中格栅和细格栅的设计
- 格式:doc
- 大小:54.00 KB
- 文档页数:4
中格栅的设计1.设计参数①单号Q max=0.8m3/s,双号Q max=1.2m3/s,中格栅间隙10——40mm,;②格栅为一台时,应设人工清除格栅备用;③过栅流速一般采用0.6-0.8m/s;④格栅前渠道内水流速度一般采用0.4-0.9 m/s;⑤格栅倾角一般采用45°—75°;通过格栅的水头损失一般采用0.08-0.17。
1①图纸(A3;21000*14850;1:50) (A4;14850*10500;1:50)②单位:mm③平面图+剖面图④版式A3,A4① 栅前水深的确定根据最优水力断面公式Q=212VB ⨯ 所以B1=V Q 2=m 5.18.09.02=⨯则:栅前水深h=B1/2=1.5/2=0.75mh —栅前水深,m;V —过栅流速,m/s ,取0.8—1.0 m/s∴ n=2648.00.802.0sin60371.00=⨯⨯⨯设两道格栅,则每台格栅的间隙n=26个B=s(n-1)+en=0.01⨯(26-1)+0.02⨯26=0.77m ,为了方便选设备,取0.8m 。
③ 进水渠道渐宽部分的长度 L 1=αtg B B ⨯-21式中, L1——进水渠道渐宽部分的长度,m.;B 1——进水渠道宽度,取1.2m ; α——其渐宽部分展开角度,取20°;所以: L 1=2.16.1-=0.55mH=h+h 1+h 2式中:h ——栅前水深,m 。
h 2——栅前渠道超高,m 。
取0.3m∴ H=0.84+0.081+0.3=1.221 取1.2m 。
⑦ 栅槽总长度L :L=L 1+L 2+0.5+1.0+H/tg α=0.55+0.27+0.5+1+1.221/tg60°=2.98m⑧ 每日栅渣量W=KW Q 864001max ⨯⨯式中:W —每日栅渣量,W 1—栅渣量(m 3/103污水),取0.1-0.01,粗格栅取用小值,细格栅取用大值,中格栅取用中值。
第一章 污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。
被截留的物质称为栅渣。
设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。
格栅断面有圆形、矩形、正方形、半圆形等。
圆形水力条件好,但刚度差,故一般多采用矩形断面。
格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。
1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。
本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。
其中,中格栅设在污水泵站前,细格栅设在污水泵站后。
中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。
1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。
特殊情况下,最大间隙可为100mm 。
2) 细格栅:宜为1.5~10mm 。
3) 水泵前,应根据水泵要求确定。
2、 污水过栅流速宜采用0.6~1.Om /s 。
除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。
人工清除格栅的安装角度宜为30°~60°。
3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。
粗、细格栅简介
格栅用以去除污水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。
根据栅条间隙分为粗格栅、中格栅、细格栅,一般污水处理厂设粗、细两道格栅,粗格栅设于箱体总进水管道后,去除大尺寸的漂浮物和悬浮物,尽量去掉那些不利于后续处理过程的杂物;细格栅用于进一步去除污水中较小颗粒的悬浮、漂浮物,格栅截留物经螺旋输送机送入螺旋压榨机,压榨后外运出厂。
粗格栅常用形式为钢丝绳式格栅除污机和回转式格栅除污机。
钢丝绳式格栅除污机国内外早期使用较多,结构简单,运转效果较好,特别适用于深水使用。
回转式固液分离机近年在国内使用较多,运转效果较好,运行稳定,该设备由动力装置、机架、清洗机构及电控箱组成,动力装置采用悬挂式涡轮减速机,结构紧凑,调整维修方便,耙齿结构设计合理,耐腐蚀性好。
