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 2 B.10 C.2 26 D.2 29同类题型2.3例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=()A.6 B.4 C.3 D.2同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).同类题型3.2 如图,在矩形ABCD中,AB=2,AD=2 2 ,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()A.1 B.22C.23D.23同类题型3.3如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.同类题型3.4 如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE=_________.例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D 运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2 5 -2;④当线段DG最小时,△BCG的面积S=8+855 .其中正确的命题有____________.(填序号)同类题型4.1 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= 2 ;③DF=DC;④CF=2AF,正确的是()A.①②③ B.②③④ C.①③④ D.①②④同类题型4.2 点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n (n>1),过点P且平行于AD的直线l将△ABE分成面积为S1、S2的两部分,将△CDF分成面积为S3、S4的两部分(如图),下列四个等式:①S1:S3=1:n②S1:S4=1:(2n+1)③(S1+S4):(S2+S3)=1:n④(S3-S1):(S2-S4)=n:(n+1)其中成立的有()A.①②④ B.②③ C.②③④ D.③④同类题型4.3 如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°后,角的两边交射线DA于H,G两点,有下列结论:①DH=DE;②DP=DG;③DG+DF= 2 DP;④DP﹒DE=DH﹒DC,其中一定正确的是()A.①② B.②③ C.①④ D.③④例5.如图,在平面直角坐标系中,经过点A的双曲线y=kx(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 2 ,∠AOB=∠OBA=45°,则k的值为______________.同类题型5.1 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x 和y = 9x在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结A C .若△ABC 是等腰三角形,则k 的值是________.专题10 选择填空方法综述例1.如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③当14<t <22时,y =110-5t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤△BPQ 与△ABE 相似时,t =14.5. 其中正确结论的序号是___________.解:由图象可以判定:BE =BC =10 cm .DE =4 cm ,当点P 在ED 上运动时,S △BPQ =12BC ﹒AB =40cm 2,∴AB =8 cm , ∴AE =6 cm ,∴当0<t ≤10时,点P 在BE 上运动,BP =BQ , ∴△BPQ 是等腰三角形, 故①正确;S △ABE =12AB ﹒AE =24 cm 2,故②错误;当14<t <22时,点P 在CD 上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y =110-5t ,△ABP 为等腰三角形需要分类讨论:当AB =AP 时,ED 上存在一个符号题意的P 点,当BA =BO 时,BE 上存在一个符合同意的P 点,当PA =PB 时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个符号题意的P 点,共有4个点满足题意, 故④错误;⑤△BPQ 与△ABE 相似时,只有;△BPQ ∽△BEA 这种情况,此时点Q 与点C 重合,即PC BC =AE AB =34,∴PC =7.5,即t =14.5. 故⑤正确.综上所述,正确的结论的序号是①③⑤.同类题型1.1 如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sin A =sin B = 13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .解:过点Q 做QM ⊥AB 于点M .当点Q 在线段AD 上时,如图1所示,∵AP =AQ =t (0≤t ≤5),sin A =13,∴QM =13 t ,∴s =12AP ﹒QM =16t 2 ;当点Q 在线段CD 上时,如图2所示,∵AP =t (5≤t ≤8),QM =AD ﹒sin A =53,∴s =12AP ﹒QM =56t ;当点Q 在线段CB 上时,如图3所示,∵AP =t (8≤t ≤2023 +3(利用解直角三角形求出AB =2023 +3),BQ =5+3+5-t =13-t ,sin B =13,∴QM =13 (13-t ),∴s =12AP ﹒QM =-16(t 2-13t ),∴s =-16(t 2 -13t )的对称轴为直线x =132.