【必考题】七年级数学下期中第一次模拟试题(含答案) (3)
- 格式:doc
- 大小:441.00 KB
- 文档页数:15
【必考题】七年级数学下期中模拟试卷带答案 (3)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .3.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15°4.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线 5.下列语句中,假命题的是( )A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角6.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .2 7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 8.已知4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <69.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,410.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子11.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 12.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--=二、填空题13.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.14.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.15.比较大小:-________-3.16.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________.17.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.18.2____35 2.19.若264a =,则3a =______.20.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.三、解答题21.如图,AB CD ∥,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,40ABO ∠=︒,有下列结论:①70BOE ∠=︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠. 请将正确结论的序号填写在空中,并选择其一证明.正确结论的序号是______,我选择证明的结论序号是______,证明:22.对x ,y 定义一种新运算T ,规定(,)2ax by x y x y +T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ . 已知(1,1)2T -=-,(4,2)1T =.(1)求a ,b 的值; (2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围. 23.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査. (1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m= ,n= ;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.24.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.25.如图,α∠和β∠的度数满足方程组3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)求证//AB EF ;(2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.3.B解析:B【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.4.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.5.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.选项C. 两直线平行,同旁内角互补,正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...6.C解析:C【解析】0=,∴x ﹣1=0,x +y =0,解得:x =1,y =﹣1,所以xy =﹣1.故选C .7.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.8.B解析:B【解析】【分析】【详解】∵12,∴3<m <4,故选B .【点睛】的取值范围是解题关键.9.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;故选A.【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.11.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.C解析:C【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;2=-,故选项C正确;2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题13.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.54°【解析】【分析】设∠BOD=x∠BOE=2x;根据题意列出方程2x+2x+x=180°得出x=36°求出∠AOC=∠BOD=36°即可求出∠AOF=90°-36°=54°【详解】解:设∠BOD解析:54°【解析】【分析】设∠BOD=x,∠BOE=2x;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.【详解】解:设∠BOD=x ,∠BOE=2x ,∵OE 平分∠BOC ,∴∠COE=∠EOB=2x ,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF ⊥CD ,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.15.<【解析】【分析】由3<10<4可得到结果【详解】因为3<10<4|-10|>|-3|所以-10<-3故答案为:<【点睛】考核知识点:实数的大小比较估计无理数大小是关键解析:<【解析】【分析】 由可得到结果.【详解】 因为, |-|>|-3| 所以-<-3. 故答案为:< 【点睛】考核知识点:实数的大小比较.估计无理数大小是关键. 16.【解析】【分析】根据不等式的性质求出不等式的解集根据不等式的正整数解得出2≤<3求出不等式的解集即可【详解】解答:解:3x−3a≤−2a 移项得:3x≤−2a +3a 合并同类项得:3x≤a ∴不等式的解集解析:69a ≤<.【解析】【分析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a <3,求出不等式的解集即可.【详解】解答:解:3x−3a≤−2a ,移项得:3x≤−2a +3a ,合并同类项得:3x≤a ,∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2,∴2≤3a <3, 解得:6≤a <9.故答案为:6≤a <9.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a <3是解此题的关键. 17.95°【解析】如图作EF∥AB 则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本解析:95°【解析】如图,作EF ∥AB ,则EF ∥CD ,∴∠ABE +∠BEF =180°,∵∠ABE =120°,∴∠BEF =60°,∵∠DCE =∠FEC =35°,∴∠BEC =∠BEF +∠FEC =95°. 故答案为95°. 点睛:本题关键在于构造平行线,再利用平行线的性质解题.18.>>【解析】【分析】【详解】∵∴;∵5>4∴故答案为(1)>;(2)> 解析:> >【解析】【分析】【详解】23<,∴23>∵225=5,2=4() ,5>4,52>.故答案为(1). >;(2). >.19.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a =,∴a=±8.2 故答案为±2 【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..20.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >解析:m >-2【解析】【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得2x +2y =2m +4,则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式.三、解答题21.①②③,①②③④.【解析】【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=12∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°-∠POE=50°,∠DOF=20°,可知④不正确.【详解】证明:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°-40°=140°,∵OE平分∠BOC,∴∠BOE=12×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°-70°=20°,∴∠BOF=12∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°-∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°-∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故答案为:①②③,①②③④.【点睛】此题考查平行线的性质,解题关键在于掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.22.(1)a,b的值分别为1,3;(2)1 23p-≤<-.【解析】试题分析:(1)已知T的两对值,分别代入T中计算,求出a与b的值即可;(2)根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.试题解析:(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∵不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-. 23.(1)③;(2)①20,6;②补图见解析;③B 类;④18万户.【解析】试题分析:(1)根据简单随机抽样的定义即可得出答案.(2)①依题可得出总户数为1000户,从而求出m 和n 的值.②根据数据可求出C 的户数,从而补全条形统计图.③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④根据样本估计总体,即可求出送回收点的家庭户数.试题解析:(1)简单随机抽样即按随机性原则,从总体单位中抽取部分单位作为样本进行调查,以其结果推断总体有关指标的一种抽样方法.随机原则是在抽取被调查单位时,每个单位都有同等被抽到的机会,被抽取的单位完全是偶然性的.由此可以得出答案为③ (2)①依题可得:510÷51%=1000(户).∴200÷1000×100%=20%.∴m=20.∴60÷1000×100%=6%.∴n=6.②C 的户数为:1000×10%=100(户),补全的条形统计图如下:③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④∵样本中直接送回收点为10%,根据样本估计总体,送回收点的家庭约为: 180×10%=18(万户).考点:1、用样本估计总体,2、扇形统计图,3、条形统计图24.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】(1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35° ∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】 考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.25.(1)详见解析;(2)50°.【解析】【分析】(1)解方程组求出α,β即可判断.(2)证明//AB CD ,利用平行线的性质解决问题即可.【详解】(1)由3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,解得:40140αβ=︒⎧⎨=︒⎩,180αβ∴+=︒,//AB EF ∴. (2)//CD EF Q ,//EF AB ,//AB CD ∴,180BAC C ∴∠+∠=︒,AC AE ⊥Q ,90EAC ∴∠=︒,40BAE ∠=︒Q ,130BAC ∴∠=︒,50C ∴∠=︒.【点睛】本题考查了平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.。