格栅的设计计算 Document number:PBGCG-0857-BTDO-0089-PTT1998格栅的设计计算(1)栅条的间隙数nmax Q n ehv =式中 Qmax ——最大设计流量,m 3/sα——格栅倾角,度,取α=600h ——栅前水深,m ,取h=0.4me ——栅条间隙,m ,取e=0.02mn ——栅条间隙数,个v ——过栅流速,m/s ,取v=1.0m/s格栅设两组,按两组同时工作设计,一格停用,一格工作校核。
则:max 230.02*0.4*1.0Q n ehv ==≈个(2)栅槽宽度B栅槽宽度一般比格栅宽米,取米。
设栅条宽度S=10mm则栅槽宽度(1)B S n bn =-+0.01*(231)0.02*230.68m =-+≈(3)通过格栅的水头损失h10h h k =20sin 2v h g ξα= 43()s b ξβ=式中 1h ——过栅水头损失,m0h ——计算水头损失,mg ——重力加速度,2/m sk ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3ξ——阻力系数,与栅条断面形状有关,43()s eξβ=,当为矩形断面时,β=。
24103()sin 2s v h h k k b gβα== 20430.01 1.02.42*()sin 60*30.022*9.8= 0.13m =(4)栅后槽总高度H设栅前渠道超高20.3h m =120.40.130.30.83H h h h m =++=++=(5)栅槽总长度L进水渠道渐宽部分的长度L 1,设进水渠宽B 1=,其渐宽部分展开角度α1=200,进水渠道内的流速为s 。
11010.680.450.362tan 2tan 20B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L120.360.1822L L m ==≈ 112 1.00.5tan H L L L α=++++ 式中 1H 为栅前渠道深,12H h h =+00.40.30.360.180.5 1.0tan 60L +=++++2.44m =(6)每日栅渣量W max 1864001000ZQ W W K =式中 W ——每日栅渣量3/m d 1W ——栅渣量(333/10m m 污水)取,粗格栅用小值,细格栅用大值,中格栅用中值Z K ——生活污水流量总变化系数 386400*0.2*0.050.6/1000*1.5W m d ==。
污水处理厂常用格栅设备简介及选型格栅设备对污水处理厂的正常运行起着非常重要的作用,本文主要介绍各种不同格栅的结构形式、工作原理、主要技术参数等。
预处理系统的栅渣、砂粒一般会有多个产生源,建议设置渣斗,汇集之后统一外运处理。
一、概述污水在进入污水处理厂二级处理构筑物之前一般要先通过格栅进行预处理,目的是尽量去除那些在性质上或大小上不利于后续处理的物质。
当污水二级处理工艺采用传统工艺(主要是指AAO、氧化沟、SBR三大类工艺及其改进工艺)时,格栅系统主要是分离取出较粗大物质;当采用更先进的工艺(主要指MBR膜处理工艺)时,对格栅提出了更高的分离要求,还需要去除毛发等细小纤维物质。
二、格栅分类根据格栅的过滤精度,一般分为三类。
1)粗格栅机械清渣时,过滤精度常采用16~25mm,人工清渣时采用25~40mm。
目前,绝大部分的污水处理厂都采用机械清渣,自动化程度高,操作人员劳动强度低;人工清渣方式只在小型污水处理站(通常以2000m3/d为界)使用。
粗格栅一般设置在进水泵房之前,主要用以去除较大尺寸的漂浮、悬浮物质,保护水泵运行,避免叶轮缠绕、堵塞等事故,同时,部分粗大物质的去除也能够有效降低后续格栅系统的运行负荷。
2)细格栅过滤精度常采用2~15mm,机械清渣,配合粗格栅使用,主要用以去除粗格栅“漏网”的小颗粒悬浮物质,降低后续污水处理构筑物的运行负荷。
3)精细格栅主要应用于先进的MBR膜处理工艺,过滤精度常采用0.5mm、0.75 mm、 1.0mm 三种,主要用以去除毛发等细小纤维物质,避免其进入膜系统后在膜表面“成辫”进而导致膜组件内发生板结,甚至部分膜组件失效。
三、常用的粗格栅设备常用的粗格栅主要包括:回转式格栅除污机、链式格栅除污机、抓斗式格栅除污机、阶梯式格栅除污机等。