∵t <13, ∴s >0.综上观察函数图象可知B 选项中的图象符合题意. 选B .同类题型1.2 如图1.在四边形ABCD 中,AB ∥CD ,AB ⊥BC ,动点P 从点B 出发,沿B →C →D →A 的方向运动,到达点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 与x 的函数图象如图2所示,那么AB 边的长度为____________.解:根据题意,当P 在BC 上时,三角形面积增大,结合图2可得,BC =4; 当P 在CD 上时,三角形面积不变,结合图2可得,CD =3; 当P 在DA 上时,三角形面积变小,结合图2可得,DA =5; 过D 作DE ⊥AB 于E , ∵AB ∥CD ,AB ⊥BC , ∴四边形DEBC 是矩形,∴EB =CD =3,DE =BC =4,AE =AD 2-DE 2=52-42=3, ∴AB =AE +EB =3+3=6.同类题型1.3 如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A →B →E →G B .A →E →D →C C .A →E →B →FD .A →B →D →C 解:根据图3可得,函数图象的中间一部分为水平方向的线段, 故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x 的范围相等,且均小于中间一段图象对应的x 的范围,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB 或AD ,第三段函数图象对应的路径为BC 或DC , 故行走的路线是A →B →D →C (或A →D →B →C ), 选D .同类题型1.4例2.如图,菱形ABCD 的边长为6,∠ABC =120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +PM 的值最小时,PM 的长是( )A .72B .2 73C .3 55D .264解:如图,连接DP ,BD ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,B 、D 关于AC 对称, ∴PB +PM =PD +PM ,∴当D 、P 、M 共线时,P ′B +P ′M =DM 的值最小,∵CM =13BC =2,∵∠ABC =120°,∴∠DBC =∠ABD =60°,∴△DBC 是等边三角形,∵BC =6, ∴CM =2,HM =1,DH =3 3 ,在Rt △DMH 中,DM =DH 2+HM 2=(33)2+12=27 , ∵CM ∥AD ,∴P ′M DP ′=CM AD =26=13, ∴P ′M =14DM =72.选A .同类题型2.1 如图,已知菱形OABC 的边OA 在x 轴上,点B 的坐标为(8,4),点P 是对角线OB 上的一个动点,点D (0,2)在y 轴上,当CP +DP 最短时,点P 的坐标为____________.解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .在Rt △OBK 中,OB =BK 2+OK 2=82+42=4 5 , ∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG =2 5 ,设OA =AB =x ,在Rt △ABK 中,∵AB 2=AK 2+BK 2,∴x 2=(8-x )2+42 , ∴x =5, ∴A (5,0),∵A 、C 关于直线OB 对称, ∴PC +PD =PA +PD =DA , ∴此时PC +PD 最短,∵直线OB 解析式为y =12 x ,直线AD 解析式为y =-25x +2,由⎩⎨⎧y =12x y =-25x +2 解得⎩⎨⎧x =209y =109,∴点P 坐标(209 ,109).同类题型2.2 如图,在平面直角坐标系中,反比例函数y = kx(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( ) A .6 2 B .10 C .2 26 D .2 29解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6, ∴M (6,k 6 ),N (k6,6),∴BN =6-k 6 ,BM =6-k6, ∵△OMN 的面积为10,∴6×6-12×6×k 6-12×6×k 6-12×(6-k 6)2=10,∴M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,∵AM =AM ′=4, ∴BM ′=10,BN =2,∴NM ′=BM ′2+BN 2=102+22=226 , 选C .同类题型2.3例3.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( ) A .6 B .4 C .3 D .2解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 等边三角形,∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°. 在Rt △ABE 和Rt △ADF 中, ⎩⎨⎧AE =AF AB =AD, ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE =DF , ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , ∴△CEF 是等腰直角三角形, ∵AE =AF ,∴AC 垂直平分EF , ∴EG =GF ,∴GH ∥CF ,∴△EGH ∽△EFC ,∵S △EGH =3,∴S △EFC =12,∴CF =2 6 ,EF =4 3 ,∴AF =4 3 ,设AD =x ,则DF =x -2 6 ,∵AF 2=AD 2+DF 2 ,∴(43)2=x 2+(x -26)2 ,∴x =6+3 2 ,∴AD =6+3 2 ,DF =32- 6 ,∴S △ADF =12AD ﹒DF =6. 