一、选择题1.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C.D.2.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为()A.B.C.D.4.如图所示是某市6月20日的温度随时间变化的图象.通过观察可知,下列说法不正确的是().A .这天15时温度最高B .这天3时温度最低C .这天的温差是13℃D .这天21时温度是32℃5.如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DB B .DEC .DAD .AE 6.一个角的补角,等于这个角的余角的3倍,则这个角是( ) A .30°B .35°C .40°D .45°7.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°8.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角9.如图,将大小相同的四个小正方形按照图①和图②所示的两种方式放置于两个正方形中,根据两个图形中阴影部分的面积关系,可以验证的公式是( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .22()()4a b a b ab -=+-D .22()()a b a b a b +-=-10.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -11.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .1212.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-5二、填空题13.夏天高山上的气温从山脚起每升高l00m 降低0.7℃,已知山脚下的气温是23℃,则气温y (℃)与上升的高度x (m )之间的关系式为____;当x=500时,y=__;当y=16时,x=__.14.根据如图所示的计算程序计算变量y 的对应值,若输入变量x 的值为﹣12,则输出的结果为_____15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.一副直角三角尺按如图1所示方式叠放,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD (0°<∠BAD <90°)所有符合条件的度数为_____.17.用直尺和三角板按如图所示放置,若∠1=70°,则∠2的度数为_________.18.计算:()322()ab ab ÷-=________.19.若26x x m ++为完全平方式,则m =____.20.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;432(1)(1)x x x x x -++++51x =-……;则20082007200622+2+2++2+2+1=_____.三、解答题21.下表是某公共电话亭打长途电话的几次收费记录:时间(分) 1 2 3 4 5 6 7 电话费(元)0.61.21.82.43.03.64.2(1) 上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2) 如果用 x 表示时间,y 表示电话费,那么随 x 的变化,y 的变化趋势是什么? (3) 丽丽打了 5 分钟电话,那么电话费需付多少元? (4) 你能写出 y 与 x 之间的关系式吗?22.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x 表示从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程). 请你根据图象回答下列问题: (1)这次“龟兔再次赛跑”的路程多少米? (2)兔子和乌龟跑完全程所用时间各是多少? (3)兔子跑完全程的平均速度是多少? (4)请叙述乌龟爬行的全过程.23.如图,已知//AB CD ,∠B=∠D ,AE 交BC 的延长线于点E .(1)求证://AD BE ;(2)若∠1=∠2=60°,∠BAC=2∠EAC ,求∠DCE 的度数.24.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”)25.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.26.计算:(1)23262x y x y -÷ (2)()233221688x y z x y z xy +÷ (3)运用乘法公式计算:2123124122-⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),结合解析式可得出图象:故选:B.【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.2.C解析:C【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【详解】①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故选C.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.B解析:B【分析】理解洗衣机的四个过程中的含水量与图象的关系是关键.【详解】因为进水时水量增加,函数图象的走势向上,所以可以排除D,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除C,对于A、B,因为题目中明确说明了一开始时洗衣机内无水.故选B.【点睛】本题考查了函数的图象,关键是理解题意,从图象中准确读取信息.4.C解析:C 【解析】观察图象可知:这天15时温度最高、这天3时温度最低、这天的温差是15℃、这天21时温度是32℃,故A 、B 、D 正确,C 错误, 故选C.5.B解析:B 【分析】根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答. 【详解】 解:∵ED ⊥AB ,∴点D 到直线AB 距离的是线段DE 的长度. 故选:B . 【点睛】本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键.6.D解析:D 【分析】设这个角的度数是x ,根据题意列得1803(90)x x ︒-=︒-,求解即可. 【详解】设这个角的度数是x ,则1803(90)x x ︒-=︒-解得x=45︒, 故选:D . 【点睛】此题考查余角、补角定义,与余角补角有关的计算,正确掌握余角、补角的定义是解题的关键.7.C解析:C 【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数. 【详解】∵AB ∥CD ,∠BAD=35°, ∴∠ADC =∠BAD =35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.8.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D9.A解析:A【分析】根据图形阴影部分的面积的不同求法可得等式.【详解】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a-b)的正方形,因此面积为(a-b)2,由图2可知,阴影部分的面积等于边长为a的正方形的面积减去之间十字架的面积,即:a2-2ab+b2,因此有(a-b)2=a2-2ab+b2,故选:A.【点睛】本题考查平方差公式、完全平方公式的几何背景,用不同方法表示阴影部分的面积是得出答案的关键.10.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A、()326=,选项错误;x xB、1028÷,选项错误;x x x=C、235x x x,选项正确;D、6x x-不能得到5x,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.11.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.12.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项, ∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.二、填空题13.y=23-0007x1951000【解析】【分析】每升高l00m 降低07℃则每上升1m 降低0007℃则上升的高度xm 下降0007x ℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000 【解析】 【分析】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃,则上升的高度xm ,下降0.007x ℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y 的值;当y=16时,把y=16代入解析式求得x 的值. 【详解】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃, 则关系式为:y=23-0.007x ; 当x=500时,y=23-0.007×500=19.5; 当y=16时,23-0.007x=16, 解得:x=1000. 【点睛】考查了列函数解析式,理解每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃是关键.14.-15【详解】∵-2<<1∴x=时y=x-1=故答案为解析:-1.5 【详解】 ∵-2<12-<1, ∴x=12-时,y=x-1=13122--=-,故答案为32-.15.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130 【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案. 【详解】解:∵∠A 与∠B 的两边分别平行, ∴∠A=∠B 或∠A+∠B=180°, ∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°. 故答案为:50或130. 【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A 与∠B 的两边分别平行,可得∠A 与∠B 相等或互补.16.45°和60°【分析】根据题意画出图形分情况讨论:∥或BC ∥AD 再由平行线的性质定理或判定定理即可得出结论【详解】解:如图当AC ∥DE 时此时重合∠BAD =∠DAE =45°;当BC ∥AD 时∠DAB =∠解析:45°和60° 【分析】根据题意画出图形,分情况讨论:AC∥DE或BC∥AD,再由平行线的性质定理或判定定理即可得出结论.【详解】解:如图,当AC∥DE时,∴∠=∠=︒DEA CAB90,AB AE重合,此时,∴∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;综上所述,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为45°和60°,故答案为:45°和60°.【点睛】本题考查的是平行线的性质与判定,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.17.110°【分析】根据平行线的性质解答即可【详解】解:∵a∥b∴∠1=∠3=70°∴∠2=110°故答案为:110°【点睛】该题主要考查了平行线的性质;牢固掌握平行线的性质是灵活运用解题的基础解析:110°【分析】根据平行线的性质解答即可.【详解】解:∵a∥b,∴∠1=∠3=70°,∴∠2=110°,故答案为:110°【点睛】该题主要考查了平行线的性质;牢固掌握平行线的性质是灵活运用、解题的基础. 18.【分析】先进行积的乘方然后进行整式除法运算即可【详解】原式故答案为:【点睛】本题考查了积的乘方单项式除单项式解答本题的关键是熟练掌握运算法则解析:4ab【分析】先进行积的乘方,然后进行整式除法运算即可.【详解】原式362232624--=÷==a b a b a b ab故答案为:4ab【点睛】本题考查了积的乘方,单项式除单项式,解答本题的关键是熟练掌握运算法则. 19.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解. 20.【分析】观察其右边的结果:第一个是x2−1;第二个是x3−1;…依此类推得出第n 个的结果从而得出要求的式子的值【详解】根据给出的式子的规律可得:(x−1)(xn +xn−1+…x +1)=xn +1−1则解析:200921-【分析】观察其右边的结果:第一个是x2−1;第二个是x3−1;…依此类推,得出第n个的结果,从而得出要求的式子的值.【详解】根据给出的式子的规律可得:(x−1)(x n+x n−1+…x+1)=x n+1−1,则22008+22007+22006+……+22+2+1=(2-1)×(22008+22007+22006+……+22+2+1)=22009−1;故答案为:22009−1.【点睛】本题考查了平方差公式,发现规律:右边x的指数正好比前边x的最高指数大1是解题的关键.三、解答题21.(1)反映的是电话费和时间两个变量之间的关系,时间是自变量,电话费是因变量.(2)每增加 1 分钟,电话费增加 0.6 元.(3)电话费需付 3 元.(4) y = 0.6x.【解析】试题分析:(1)观察、分析所给记录可知,上表反映的是“电话费”和“打电话时间”两个变量之间的关系,其中“时间”是自变量,“电话费”是因变量;(2)由表中的数据可知,电话费y随通话时间x的增大而增大,x每增加1分钟,y增加0.6元;(3)由表中信息可知,通话5分钟需付电话费3元;(4)由表中信息可知,y=0.6x.试题(1)表中反映的是:“电话费”和“打电话时间”两个变量之间的关系,其中“时间”是自变量,“电话费”是因变量;(2)若用 x 表示时间,y 表示电话费,则由表中信息可知:电话费y随通话时间x的增大而增大,x每增加1分钟,y增加0.6元;(3)由表中信息可知,当x=5时,y=3,即通话5分钟需付费3元;(4)由表中信息可得:y=0.6x.22.(1)1000m;(2) 兔子和乌龟跑完全程所用时间各是10 min和60 min;(3) 100(m/min);(4)见解析【解析】试题分析:(1)根据图象可得这次“龟兔再次赛跑”的路程;(2)根据图象可得兔子和乌龟跑完全程所用时间;(3)根据图象和速度的公式计算即可;(4)根据图象可得乌龟爬行的全过程.试题解:(1)根据图象可得这次“龟兔再次赛跑”的路程是1 000 m;(2)根据图象可得兔子和乌龟跑完全程所用时间各是10 min 和60 min ;(3)根据图象可得兔子跑完全程的平均速度是1 000÷(50-40)=100(m/min);(4)根据图象可得乌龟爬行的全过程是先用30 min 爬了600 m ,然后休息了10 min,再用20 min 爬了400 m .点睛:此题考查函数图象问题,关键是根据图象的信息进行解答和速度公式的计算. 