3.1 回转式格栅除污机回转式格栅除污机一般由安装在回转链上间隔一定距离的耙齿组成,在驱动装置的驱动下,回转链带动耙齿按一定方向旋转,在迎水面耙齿由下向上运动将水中漂浮物捞出至顶端翻转后卸下。
环科0801 陈得者 0101格栅设计与选型格栅的工艺参数:过栅流速:v=~s栅前水深:h=安装角度:a=45~75°格栅间隙b:一般15~30mm,最大为40 mm栅条宽度bs:细格栅 3~10mm 中格栅 10~40mm 粗格栅 50~100mm进水渠宽:B1= 渐宽部分展开角度a1=20°栅前渠道超高h2=已知:由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。
主要设计参数:粗格栅1.栅条的间隙数n取栅前水深h= 过栅流速v=s 间隙宽度b= 安装角度a=60°Q=50000m3/d= m3/s=579L/s总变化系数根据流量Q=579L/s,查下表内插得Kz=污水平均日流量(L/s)5154070100200500≥1000总变化系数KzQmax==×s= m3/sn=Qmax×sinab×h×v=错误!= 取n=672.栅槽宽度B取栅条宽bs=B=bs(n-1)+b×n=×(67-1)+×67=4m 3.进水渠道至栅槽渐宽部分长l1进水渠宽B1= 渐宽部分展开角度a1=20°l1=B-B12tga1=错误!=4.栅槽至出水渠道间渐缩部分长l2l2=l12=5.通过格栅的水头损失h1选用锐边矩形栅条断面由上表可知公式为ζ=β(bsb)4/3 β=水头增大系数k=3h 1=kh=kζv22gsina=kβ(bsb)4/3v22gsina =3××(错误!)4/3×错误!×sin60°=6.栅后槽总高度H取栅前渠道超高h2= H=h+h1+h2=++= 7.栅槽总长度LL=l1+l2+++H1tga=++++错误!=8.每日栅渣量W①当栅条间距为16~25mm时,栅渣截留量为~103m3污水。
2.3格栅在处理系统(包括水泵)前,均须设置格栅,以拦截较大杂物。
格栅分为粗中细格栅,规格分别为50~100mm,10~40mm,1.5~10mm2.3.1设计数据(1)水泵前格栅栅条间隙应根据水泵要求确定。
各种类型水泵前格栅的栅条间隙随水泵的构造而变,应小于离心泵内叶轮的最小间隙。
当采用PW型及PWL型水泵时,可按表2.3.1选用。
表PW型、PWL型水泵格栅的栅条间隙2·1/2PW 2·1/2PWL ≤20 人工:4-5 机械:5-64PW 4PWL ≤40 2.76PWL ≤70 0.88PWL ≤90 0.510PWL ≤110 <0.532PWL ≤150 <0.5注:①采用立式轴流泵时:20ZLB-70,栅条间隙≤60mm;28ZLB-70,栅条间隙≤90mm。
②采用Sh型清水泵时:14Sh,栅条间隙≤20mm;20Sh,栅条间隙≤25mm;24Sh,栅条间隙≤30mm;32Sh,栅条间隙≤40mm。
(2)污水处理系统前格栅栅条间隙,应符合下列要求:①人工清渣25-40mm;②机械清渣16-25mm;③最大间隙40mm污水处理厂亦可设置粗、细两道格栅。
(3)如水泵前格栅间隙不大于25mm时,污水处理系统前可不再设置格栅。
(4)栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。
在无当地运行资料时,可采用:①格栅间隙16-25mm;0.10-0.05m3栅渣/1000m3污水;②格栅间隙30-50mm;0.03-0.01m3栅渣/1000m3污水;栅渣的含水率一般为80%,密度约为960Kg/m3。
(5)在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。
(6)机械格栅不宜少于2台,如为1台时,应设为人工清渣格栅备用。
(7)过栅流速一般采用0.6-1.0m/s。
(8)格栅前渠道内的水流速度一般采用0.4-0.9m/s。
一、进水闸井的设计
1、污水厂进水管
1.设计依据:
(1)进水流速在0.9—1.1m/s;
(2)进水管管材为钢筋混凝土管;
(3)进水管按非满流设计,n=0.014。
2.设计计算
(1)取进水管径为D=800mm,流速v=1.00 m/s,设计坡度I=0.5%。
(2)已知最大日污水量Q max=0.6481m3/s;
(3)初定充满度h/D=0.75,则有效水深h=1000×0.75=750mm;