选A .同类题型3.1如图,在等腰Rt △ABC 中,∠ABC =90°,AB =CB =2,点D 为AC 的中点,点E ,F 分别是线段AB ,CB 上的动点,且∠EDF =90°,若ED 的长为m ,则△BEF 的周长是___________(用含m 的代数式表示).解:如图,连接BD ,在等腰Rt △ABC 中,点D 是AC 的中点,∴BD ⊥AC ,∴BD =AD =CD ,∠DBC =∠A =45°,∠ADB =90°,∵∠EDF =90°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠DBFAD =BD ∠ADE =∠BDF, ∴△ADE ≌△BDF (ASA ),∴AE =BF ,DE =DF ,在Rt △DEF 中,DF =DE =m . ∴EF =2DE = 2 m ,∴△BEF 的周长为BE +BF +EF =BE +AE +EF =AB +EF =2+ 2 m .同类题型3.2 如图,在矩形ABCD 中,AB =2,AD =2 2 ,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是( )A .1B .22C .23D .23解:过点E 作EM ⊥CF 于点M ,如图所示.在Rt △ADE 中,AD =2 2 ,DE =12AB =1, ∴AE =AD 2+DE 2 =3.根据折叠的性质可知:ED =EF ,∠AED =∠AEF .∵点E 是CD 的中点,∴CE =DE =FE ,∴∠FEM =∠CEM ,CM =FM .∵∠DEA +∠AEF +∠FEM +∠MEC =180°,∴∠AEF +∠FEM =12×180°=90°. 又∵∠EAF +∠AEF =90°,∴∠EAF =∠FEM .∵∠AFE =∠EMF =90°,∴△AFE ∽△EMF ,∴MF FE =FE EA ,即MF 1=13, ∴MF =13 ,CF =2MF =23. 选C .同类题型3.3如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =__________.解:∵四边形ABCD 是矩形,∴BC =AD =1,∠BAF =∠ABC =90°,∴∠ABE +∠CBF =90°,∵BE ⊥AC ,∴∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ABE =∠FCB ,在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°AB =CF ∠ABE =∠FCB, ∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1,∵BE ⊥AC ,∴∠BAF +∠ABF =90°,∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB ,∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB, ∴AB AE =1AB , ∴AE =AB 2 ,在Rt △ABE 中,BE =1,根据勾股定理得,AB 2+AE 2=BE 2 =1,∴AE +AE 2 =1,∵AE >0,∴AE =5-12.同类题型3.4 如图,正方形ABCD 中,BC =2,点M 是边AB 的中点,连接DM ,DM 与AC 交于点P ,点E 在DC 上,点F 在DP 上,且∠DFE =45°.若PF = 56,则CE =_________.解:如图,连接EF .∵四边形ABCD 是正方形,∴AB =BC =CD =DA =2,∠DAB =90°,∠DCP =45°,∴AM =BM =1,在Rt △ADM 中,DM =AD 2+AM 2=22+12= 5 ,∵AM ∥CD ,∴AM DC =MP PD =12, ∴DP =253 ,∵PF =56, ∴DF =DP -PF =52, ∵∠EDF =∠PDC ,∠DFE =∠DCP ,∴△DEF ∽△DPC , ∴DF DC =DE DP,∴522=DE 253 , ∴DE =56, ∴CE =CD -DE =2-56=76.例4.如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG 的最小值为2 5 -2;④当线段DG 最小时,△BCG 的面积S =8+ 855 .其中正确的命题有 ____________.(填序号)解:∵点E 、F 分别同时从A 、D 出发以相同的速度运动,∴AE =DF ,∵四边形ABCD 是正方形,∴AB =DA ,∠BAE =∠D =90°,在△BAE 和△ADF 中,⎩⎪⎨⎪⎧AE =DE∠BAE =∠ADF =90°AB =AD, ∴△BAE ≌△ADF (SAS ),∴∠ABE =∠DAF ,∵∠DAF +∠BAG =90°,∴∠ABE +∠BAG =90°,即∠AGB =90°,∴AF ⊥BE .故①正确;∵∠AGB =90°,∴点G 的运动路径是以AB 为直径的圆所在的圆弧的一部分,由运动知,点E 运动到点D 时停止,同时点F 运动到点C ,∴点G 的运动路径是以AB 为直径的圆所在的圆弧所对的圆心角为90°,∴长度为90π×2180 =π,故命题②正确;如图,设AB 的中点为点P ,连接PD ,∵点G 是以点P 为圆心AB 为直径的圆弧上一点,∴当点G 在PD 上时,DG 有最小值,在Rt △ADP 中,AP =12 AB =2,AD =4,根据勾股定理得,PD =2 5 , ∴DG 的最小值为2gh (5) -2,故③正确;过点G 作BC 的垂线与AD 相交于点M ,与BC 相交于N ,∴GM ∥PA ,∴△DMG ∽△DAP ,∴GM AP =DG DP, ∴GM =10-255, ∴△BCG 的高GN =4-GM =10+255, ∴S △BCG =12×4×10+255=4+455,故④错误, ∴正确的有①②③.