23.(1)证明见解析;(2)80︒.【分析】(1)根据平行线的性质和判定定理即可得到结论;(2))根据AB//CD ,∠2=60°,得到∠BAE=∠2=60°,∠BAC=∠ACD ,进而得出∠CAE+∠BAC=60°,又根据∠BAC=2∠EAC ,得到∠BAC=∠ACD=40°,根据内角和定理即可求出∠DCE 的度数.【详解】解:(1)∵//AB CD ,∴B DCE ∠=∠∵B D ∠=∠,∴DCE D ∠=∠,∴//AD BE ,(2)∵//AB CD ,260∠=︒,∴260BAE ∠=∠=︒,BAC ACD ∠=∠∴60CAE BAC ∠+∠=︒∵2BAC EAC ∠=∠,∴40BAC ACD ∠=∠=︒∵1180ACD DCE ∠+∠+∠=︒∴1801180604080DCE ACD ∠=-∠-∠=--=【点睛】本题考查平行线的性质和判定的应用,能熟练地运用定理进行推理是解答此题的关键. 24.(1)见解析;(2)见解析;(3)=【分析】(1)根据作一个角等于已知角的尺规作图即可解答(2)根据作一条线段等于已知线段的尺规作图即可解答(3)结合图形易证ABC EDF △≌△,即可得到答案【详解】(1)如图所示:作法:①以点B 为圆心任意长为半径画圆弧,交AB ,BC 于点G ,H②再以点E 为圆心以①中的半径画圆弧,交EM 于点P③再以点P 为圆心GH 长为半径画圆弧,与②所画的圆弧交于点N ,连接EN 即可 (2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC【点睛】本题考查了尺规作图,解题关键是熟练掌握作一个角等于已知角的尺规作图方法,以及作一条线段等于已知线段的尺规作图方法.25.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.26.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +; (3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=.【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.。
【必考题】七年级数学下期中第一次模拟试题含答案 (3)一、选择题1.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,2.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55ab >D .-3a >-3b3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)4.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .8374x y x y +=⎧⎨+=⎩B .8374y x y x -=-⎧⎨-=-⎩C .8374x y x y -=⎧⎨-=-⎩D .8374x yx y +=⎧⎨-=⎩5.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9 6.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .212+D .212-9.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A.2B.3C.23D .3210.不等式组324323x xx+⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是()A.B.C.D.11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个12.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm二、填空题13.若一个数的平方等于5,则这个数等于_____.14.若不等式组122x ax x+≥⎧⎨->-⎩恰有四个整数解,则a的取值范围是_________. 15.如图,有一块长为32 m、宽为24 m的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m2.16.若关于x的不等式组721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是__________.17.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.18.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.19.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.20.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.三、解答题21.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?22.在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如下不完整的统计图:根据统计图,回答下列问题.(1)请将条形统计图补充完整;(2)扇形统计图中,b=_____,得8分所对应扇形的圆心角度数为_____;(3)若本校共有3000名初一学生,请估算体育测试成绩为10分的人数.23.在学习了“普查与抽样调查”之后,某校八(1)班数学兴趣小组对该校学生的视力情况进行了抽样调查,并画出了如图所示的条形统计图.请根据图中信息解决下列问题:(1)本次抽查活动中共抽查了名学生;(2)已知该校七年级、八年级、九年级学生数分别为360人、400人、540人.①试估算:该校九年级视力不低于4.8的学生约有名;②请你帮忙估算出该校视力低于4.8的学生数.24.下列不等式组313112123x xx x+<-⎧⎪++⎨≤+⎪⎩,把解集在数轴上表示出来,且求出其整数解.25.某校为学生开展拓展性课程,拟在一块长比宽多6 m的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.解:由题意可知点P 的坐标为()25,13-+-, 即P ()3,2-; 故选:A . 【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键.2.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.3.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.C解析:C 【解析】 【分析】设有x 人,物品价值y 钱,根据题意相等关系:(1)8×人数-3=物品价值;(2)7×人数+4=物品价值,据此可列方程组. 【详解】解:设有x 人,物品价格为y 钱,根据题意:8374x y x y -=⎧⎨-=-⎩故选C . 【点睛】此题主要考查列方程组解应用题,找出题目中的等量关系,列出相应的方程组是解题的关键.解析:C 【解析】 【分析】利用加减消元法解方程组即可. 【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得: 3x+3y+3z=90. ∴x+y+z=30 ④ ②-①得: y+z-2x=0 ⑤ ④-⑤得: 3x=30 ∴x=10 故答案选:C . 【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.6.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.7.A解析:A 【解析】 【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 8.D解析:D【解析】【分析】【详解】解:∵1<2<4,∴1<2<2,∴﹣2<2-<﹣1,∴2<42-<3,∴a=2,b=42222--=-,22-,∴1222 2212222ab+-=-=-=--.故选D.【点睛】本题考查估算无理数的大小.9.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDS A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.A解析:A 【解析】 【分析】 【详解】324{32? 3x x x <+-≥①②,由①,得x <4,由②,得x≤﹣3,由①②得, 原不等式组的解集是x≤﹣3; 故选A .11.C解析:C 【解析】 【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可. 【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确. ④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确. 故选C . 【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C . 考点:平移的性质.二、填空题13.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】 【分析】根据平方根的定义即可求解. 【详解】若一个数的平方等于5,则这个数等于:故答案为: 【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.14.3≤a <4【解析】【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-解析:3≤a <4 【解析】 【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案. 【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a , 解不等式②x <1,∴不等式组得解集为-a≤x <1, ∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a<4,故答案为:3≤a<4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a的不等式组是解题关键.15.【解析】【分析】【详解】解:如图两条直道分成的四块草坪分别为甲乙丙丁把丙和丁都向左平移2米然后再把乙和丁都向上平移2米组成一个长方形长为32-2=30米宽为24-2=22米所以四块草坪的总面积是30解析:【解析】【分析】【详解】解:如图,两条直道分成的四块草坪分别为甲、乙、丙、丁,把丙和丁都向左平移2米,然后再把乙和丁都向上平移2米,组成一个长方形,长为32-2=30米,宽为24-2=22米,所以四块草坪的总面积是30×22=660(㎡).故答案为:660.【点睛】本题考查了平移的应用,将草坪平移组成一个长方形是解决此题的关键.16.6<m≤7【解析】由x-m<07-2x≥1得到3≤x<m则4个整数解就是3456所以m的取值范围为6<m≤7故答案为6<m≤7【点睛】本题考查了一元一次不等式组的整数解利用数轴就能直观的理解题意列出解析:6<m≤7.【解析】由x-m<0,7-2x≥1得到3≤x<m,则4个整数解就是3,4,5,6,所以m的取值范围为6<m≤7,故答案为6<m≤7.【点睛】本题考查了一元一次不等式组的整数解,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.17.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a=2,∴2a+1=2×2+1=5,∴m=5²=25.故答案为2, 25.18.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13解析:135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键. 19.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(解析:(5,2)【解析】【分析】设点P的坐标为(x,y),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.【详解】设点P的坐标为(x,y),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P的坐标为(5,2).故答案是:(5,2).【点睛】考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.三、解答题21.26元.【解析】【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.【详解】解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩ 解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.【点睛】本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.22.(1)图见详解;(2)60,36°;(3)1800.【解析】【分析】(1)根据题意用总人数减去其它的人数求出10分的女生人数,从而补全统计图;(2)根据题意用10分的人数除以总人数求出b 的值;用得8分的人数所占的百分比乘以360°即可得出答案;(3)根据题意用成绩为10分人数除以600再乘以本校共有3000名初一学生,即可得出体育测试成绩为10分的人数.【详解】解:(1)10分的女生人数有600-20-10-40-20-80-70-180=180(人),补图如下:(2)10分所占的百分比是:100%60%360600⨯=,则b=60, 得8分所对应扇形的圆心角度数为:402033606060+︒⨯=︒. 故答案为:60,36°. (3)根据题意得:18018030001800600+⨯=(人). 即体育测试成绩为10分的人数为10人.【点睛】 本题考查的是条形统计图的综合运用.注意掌握读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.(1)145;(2)①216,②该校视力低于4.8的学生数为604人.【解析】(1)求出各组的人数的和即可;(2)①利用九年级的人数乘以对应的比例即可求解;②利用各班的人数乘以对应的比例求解.详解:(1)本次抽查的人数是:10+35+25+25+30+20=145(人),故答案是:145;(2)①九年级视力不低于4.8的学生约有540×2030+20=216(人),故答案是:216;②该校视力低于4.8的学生数360×1045+400×2550+540×3050=604(人).点睛:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.不等式组的解集为-5≤x<-2;整数解为:-5,-4,-3,数轴表示见解析.【解析】【分析】分别求出两个不等式的解集,再找出两个解集的公共部分即可得不等式组的解集,根据解集画出数轴并找出整数解即可答案.【详解】313112123x xx x①②+<-⎧⎪⎨++≤+⎪⎩解不等式①得:x<-2,解不等式②得:x≥-5,∴不等式组得解集为-5≤x<-2,数轴表示如下:不等式组的整数解为:-5,-4,-3,【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,正确得出各不等式的解集是解题关键.25.(1)大棚的宽为14米,长为8米;(2)选择方案二更好.【解析】分析:(1)设大棚的宽为a米,长为b米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案;(2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得: 22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元), 若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元) 显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.。