(4)已知管内底标高为67.1m,则水面标高为:67.1+0.75=67.85m;
(5)管顶标高为:67.1 +1.0=68.1m;
(6)进水管水面距地面距离72.4-67.85=4.55m。
2、进水闸井工艺设计
进水闸井的作用是汇集各种来水以改变进水方向,保证进水稳定性。
进水闸
井前设跨越管,跨越管的作用是当污水厂发生故障或维修时,可使污水直接排入水体,跨越管的管径比进水管略大,取为1200mm。
其设计要求如下:
设在进水闸、格栅、集水池前;
形式为圆形、矩形或梯形;
尺寸可根据来水管渠的断面和数量确定,但直径不得小于1.0m 或
1.2×1.0m;
井底高程不得高于最低来水管管底,水面不得淹没来水官管顶。
考虑施工方便以及水力条件,进水闸井尺寸取3×6m,井深5.3m,井内水深0.75m,闸井井底标高为67.1 m,进水闸井水面标高为67.85m,超越管位于进水管顶1m 处,即超越管管底标高为69.1m。
采用ZMQF 型明杆式铸铁方闸门:尺寸为
L×B=1.6×1.6m;重量=2992kg。
一、中格栅的工艺设计
格栅计算草图
1.中格栅设计参数
(1)栅前水深h=0.75m ;
(2)过栅流速v=0.9m/s ;
(3)格栅间隙b 中=0.019m ;
(4)栅条宽度 s=10mm ;
(5)格栅安装倾角075=α。
2.中格栅的设计计算
本设计选用两道中格栅,为了减少格栅磨损,格栅全部使用。
总变化系数k=1.4
1)栅条间隙数:
式中:n 中——中格栅间隙数; Q max ——最大设计流量,
s m 36481.0; b 中——栅条间隙,0.019m ;
h ——栅前水深,取0.75m ;
v ——过栅流速,取0.9m/s ;
α——格栅倾角,取0
75;
m ——设计使用的格栅数量,本设计中格栅取使用2 道。
8.2429.075.0019.075sin 6481.00
=⨯⨯⨯⨯=中n 取25 2)栅槽宽度B :
栅槽宽度一般比格栅宽0.2-0.3m ,取0.2m 。
B=s(n 1-1)+bn+0.2
式中:B ——栅槽宽度,m ;
S ——格条宽度,取0.01m 。
B=0.01×(25-1)+0.019×25+0.2=0.92m
栅槽之间墙宽度为0.5m ,所以格栅总宽度=0.92×2+0.5=2.34m
3)中格栅栅前进水渠道渐宽部分长L1,若进水渠宽B1=0.7,其渐宽部分展开角020=α
进水渠道流速V1=0.7m/s
4)中格栅与提升泵房连接处渐窄部分长度L2
5)中格栅过栅水头损失
K 取3
6)栅前槽总高度,取栅前渠道超高h2=5m
栅前槽总高度H1=h+h2=0.75+5=5.75m
7)栅后槽总高度m h h h H 87.512.0575.02=++=++=中
8)栅槽总长度
9)每日栅渣量:
故采用机械清渣
二、 细格栅的工艺设计
1.细格栅设计参数
(1)栅前水深h=0.75m ;
(2)过栅流速v=0.8m/s ;
(3)格栅间隙b 细=0.008m ;
(4)栅条宽度 s=0.01m ;
(5)格栅安装倾角075=α。
2.细格栅的设计计算
本设计选用三道细格栅,两用一备。
1)栅条间隙数:
式中:n 中——中格栅间隙数;
Q max ——最大设计流量,
s m 36481.0; b 中——栅条间隙,0.008m ;
h ——栅前水深,取0.75m ;
v ——过栅流速,取0.8m/s ;
α——格栅倾角,取0
75;
m ——设计使用的格栅数量,本设计中格栅取使用2 道。
2)栅槽宽度:
B=s(n 1-1)+bn
式中:B ——栅槽宽度,m ;
S ——格条宽度,取0.01m 。
B=0.01×(67-1)+0.008×67=1.216m ,取1.22m
栅槽之间墙宽度为0.5m ,所以格栅总宽度=1.22×3+0.5×2=4.66m
3)细格栅的栅前进水渠道渐宽部分长度L1:
若进水渠宽B1=0.8m,渐宽部分展开角α1 =20。
,则此进水渠道内的流速v1=0.7m/s,则
4)细格栅与旋流沉砂池连接处渐窄部分长度L2:
5)细格栅的过栅水头损失:
K取3
6)栅前槽总高度:
取栅前渠道超高h2=0.5m
栅前槽高H1=h+h2=0.75+0.5=1.25m
7)栅后槽总高度:
8)栅槽总长度:
9)每日栅渣量:
故采用机械清渣
格栅除污机的选择
经计算本工程均采用机械清渣,格栅的相关数据如下表:。