同类题型4.1 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连结DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD = 2 ;③DF =DC ;④CF =2AF ,正确的是( )A .①②③B .②③④C .①③④D .①②④解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF, ∵AE =12AD =12BC , ∴AF CF =12, ∴CF =2AF ,故④正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有b a =2a b ,即b = 2 a , ∴tan ∠CAD =DC AD =b 2a =22.故②不正确; 正确的有①③④,选C .同类题型4.2 点E 、F 分别在平行四边形ABCD 的边BC 、AD 上,BE =DF ,点P 在边AB 上,AP :PB =1:n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1 、S 2 的两部分,将△CDF 分成面积为S 3 、S 4 的两部分(如图),下列四个等式:①S 1 :S 3 =1:n②S 1 :S 4 =1:(2n +1)③(S 1+S 4 ):(S 2+S 3 )=1:n④(S 3-S 1 ):(S 2-S 4 )=n :(n +1)其中成立的有( )A .①②④B .②③C .②③④D .③④解:由题意∵AP :PB =1:n (n >1),AD ∥l ∥BC ,∴S 1S 1+S 2=(1n +1)2 ,S 3=n 2S 1 ,S 3S 3+S 4=(n n +1)2 , 整理得:S 2=n (n +2)S 1 ,S 4=(2n +1)S 1 ,∴S 1 :S 4 =1:(2n +1),故①错误,②正确,∴(S 1+S 4 ):(S 2+S 3)=[S 1+(2n +1)S 1]:[n (n +2)S 1+n 2S 1]=1:n ,故③正确,∴(S 3-S 1 ):(S 2-S 4)=[n 2S 1-S 1]:[n (n +2)S 1-(2n +1)S 1]=1:1,故④错误,选B .同类题型4.3 如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF = 2 DP ;④DP ﹒DE =DH ﹒DC ,其中一定正确的是( )A .①②B .②③C .①④D .③④解:∵∠GPF =∠HPD =90°,∠ADC =90°,∴∠GPH =∠FPD ,∵DE 平分∠ADC ,∴∠PDF =∠ADP =45°,∴△HPD 为等腰直角三角形,∴∠DHP =∠PDF =45°,在△HPG 和△DPF 中,∵⎩⎪⎨⎪⎧∠PHG =∠PDFPH =PD ∠GPH =∠FPD, ∴△HPG ≌△DPF (ASA ),∴PG =PF ;∵△HPD 为等腰直角三角形, ∴HD = 2 DP ,HG =DF ,∴HD =HG +DG =DF +DG ,∴DG +DF = 2 DP ;故③正确,∵DP ﹒DE =22 DH ﹒DE ,DC =22DE , ∴DP ﹒DE =DH ﹒DC ,故④正确,由此即可判断选项D 正确,选D .例5.如图,在平面直角坐标系中,经过点A 的双曲线y = k x(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为 2 ,∠AOB =∠OBA =45°,则k 的值为______________.解:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD =MN ,DN =OM ,∠AMO =∠BNA =90°,∴∠AOM +∠OAM =90°,∵∠AOB =∠OBA =45°,∴OA =BA ,∠OAB =90°,∴∠OAM +∠BAN =90°,∴∠AOM =∠BAN ,在△AOM 和△BAN 中,⎩⎪⎨⎪⎧∠AOM =∠BAN∠AMO =∠BNA OA =BA, ∴△AOM ≌△BAN (AAS ),∴AM =BN = 2 ,OM =AN =k 2 , ∴OD =k 2+ 2 ,BD =k 2- 2 , ∴B (k2+ 2 ,k2- 2 ), ∴双曲线y =k x (x >0)同时经过点A 和B , ∴(k 2+2)﹒(k 2- 2 )=k , 整理得:k 2 -2k -4=0,解得:k =1± 5 (负值舍去),∴k =1+ 5 .同类题型5.1 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x 和y = 9x在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结A C .若△ABC 是等腰三角形,则k 的值是________.解:∵点B 是y =kx 和y =9x 的交点,y =kx =9x, 解得:x =3k ,y =3k ,∴点B 坐标为(3k,3gh (k ) ), 点A 是y =kx 和y =1x 的交点,y =kx =1x, 解得:x =1k ,y =k ,∴点A 坐标为(1k ,k ), ∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k =k 3 , ∴点C 坐标为(3k ,k 3 ),∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则(3k -1k)2+(3k -k )2=3k -k 3 , 解得:k =377; ②AC =BC ,则(3k -1k )2+(k -k 3)2=3k -k 3 , 解得:k =155; 故k =377 或155.。