一、选择题1.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x 与售价y 如下表: 个数x/个 1 2 3 4 … 售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x 表示售价y 的关系式中,正确的是 ( ) A .y=(8+0.3)xB .y=8x+0.3C .y=8+0.3xD .y=8+0.3+x2.已知变量x ,y 满足下面的关系: x … -3 -2 -1 1 2 3 … y…11.53-3-1.5-1…则x ,y 之间的关系用函数表达式表示为( ) A .y =3xB .y =-3x C .y =-3xD .y =3x 3.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( ) A .Q =0.2t B .Q =20﹣0.2t C .t =0.2QD .t =20﹣0.2Q4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误..的是( )A .骑车的同学比步行的同学晚出发30分钟B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时.5.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( ) A .70︒B .60︒C .30D .20︒6.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°7.如图,直线AB ∥CD ,AP 平分∠BAC ,CP ⊥AP 于点P ,若∠1=50°,则∠2的度数为( )A .30°B .40°C .50°D .60°8.下列图形中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,将大小相同的四个小正方形按照图①和图②所示的两种方式放置于两个正方形中,根据两个图形中阴影部分的面积关系,可以验证的公式是( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .22()()4a b a b ab -=+-D .22()()a b a b a b +-=-10.下列计算中,错误的是( ) A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+ D .()m x y m my -+=-+ 11.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21 B .23 C .25D .2912.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3二、填空题13.园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S (平方米)与工作时间t (小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为__平方米.14.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y (千克)与时间t (小时)之间的关系式是__________,自变量t 的取值范围是__________. 15.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.16.如图AB ∥CD ,2832B D E ∠=︒∠=︒∠=,,则____________17.如图,直线AB 、CD 相交于点O ,OE AB ⊥,垂足为点O ,:2:3COE BOD ∠∠=,则AOD ∠=__________.18.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.19.计算:20(2)3--⋅=______. 20.已知31x =+,31y =-,22x y -=_____.三、解答题21.已知函数y=中,当x=a 时的函数值为1,试求a 的值.22.如图所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是 ℃,温度是0℃时的时刻是 时,最暖和的时刻是 时,温度在-3℃以下的持续时间为 时;(2)从图象中还能获取哪些信息?(写出1~2条即可)23.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.24.已知:直线AB 与直线CD 交于点O ,过点O 作OE CD ⊥.(1)如图1,若2AOE AOC ∠=∠,求∠BOE 的度数;(2)如图2,过点O 画直线FG 满足射线OF 在EOD ∠内部,且使2AOC EOF ∠=∠,在不添加任何辅助线的情况下,请直接写出与EOF ∠互余的角.25.(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值;(2)若x 满足22(2017)(2015)4036x x -+-=,求(2017)(2015)x x --的值;(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形 NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积.(结果必须是一个具体的数值)26.已知多项式()()2214A x x y =+--.(1)化简多项式A ;(2)若21y x =-,求A 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】依题意得:y=(8+0.3)x ; 故选A . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.2.C解析:C 【解析】 【分析】由x 、y 的关系可求得其满足反比例关系,再由待定系数法即可得出解析式.【详解】设此函数的解析式为y=kx(k≠0), 把x=-3,y=1, 代入得k=-3,故x ,y 之间用关系式表示为y=-3x. 故选:C . 【点睛】本题考查了用待定系数法求反比例函数的解析式,即图象上点的横纵坐标积为一定值.3.B解析:B 【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可. 【详解】由题意可得:Q=20-0.2t. 故选B. 【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键.4.B解析:B 【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确; 故选B5.C解析:C 【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得. 【详解】A ∠与B 互补,且120A ∠=︒, 18060B A ∴∠=︒-∠=︒, 又B ∠与C ∠互余, 9030C B ∴∠=︒-∠=︒, 故选:C . 【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.7.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=80°,再根据CP⊥AP,可得出∠ACP的度数,即可得∠2的度数.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,∵AP平分∠BAC,∴∠BAC=2∠1=100°,∴∠ACD=180°﹣100°=80°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°﹣∠1=90°﹣50°=40°,∴∠2=∠ACD-∠ACP=80°﹣40°=40°.故选:B.【点睛】本题考查平行线的性质、角平分线的定义及垂直的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.解析:C 【分析】根据对顶角的定义即可判断. 【详解】解:A 、∠1与∠2的两边没有都互为反向延长线,故A 不是对顶角; B 、∠1与∠2的两边没有都互为反向延长线,故B 不是对顶角; C 、∠1与∠2符合对顶角定义,是对顶角,故C 选项正确; D 、∠1与∠2没有公共顶点,故D 不是对顶角; 故选:C. 【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.9.A解析:A 【分析】根据图形阴影部分的面积的不同求法可得等式. 【详解】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a -b )的正方形,因此面积为(a -b )2,由图2可知,阴影部分的面积等于边长为a 的正方形的面积减去之间十字架的面积,即:a 2-2ab +b 2,因此有(a -b )2=a 2-2ab +b 2, 故选:A . 【点睛】本题考查平方差公式、完全平方公式的几何背景,用不同方法表示阴影部分的面积是得出答案的关键.10.D解析:D 【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可. 【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意;B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意; 故选D . 【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.11.D解析:D 【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值. 【详解】解:∵()2222a b a b ab +=++, ∴()2222a b a b ab +=+-,∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=.故选:D . 【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.12.A解析:A 【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断. 【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误; 故选:A . 【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.二、填空题13.50【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米休息后园林队每小时绿化面积为100÷2=50(平方米)故答案为50考点:函数图象解析:50 【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米,休息后园林队每小时绿化面积为100÷2=50(平方米). 故答案为50 考点:函数图象14.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为解析:100.5y t =- 020t ≤≤ 【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量, ∴0.5t ⩽10, 解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤15.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72 【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可. 【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72, ∴180-x=108°;∴较小角的度数为72°. 故答案为:72. 【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点.16.60°【分析】过点E 作EF ∥AB 然后根据两直线平行内错角相等求解即可【详解】解:如图过点E 作EF ∥AB ∵AB ∥CD ∴AB ∥EF ∥CD ∴∠1=∠B=28°∠2=∠D=32°∴∠E=∠1+∠2=28°+解析:60°【分析】过点E作EF∥AB,然后根据两直线平行,内错角相等求解即可.【详解】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠B=28°,∠2=∠D=32°,∴∠E=∠1+∠2=28°+32°=60°.故答案为:60°.【点睛】本题考查了平行线的性质,此类题目过拐点作平行线是常用的方法之一,要熟练掌握并灵活运用.17.【分析】利用垂直的定义结合∠COE:∠BOD=2:3可求∠BOD再根据邻补角的定义得出答案【详解】解:∵OE⊥AB∴∠BOE=90°∴∠COE+∠BOD=90°∵∠COE:∠BOD=2:3∴∠BOD解析:126【分析】利用垂直的定义结合∠COE:∠BOD=2:3可求∠BOD,再根据邻补角的定义得出答案.【详解】解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.故答案为:126°【点睛】此题主要考查了垂线以及邻补角等知识,正确得出∠BOD的度数是解题关键.18.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1相加即可得结果.【详解】解:正方形中,S 阴影=a 2-b 2;梯形中,S 阴影=12(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a 2-b 2=(a+b )(a-b ),故答案为:a 2-b 2=(a+b )(a-b ).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n 2-(n-1)2=n 2故答案为:n 2.【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键. 19.【分析】根据0指数和负指数的意义计算即可【详解】解:故答案为:【点睛】本题考查了0指数和负指数的运算解题关键是熟悉0指数和负指数的意义 解析:14【分析】根据0指数和负指数的意义计算即可.【详解】 解:22011(2)31(2)4--⋅=⨯=-, 故答案为:14. 【点睛】本题考查了0指数和负指数的运算,解题关键是熟悉0指数和负指数的意义. 20.;【分析】根据平方差公式化简代入求值即可;【详解】∵∴原式;故答案是【点睛】本题主要考查了代数式求值准确利用平方差公式是解题的关键解析:【分析】根据平方差公式化简,代入求值即可;【详解】()()22x y x y x y -=+-,∵31x =+,31y =-,∴原式()()3131313143=++-+-+=; 故答案是43.【点睛】本题主要考查了代数式求值,准确利用平方差公式是解题的关键.三、解答题21.a=3【解析】【分析】根据函数值与自变量的关系是一一对应的,代入函数值,可得自变量的值.【详解】解:函数y=中,当x=a 时的函数值为1,=1,两边都乘以(a+2)得2a ﹣1=a+2解得a=3.【点睛】本题考查函数值,代入函数值可得相应自变量的值.22.(1)-1,12,14,8;(2)见解析.【解析】试题分析:(1)找到图象上与相应时间(或温度)对应的点的纵坐标(或横坐标)即可得到本题答案;(2)本题答案不唯一,符合函数图象所反映的实际情况的信息都可以.试题(1)由图象可知:①20时的温度是“-1℃”;②温度是0℃的时刻是12时;③最暖和的时刻是14时;④温度在-3℃以下持续的时间为8小时;(2)从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息.23.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】 170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.24.(1)120°;(2)FOD ∠,COG ∠,BOG ∠,AOF ∠【分析】(1)根据垂直的定义可得90COE DOE ∠=∠=︒,根据角的和差倍数关系可得:30AOC ∠=︒,根据对顶角和角的和差即可求解;(2)根据(1)可知∠EOF =15°,分别计算各角的度数,根据余角的定义即可求解.【详解】(1)解:∵OE CD ⊥∴90COE DOE ∠=∠=︒∴90AOC AOE ∠+∠=︒∵2AOE AOC ∠=∠∴290AOC AOC ∠+∠=︒解得:30AOC ∠=︒∵∠BOD =∠AOC =30°∴∠BOE =∠BOD +∠DOE =90°+30°=120°(2)由(1)知30AOC ∠=︒,∴∠AOE =60°又2AOC EOF ∠=∠∴∠EOF =15°,∵∠EOF +∠DOF =90°=∠DOE∵∠DOF =∠COG =75°∴∠EOF +∠COG =90°∵∠AOE +∠EOF =60°+15°=∠AOF =75°∴∠AOF +∠EOF =90°∵∠AOF =∠BOG∴∠BOG +∠EOF =90°故:∠DOF 、∠COG 、∠AOF 、∠BOG 都是与EOF ∠互余的角.【点睛】本题考查垂直的定义及性质,对顶角的性质,余角的定义,等角代换,解题的关键是熟练掌握上述所学知识点.25.(1)120;(2)2016;(3)2100【分析】(1)设(30-x )=m ,(x -20)=n ,利用完全平方公式变形计算;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,所以2cd =(c 2+d 2)-(c -d )2=4036-22=4032,可得cd =2016,即可解答;(3)根据正方形ABCD 的边长为x ,AE =10,CG =20,所以DE =(x -10),DG =x -20,得到(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,从而得到ab =500,a -b =(x -10)-(x -20)=10,根据举例求出a 2+b 2,即可求出阴影部分的面积.【详解】解:(1)设(30-x )=m ,(x -20)=n ,则(30-x )(x -20)=mn =-10,m +n =(30-x )+(x -20)=10,∴(30-x )2+(x -20)2=m 2+n 2=(m +n )2-2mn =(-10)2-2×(-10)=120;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,∴2cd =(c 2+d 2)-(c -d )2=4036-22=4032,∴cd =2016,∴(2017-x )(2015-x )=cd =2016.(3)∵正方形ABCD 的边长为x ,AE =10,CG =20,∴DE =(x -10),DG =x -20,∴(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,∴ab =500,a -b =(x -10)-(x -20)=10,∴a 2+b 2=(a -b )2+2ab =102+2×500=1100,∴阴影部分的面积为:a 2+b 2+2ab =1100+2×500=2100.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化运用. 26.(1)214x y ++;(2)3【分析】(1)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号就先算小括号里面的;(2)由21y x =-变形可得x+2y=1,然后整体代入求值即可.【详解】解:(1)A=(x+1)2﹣(x 2﹣4y )=x 2+2x+1﹣x 2+4y=2x+1+4y ;(2)∵ 2y=1-x∴x+2y=1,由(1)得:A=2x+1+4y=2(x+2y)+1∴A=2×1+1=3.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
一、选择题1.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)2.如图,y 与x 之间的关系式为( )A .y=x+60B .y=x+120C .x=60+yD .y=30+x3.某地海拔高度h 与温度T 的关系可用T=21-6h 来表示(其中温度单位为℃,海拔高度单位为km),则该地区某海拔高度为2 000 m 的山顶上的温度为 ( ) A .9 ℃B .7 ℃C .6 ℃D .3 ℃4.(2017·辽宁鞍山一模)甲、乙两人进行慢跑练习,慢跑路程y (单位:m)与所用时间t (单位:min)之间的关系如图所示,下列说法错误的是( )A .前2 min,乙的平均速度比甲快B .甲、乙两人8 min 各跑了800 mC .5 min 时两人都跑了500 mD .甲跑完800 m 的平均速度为100 m/min 5.一个角的余角是它的补角的25,这个角是( ) A .30B .60︒C .120︒D .150︒6.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°7.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角 ③∠1=∠4 ④∠4+∠5=180° 其中,正确的是( )A .①③B .②④C .②③D .③④8.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠5 9.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b10.下列式子中,计算正确的是( ) A .235a a a += B .236a a a ⋅=C .)(235aa -=D .)(326aa -=-11.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m - 12.如果4a 2﹣ka +1是完全平方式,那么k 的值是( )A .﹣4B .±4C .4D .±8二、填空题13.根据图中的程序,当输入x =2时,输出的结果y =_______.14.若用一根长16米的铁丝围成一个长方形,长方形的面积S (m 2)与长方形的一条边长x (m )之间的关系如下表: x/m 1 2 3 4 5 6 7 S/m 2712151615127根据表格中两个变量之间的关系,写出你发现的一条信息___________________. 15.一个角的余角比它的补角的一半少30,则这个角的度数为___________. 16.已知α∠的余角是354520'''︒,则α∠补角的度数是_______.17.如图,AB ∥CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.18.若x 2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为_________.19.如果210x x m -+是一个完全平方式,那么m 的值是__________. 20.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;432(1)(1)x x x x x -++++51x =-……;则20082007200622+2+2++2+2+1=_____.三、解答题21.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么? (3)爷爷每天散步多长时间? (4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度. 22.某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系: 通话时间/分 1234567…电话费/元0.4 0.8 1.2 1.6 2.0 2.4 2.8 …(2)用x 表示通话时间,用y 表示电话费,请写出随着x 的变化,y 的变化趋势是什么? 23.如图,直线AB 与CD 相交于点O ,OF ,OD 分别是AOE ∠,∠BOE 的平分线. (1)写出DOE ∠的补角;(2)若64BOE ∠=︒,求AOD ∠和BOF ∠的度数;(3)射线OD 与OF 之间的夹角DOF ∠等于多少度?请说明理由.24.如图,已知ABC 中,AB AC =,点P 在BC 上.(1)试用直尺和圆规在AC 上找一点D ,使CPD BAP ∠=∠(不写作法,但需保留作图痕迹);(2)在(1)的条件下,若2APC ABC ∠=∠;求证://PD AB .25.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷(-2x ),其中x=-3,y=﹣202026.先化简,再求值.()()()()22522334b a b a b a b a b+--+---,其中a ,b 满足()2210a b -+-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.2.A解析:A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,∴y=x+60.故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.3.A解析:A【分析】把h=2000米=2千米代入T=21-6h即得.【详解】2000米=2千米,T=21-6h=21-6×2=9℃.故选B.【点睛】本题考查函数值的知识,根据题目的信息代入运算即可.4.B解析:B【解析】试题分析:前2min,乙跑了300m,甲跑的路程小于300m,从而可知前2min,乙的平均速度比甲快,故选项A正确;由图可得,甲8min跑了800m,乙8min跑了700m,故选项B错误;由图可知,5min时两人都跑了500m,故选项C正确;由图可知,甲8min跑了800m,可得甲跑完800m的平均速度为100m/min,故选项D正确.故选B.点睛:本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.5.A解析:A【分析】设这个角的度数是x°,根据题意得出方程2901805x x-=-(),求出方程的解即可.【详解】解:设这个角的度数是x°,则2901805x x-=-(),解得:x=30,即这个角的度数是30°,故选A.【点睛】本题考查了余角和补角,注意:∠A的余角是90°-∠A,∠A的补角是180°-∠A.6.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.7.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD , ∴∠4+∠5≠180°故错误, 故选:C . 【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.8.D解析:D 【分析】根据同位角定义可得答案. 【详解】解:解:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5. 故选:D . 【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.9.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.10.D解析:D 【分析】分别运用合并同类项法则,同底数幂乘法法则以及幂的乘方法则计算出各选项的结果再进行判断即可. 【详解】解:A 、235a a a +≠,故此选项不符合题意; B 、235a a a ⋅=,故此选项不符合题意;C 、)(236a a -=,故此选项不符合题意; D 、)(326a a -=-计算正确,符合题意;故选:D . 【点睛】此题主要考查了合并同类项、同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答此题的关键.11.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.B解析:B 【分析】根据完全平方式的特点解答即可. 【详解】解:因为4a 2﹣ka +1是完全平方式, 所以﹣ka =±2×2a ×1,所以k =±4. 故选:B . 【点睛】本题考查了完全平方式的知识,属于常考题型,熟练掌握完全平方式的特点是解题的关键.二、填空题13.3【解析】解:当输入x=2时因为x >1所以y=﹣x+5=﹣2+5=3故答案为3解析:3 【解析】解:当输入x =2时,因为x >1,所以y =﹣x +5=﹣2+5=3.故答案为3.14.长方形的周长不变时长与宽的差越小长方形的面积越大(答案不唯一)【解析】观察表格可以发现:长方形的周长不变时长与宽的差越小长方形的面积越大故答案为长方形的周长不变时长与宽的差越小长方形的面积越大(答案解析:长方形的周长不变时,长与宽的差越小,长方形的面积越大.(答案不唯一)【解析】观察表格可以发现:长方形的周长不变时,长与宽的差越小,长方形的面积越大, 故答案为长方形的周长不变时,长与宽的差越小,长方形的面积越大.(答案不唯一)15.【分析】这个角的度数为x 根据题意列一元一次方程并求解即可得到答案【详解】这个角的度数为x 根据题意得:∴∴故答案为:【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质从而完成 解析:60︒【分析】这个角的度数为x ,根据题意,列一元一次方程并求解,即可得到答案. 【详解】 这个角的度数为x根据题意得:()()190301802x x -+=- ∴180260180x x -+=- ∴60x = 故答案为:60︒. 【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.16.125°45′20″【分析】当两角的和为90°时则两角互余当两个角和为180°则两角互补角度之间的等量关系为:1°=60′1′=60″【详解】根据定义:∵∠α的余角是35°45′20′′∴∠α的度数解析:125°45′20″ 【分析】当两角的和为90°时则两角互余,当两个角和为180°则两角互补,角度之间的等量关系为:1°=60′,1′=60″. 【详解】 根据定义:∵∠α 的余角是 35°45′20′′∴∠α的度数是:90°-35°45′20″=54°14′40″. ∠α的补角度数是: 180°-∠α =180°-54°14′40″ =125°45′20″ 故答案为:125°45′20″ 【点睛】本题考查了余角和补角的知识,属于基础题,解题的关键是掌握当两角的和为90°时则两角互余,当两个角和为180°则两角互补.17.36°【分析】由平行线的性质得再由角平分线的定义即可求出答案【详解】解:∵=108°∴∵∥∴∵平分∴;故答案为:36°【点睛】本题考查了平行线的性质角平分线的定义以及邻补角的定义解题的关键是熟练掌握解析:36° 【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案. 【详解】解:∵EFD ∠=108°, ∴18010872CFE ∠=︒-︒=︒, ∵AB ∥CD ,∴72AEN CFE ∠=∠=︒, ∵EG 平分AEN ∠,∴172362GEN ∠=⨯︒=︒; 故答案为:36°. 【点睛】本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.18.6【分析】原式利用完全平方公式平方差公式化简去括号整理后将已知等式代入计算即可求出值【详解】解:∵x2+4x-4=0即x2+4x=4∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12解析:6 【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值. 【详解】解:∵x 2+4x-4=0,即x 2+4x=4,∴原式=3(x 2-4x+4)-6(x 2-1)=3x 2-12x+12-6x 2+6=-3x 2-12x+18=-3(x 2+4x )+18=-12+18=6. 故答案为:6. 【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.19.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25 【分析】利用完全平方公式的结构特征,即可求出m 的值. 【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.20.【分析】观察其右边的结果:第一个是x2−1;第二个是x3−1;…依此类推得出第n 个的结果从而得出要求的式子的值【详解】根据给出的式子的规律可得:(x−1)(xn +xn−1+…x +1)=xn +1−1则解析:200921-【分析】观察其右边的结果:第一个是x 2−1;第二个是x 3−1;…依此类推,得出第n 个的结果,从而得出要求的式子的值.【详解】根据给出的式子的规律可得:(x−1)(x n +x n −1+…x +1)=x n +1−1,则22008+22007+22006+……+22+2+1=(2-1)×(22008+22007+22006+……+22+2+1)=22009−1;故答案为:22009−1.【点睛】本题考查了平方差公式,发现规律:右边x 的指数正好比前边x 的最高指数大1是解题的关键.三、解答题21.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可; (3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案; (4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.22.(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)y随着x的增大而增大.【分析】(1)根据观察表格,可得变量,根据变量间的关系,可得自变量、因变量;(2)根据单价、时间、话费间的关系,可得函数关系式,根据正比例函数的性质,可得答案.【详解】解:(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)由表格数据可知y=0.4x,y随着x的增大而增大.【点睛】本题考查变量,解题关键是能够看出两个变量之间的变化关系.23.(1)∠COE,∠AOD,∠BOC;(2)∠AOD=148°,∠BOF=122°;(3)90°,见解析【分析】(1)根据互补的定义结合角平分线的定义确定∠DOE的补角;(2)先根据角平分线的定义得出∠BOD的度数,再由邻补角定义可得∠AOD=180°-∠BOD;先根据邻补角定义可得∠AOE=180°-∠BOE,再由角平分线的定义得出∠AOF的度数,从而求解;(3)运用平角的定义和角平分线的定义,证明∠DOF是90°,得直线OD、OF的位置关系.【详解】解:(1)由直线AB与CD相交于点O∴∠DOE+∠COE=180°;∠BOD+∠AOD=180°又∵OD平分∠BOE∴∠DOE=∠BOD∴∠DOE+∠AOD=180°又∵∠AOD=∠BOC∴∠DOE+∠BOC=180°∴∠DOE的补角为∠COE,∠AOD,∠BOC;(2)因为OD是∠BOE的平分线,∠BOD=12∠BOE=32°,所以∠AOD=180°-∠BOD=148°,因为∠AOE=180°-∠BOE=116°,OF是∠AOE的平分线,所以∠AOF=12∠AOE=58°,所以∠BOF=180°-∠AOF=122°即∠AOD=148°,∠BOF=122°;(3)因为OF ,OD 分别是∠AOE ,∠BOE 的平分线,所以∠DOF=∠DOE+∠EOF =12∠BOE+12∠EOA =12(∠BOE+∠EOA ) =12×180° =90°.【点睛】本题考查了角平分线、补角、垂线的定义以及角的计算,属于基础题型,比较简单. 24.(1)如图所示.见解析;(2)见解析.【分析】(1)作∠CPD=∠BAP ,则∠CPD 的另一边与AC 的交点即为所求作的点D ;(2)证明CPD ABP ∠=∠即可.【详解】解:(1)如图所示.(2)∵2APC APD DPC ABC BAP ABC ∠=∠+∠=∠+∠=∠∴BAP ABC ∠=∠∵BAP CPD ∠=∠∴CPD ABC ∠=∠∴//PD AB .【点睛】此题主要考查了作一个角等于已知角,以及平行线的判定,熟练掌握判定定理是解答此题的关键.25.x y +;-2023【分析】根据完全平方公式、平方差公式、单项式乘多项式、多项式除以单项式可化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:[(x ﹣2y)2+(x ﹣2y)(x+2y)﹣2x(2x ﹣y)]÷(-2x)=22222(44442)(2)x xy y x y x xy x -++--+÷-2(22)(2)x xy x =--÷-x y =+.当x=﹣3,y=﹣2020时,原式=320202023--=-.【点睛】本题考查了整式的混合运算—化简求值,解题的关键是熟练掌握整式的混合运算的法则. 26.22315a b +; 27.【分析】根据非负数及整式的运算法则即可求解.【详解】解:∵()2210a b -+-=,∴a-2=0,1-b=0,∴a=2,b=1,∴原式=()2222251062334ab b a ab ab b ba +--+++--=222225054631ab b a a ab b b +--+++=22315a b + ∴当a=2,b=1时,原式=23215121527⨯+=+=.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.。
一、选择题1.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是 ( ).A .B .C .D .2.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (m 2)与工作时间t (h )的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A .100m 2B .80m 2C .50m 2D .40m 23.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .4.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y 如下表: 长度x/m 1 2 3 4 … 售价y/元8+0.316+0.624+0.932+1.2…下列用长度x 表示售价y 的关系式中,正确的是( ) A .y=8x+0.3B .y=(8+0.3)xC .y=8+0.3xD .y=8+0.3+x5.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒6.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O '为圆心,OC 为半径作弧,交OA '于'C ; (4)以C '为圆心,OC 为半径作弧,交前面的弧于D ; (5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角. 以上作法中,错误的一步是( ) A .()2B .()3C .()4D .()57.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .1268.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是( )A .35°B .45°C .50°D .65°9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①()()2a b m n ++;②()()2a m n b m n +++; ③()()22m a b n a b +++;④22am an bm bn +++,你认为其中正确的有( )A .①②B .③④C .①②③D .①②③④10.下列运算中正确的是( ) A .235x y xy +=B .()3253x yx y =C .826x x x ÷=D .32622x x x ⋅=11.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=12.已知23a =,26b =,212c =,则a ,b ,c 的关系为①1b a =+,②2c a =+,③2a c b +=,其中正确的个数有( ) A .0个B .1个C .2个D .3个二、填空题13.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为_____,该汽车最多可行驶_____小时. 14.在公式s=v 0t+2t 2(v 0为已知数)中,常量是________ ,变量是________ . 15.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若220∠=︒,则1∠=___________.16.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.17.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.18.若(x +m )与(x +3)的乘积中不含x 的一次项,则m =_____. 19.计算:32(2)a b -=________.20.计算:20202019122⎛⎫⨯= ⎪⎝⎭_______.三、解答题21.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么? (3)爷爷每天散步多长时间? (4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度. 22.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少? (2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?23.如图1,已知//AB CD ,点E 和点H 分别在直线AB 和CD 上,点F 在直线AB 和CD 之间,连接EF 和HF .(1)求AEF CHF EFH ∠+∠+∠的度数;(2)如图2,若2AEF CHF EFH ∠+∠=∠,HM 平分CHF ∠交FE 的延长线于点M ,80DHF ∠=︒,求FMH ∠的度数.24.已知点O 是直线AB 上的一点,∠COE =90°,OF 是∠AOE 的平分线. (1)当点C ,E ,F 在直线AB 的同侧(如图1所示)时,试说明∠BOE =2∠COF ;(2)当点C 与点E ,F 在直线AB 的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2中的射线OF 绕点O 顺时针旋转m °(0<m <180°)得射线OD .设∠AOC =n °,若∠BOD =(60-23n )°,则∠DOE 的度数是 (用含n 的式子表示)25.(11219(2)(3)2π-⎛⎫---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+26.先化简,再求值()()()()()21231132x x x x x ----+-+,其中23x =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0, 故选C .【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.2.D解析:D 【解析】由纵坐标看出:休息前绿化面积是50平方米,休息后绿化面积是170−50=120(平方米), 所以120÷3=40(平方米/时) 故选:D.3.D解析:D 【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .4.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.C解析:C 【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得. 【详解】A ∠与B 互补,且120A ∠=︒, 18060B A ∴∠=︒-∠=︒, 又B ∠与C ∠互余, 9030C B ∴∠=︒-∠=︒, 故选:C . 【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.6.C解析:C 【分析】根据作一个角等于已知角的方法解决问题即可.解:(4)错误.应该是以C'为圆心,CD为半径作弧,交前面的弧于D';故选:C.【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.7.A解析:A【分析】根据平行线的性质可求解∠GFD的度数,再结合垂线的定义可求解.【详解】解:∵AB//CD,∠1=54°,∴∠GFD=∠1=54°,∵EF⊥CD,∴∠EFD=90°,即∠2+∠GFD=90°,∴∠2=36°.故选:A.【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.C解析:C【分析】根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.【详解】解:∵a∥b,∴BC与b所夹锐角等于∠1=40°,又AB⊥BC,∴∠ABC=90°∴∠2=180°-90°-40°=50°故选:C.【点睛】本题考查了平行线的性质以及平角的概念,熟练应用两直线平行同位角相等是解题关键.9.D【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和, 【详解】解:表示该长方形面积的多项式 ①(2a+b )(m+n )正确; ②2a (m+n )+b (m+n )正确; ③m (2a+b )+n (2a+b )正确; ④2am+2an+bm+bn 正确. 故选:D . 【点睛】此题主要考查了多项式乘以多项式的应用,关键是正确掌握图形的面积表示方法.10.C解析:C 【分析】按照合并同类项,幂的运算法则计算判断即可. 【详解】∵2x 与3y 不是同类项, ∴无法计算, ∴选项A 错误; ∵()3263x yx y =,∴选项B 错误; ∵88262x x x x -==÷, ∴选项C 正确;∵32325222x x x x +⋅==, ∴选项D 错误; 故选C. 【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键.11.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.12.D解析:D 【分析】根据根据同底数幂的乘法,利用等式的性质将2a =3,2b =6,2c =12进行适当的变形可得答案. 【详解】 解:23a =,26b =,222362a b ∴⨯=⨯==,122a b +∴=,1a b ∴+=,故①正确;26b =,212c =,2226122b c ∴⨯=⨯==,122b c +∴=, 1b c ∴+=,112c a a ∴=++=+,故②正确; 1a b +=,1b c +=,(1)(1)a b b c ∴+-+=-,a b b c -=-,2a c b +=,故③正确; 综上①②③正确; 故选D . 【点睛】本题考查同底数幂的乘法,利用等式的性质等知识,根据同底数幂的乘法和等式的性质将原式进行适当的变形是得出答案的前提.二、填空题13.y =40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x 当y =解析:y =40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程.【详解】依题意得,油箱内余油量y(升)与行驶时间x(小时)的关系式为:y=40﹣5x,当y=0时,40﹣5x=0,解得:x=8,即汽车最多可行驶8小时.故答案为:y=40﹣5x,8.【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.14.v02st【分析】因为在公式s=v0t+2t2(v0为已知数)中再结合函数的概念即可作出判断【详解】解:因为在公式s=v0t+2t2(v0为已知数)所以v02是常量st是变量【点睛】本题考查了变量与解析:v0、2 s、t【分析】因为在公式s=v0t+2t2(v0为已知数)中,再结合函数的概念即可作出判断.【详解】解:因为在公式s=v0t+2t2(v0为已知数),所以v0、2 是常量,s、t是变量.【点睛】本题考查了变量与常量的识别,属于简单题,熟悉变量之间的定义是解题关键.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;常量与变量:在某一变化过程中始终保持不变的量叫常量;不断变化的量叫变量.15.【分析】先根据平行线的性质求出∠3的度数再由平角的定义即可得出结论【详解】解:如图∵直角三角板的直角顶点在直线a上∴∠2+∠3=180°-90°∴∠3=180°-90°-20°=70°∵a∥b∠3=解析:70【分析】先根据平行线的性质求出∠3的度数,再由平角的定义即可得出结论.【详解】解:如图,∵直角三角板的直角顶点在直线a上,∴∠2+∠3=180°-90°∴∠3=180°-90°-20°=70°,∵a∥b,∠3=70°,∴∠1=∠3=70°,故答案为:70°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,内错角相等.16.64°116°【分析】根据垂线的定义进行作答【详解】由OE⊥AB得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°.【分析】根据垂线的定义进行作答.【详解】由OE⊥AB,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.17.165【分析】根据两直线平行内错角相等求出∠DEC然后由角的和差关系求得∠CEF最后由邻补角的性质求得结果【详解】解:∵ED∥BC∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165【分析】根据两直线平行,内错角相等求出∠DEC,然后由角的和差关系求得∠CEF,最后由邻补角的性质求得结果.【详解】解:∵ED∥BC,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°.∴∠AEF=180°-∠CEF=165°,故答案为:165.【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键.18.﹣3【分析】先根据已知式子可找出所有含x的项合并系数令含x项的系数等于0即可求m的值【详解】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m又∵乘积中不含x的一次项∴3+解析:﹣3.【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【详解】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.【点睛】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.19.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b-=624a b,故答案为:624a b.【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.【分析】原式把变形为然后逆运用积的乘方进行运算即可得到答案【详解】解:=====故答案为:【点睛】此题主要考查了幂的运算熟练掌握积的乘方运算法则是解答此题的关键解析:1 2【分析】原式把202012⎛⎫⎪⎝⎭变形为20191122⎛⎫⎪⨯⎝⎭,然后逆运用积的乘方进行运算即可得到答案.【详解】解:2020 2019122⎛⎫⨯ ⎪⎝⎭=2019 2⨯201911 22⎛⎫⎪⨯⎝⎭=201911222⎛⎫⨯ ⎪⎝⎭⨯ =2019112⨯ =112⨯=12. 故答案为:12. 【点睛】 此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.三、解答题21.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可; (3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案; (4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.22.(1)25千米/分,15千米/分;(2)30分钟;(3)8:05和8:50. 【解析】【分析】 (1)根据观察横坐标,可得去超市的时间,从超市返回的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;(2)根据观察横坐标,可得答案;(3)根据路程除以速度,可得时间.【详解】解:(1)由横坐标可知,去超市用了10分钟,从超市返回用了20分钟,由纵坐标可知,家到超市的距离是4千米,故去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分). (2)由横坐标可知,在超市逗留的时间是40-10=30(分钟). (3)去超市的过程中,2÷25=5(分钟),返回的过程中,2÷15=10(分钟),40+10=50(分钟). 故圣诞老人在8:05和8:50时离家2千米. 故答案为:(1)2 5千米/分,15千米/分;(2)30分钟;(3)8:05和8:50. 【点睛】本题考查了函数图象,观察函数图象获取信息是解题关键.23.(1)3AEF 60CHF EFH ︒+∠+∠=∠;(2)10FMH ∠=︒【分析】(1)过点F 作FT AB ∥,然后利用平行线的判定和性质,即可求出答案;(2)过点M 作MNAB ,然后结合平行线的性质,以及角度之间的关系,即可得到答案.【详解】解:(1)过点F 作FT AB ∥,如图1所示.180AEF EFT ∴∠+∠=︒.(两直线平行,同旁内角互补)AB CD ∥,FT CD ∴∥,(平行于同一直线的两条直线互相平行)180TFH CHF ∴∠+∠=︒.(两直线平行,同旁内角互补)EFT TFH EFH ∠+∠=∠又,360AEF CHF EFH ∴∠+∠+∠=︒.(2)过点M 作MN AB ,如图2所示.AB CD ∥,MN CD ∴∥,(平行于同一直线的两条直线互相平行)CHM HMN ∴∠=∠,AEM EMN ∴∠=∠,(两直线平行,内错角相等)FMH HMN EMN ∴∠=∠-∠,FMH CHM AEM ∴∠=∠-∠.(等量代换)由题知80DHF ∠=︒,100CHF ∴∠=︒.∵HM 平分CHF ∠,50CHM ∴∠=︒.由(1)知360AEF CHF EFH ∠+∠+∠=︒,2AEF CHF EFH ∠+∠=∠又,100CHF ∠=︒,140AEF ∴∠=︒.180********AEM AEF ∴∠=︒-∠=︒-︒=︒,504010FMH ∴∠=︒-︒=︒.【点睛】本题考查了平行线的判定和性质,补角的定义,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.24.(1)见解析;(2)成立,理由见解析;(3)(30+53n )° 【分析】(1)设∠COF =α,则∠EOF =90°-α,根据角平分线性质求出∠AOF 、∠AOC 、推出∠BOE 即可;(2)设∠AOC =β,求出∠AOF ,推出∠COF 、∠BOE 、即可推出答案;(3)根据∠DOE =180°-∠BOD -∠AOE 或∠DOE =∠BOE +∠BOD 和∠AOE =90°-∠AOC ,代入求出即可.【详解】解:(1)设∠COF =α,则∠EOF =90°-α,∵OF 是∠AOE 平分线,∴∠AOF =90°-α,∴∠AOC =(90°-α)-α=90°-2α,∠BOE =180°-∠COE -∠AOC ,=180°-90°-(90°-2α)=2α,即∠BOE =2∠COF ;(2)解:成立,设∠AOC =β,则∠AOF =902β︒-, ∴∠COF = 452 β︒+=12(90°+β), ∠BOE =180°-∠AOE ,=180°-(90°-β),=90°+β,∴∠BOE =2∠COF ;(3)解:分为两种情况:如图3,∠DOE =180°-∠BOD -∠AOE ,=180°-(60-23n )°-(90°-n °), =(30+53n )°, 如图4,∵∠BOE =180°-∠AOE =180°-(90°-n °)=90°+n °,∠BOD =(60-23n )° ∴∠DOE =∠BOE +∠BOD =(90°+n °)+(60-23n )°=(150+13n )° 当∠FOD <180°时,此时不符合题意,舍去, 综上答案为:(30+53n )°. 【点睛】本题考查了角平分线定义,角的大小计算等知识点的应用,主要培养学生分析问题和解决问题的能力,题目比较典型,有一定的代表性.25.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.26.13718【分析】先根据多形式的乘法法则、平方差公式、完全平方公式计算,再去括号合并同类项即可.【详解】解:()()()()()21231132x x x x x ----+-+ =()()22213261692x x x x x x --+---++ =222193261322x x x x x x --+-+--- =215822x x --+, 当23x =-时, 原式=2122582332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭ =2165932-++ =13718. 【点睛】本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,多项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.。
一、选择题1.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个2.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y 与运动的时间x之间关系的图象大致是()A.B.C.D.3.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.4.下列各曲线中表示y是x的函数的是()A .B .C .D .5.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35° 6.已知∠1=43°27′,则∠1的余角为( )A .136°33′B .136°73′C .46°73′D .46°33′7.如图,已知ADEFBC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个8.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是( )A .15°B .22.5°C .30°D .45°9.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -10.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a +B .43a +C .63a +D .2+1a11.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 12.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 913.根据图中的程序,当输入x =2时,输出的结果y =_______.14.根据如图所示的计算程序计算变量y 的对应值,若输入变量x 的值为﹣12,则输出的结果为_____15.一个角是它的补角的五分之一,则这个角的余角是______度.16.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若220∠=︒,则1∠=___________.17.如图,直线AB 、CD 相交于点O ,OE AB ⊥,垂足为点O ,:2:3COE BOD ∠∠=,则AOD ∠=__________.18.若23x =,25y =,则22x y +=____________.19.计算:()221842a b abab -÷=(-)________.20.已知29x mx ++是完全平方式,则m =_________.21.如图,圆柱的高是,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______; (2)写出体积与半径的关系式; (3)当底面半径由变化到时,通过计算说明圆柱的体积增加了多少.22.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.23.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”)24.直线AB ,CD 相交于点O ,OE 平分AOD ∠,70FOC ∠=︒,36FOB ∠=︒,求AOE ∠的度数.解:∵70FOC ∠=︒,36FOB ∠=︒ ∴BOC FOC ∠=∠+∠_____=______°. ∵直线AB ,CD 相交于点O ∴AOD ∠与∠_____是对顶角 ∴AOD ∠=∠_____=______ °. ∵OE 是AOD ∠的平分线 ∴12AOE ∠=∠_____=______°. 25.计算:(x +1)(x ﹣1)﹣2(2)x +.26.认真观察下面的算式,并结合你发现的规律,完成下列问题: 算式①53573021⨯= 算式②38321216⨯= 算式③84867224⨯= 算式④71795609⨯= …(1)请你再写出两个符合上述规律的算式: ① ___________; ② __________.(2)请用含a ,b 的等式表示上述规律,并证明你发现的规律. (3)利用你发现的规律计算6367⨯及295的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】根据图表可知随着排数的增大,座位数也增大.所以排数x 是自变量,座位数y 是因变量;根据图标中的数据可得y=47+3x.故①④正确.则选:B.2.B解析:B【解析】周长y与运动的时间x之间成正比关系,故选B点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.3.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B不正确;C. 由图知,骑车的同学从出发到追上步行的同学用了20分钟,故C正确;D. 由图知,步行的速度是6千米/小时,故D正确;故选B4.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.6.D解析:D【分析】根据余角的定义进行计算即可得答案. 【详解】 ∵∠1=43°27′,∴∠1的余角为90°-43°27′=46°33′, 故选:D . 【点睛】此题考查了余角的定义及角度的计算,如果两个角的和是90°,那么这两个角互余;熟练掌握余角的定义是解题关键.7.D解析:D 【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠. 【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,, 又∵BD 平分ADC ∠, ∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个, 故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.8.C解析:C 【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可. 【详解】 如图,∵△ABC 是等腰直角三角形, ∴∠1+∠3=45°, ∵∠1=15°, ∴∠3=30°, ∵a ∥b , ∴∠2=∠3=30°, 故选C . 【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.9.C解析:C 【分析】分别计算每个选项然后进行判断即可. 【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C 【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.10.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.11.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22x y +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.12.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.3【解析】解:当输入x=2时因为x >1所以y=﹣x+5=﹣2+5=3故答案为3解析:3 【解析】解:当输入x =2时,因为x >1,所以y =﹣x +5=﹣2+5=3.故答案为3.14.-15【详解】∵-2<<1∴x=时y=x-1=故答案为解析:-1.5 【详解】 ∵-2<12-<1, ∴x=12-时,y=x-1=13122--=-,故答案为32-. 15.60【分析】设这个角为x 补角为(180°-x )再由这个角是补角的五分之一可得出方程求出x 的值即可得到答案【详解】解:设这个角为x 补角为(180°-x )则解得:x=30°则这个角为30°所以它的余角=解析:60 【分析】设这个角为x ,补角为(180°-x ),再由这个角是补角的五分之一,可得出方程,求出x 的值即可得到答案. 【详解】解:设这个角为x ,补角为(180°-x ),则1(180)5x x =︒- ,解得:x=30°, 则这个角为30°.所以,它的余角=90°-30°=60° 故答案为:60. 【点睛】本题考查了余角和补角的知识,关键是掌握互余的两角之和为90°,互补的两角之和为180°.16.【分析】先根据平行线的性质求出∠3的度数再由平角的定义即可得出结论【详解】解:如图∵直角三角板的直角顶点在直线a 上∴∠2+∠3=180°-90°∴∠3=180°-90°-20°=70°∵a ∥b ∠3= 解析:70︒【分析】先根据平行线的性质求出∠3的度数,再由平角的定义即可得出结论. 【详解】 解:如图,∵直角三角板的直角顶点在直线a 上, ∴∠2+∠3=180°-90° ∴∠3=180°-90°-20°=70°, ∵a ∥b ,∠3=70°, ∴∠1=∠3=70°,故答案为:70°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,内错角相等.17.【分析】利用垂直的定义结合∠COE :∠BOD=2:3可求∠BOD 再根据邻补角的定义得出答案【详解】解:∵OE ⊥AB ∴∠BOE=90°∴∠COE+∠BOD=90°∵∠COE :∠BOD=2:3∴∠BOD 解析:126︒【分析】利用垂直的定义结合∠COE :∠BOD=2:3可求∠BOD ,再根据邻补角的定义得出答案.【详解】解:∵OE ⊥AB ,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE :∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.故答案为:126°【点睛】此题主要考查了垂线以及邻补角等知识,正确得出∠BOD 的度数是解题关键.18.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y+=⋅=⋅=⨯=, 故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键. 19.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b ab ab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.20.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.三、解答题21.(1)半径;体积;(2);(3).【分析】(1)根据常量和变量的定义来判断自变量、因变量和常量;(2)圆柱体的体积等于底面积乘以高,底面积等于π乘以半径的平方,将它用含有V 和r 的关系式表达出来即可;(3)利用圆柱的体积计算方法计算增加的体积即可.【详解】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)根据圆柱体的体积计算公式:. (3)体积增加了(π×102−π×12)×3=297πcm 3.【点睛】本题考查变量之间的关系,(1)考查自变量与因变量,理解自变量与因变量的定义是解题关键;(2)考查用关系式法表示变量之间的关系,在本题中掌握圆柱体体积的计算方法尤为重要;(3)分别代入求值做差即可.22.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟).即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.(1)见解析;(2)见解析;(3)=【分析】(1)根据作一个角等于已知角的尺规作图即可解答(2)根据作一条线段等于已知线段的尺规作图即可解答(3)结合图形易证ABC EDF△≌△,即可得到答案【详解】(1)如图所示:作法:①以点B为圆心任意长为半径画圆弧,交AB,BC于点G,H②再以点E为圆心以①中的半径画圆弧,交EM于点P③再以点P为圆心GH长为半径画圆弧,与②所画的圆弧交于点N,连接EN即可(2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC【点睛】本题考查了尺规作图,解题关键是熟练掌握作一个角等于已知角的尺规作图方法,以及作一条线段等于已知线段的尺规作图方法.24.FOB ,106,BOC ,BOC ,106,AOD ,53【分析】利用平角的意义、角平分线的定义以及对顶角相等可得出答案.【详解】解:∵70FOC ∠=︒,36FOB ∠=︒,∴BOC FOC ∠=∠+FOB ∠=106°.∵直线AB ,CD 相交于点O ,∴AOD ∠与BOC ∠是对顶角,∴AOD ∠=BOC ∠=106°.∵OE 是AOD ∠的平分线, ∴12AOE ∠=AOD ∠=53°. 故答案为:FOB ,106,BOC ,BOC ,106,AOD ,53.【点睛】本题考查平角的意义、角平分线的定义以及对顶角相等的性质,理解平角、角平分线的定义,对顶角相等的性质是解决问题的前提.25.﹣4x ﹣5.【分析】利用平方差公式和完全平方公式计算即可.【详解】(x+1)(x ﹣1)﹣2(2)x +=2x ﹣1﹣2x ﹣4x ﹣4=﹣4x ﹣5.【点睛】本题考查了平方差公式和完全平方公式,熟记并灵活运用两个公式是解题的关键. 26.(1)81×89=7209,34×36=1224;(答案不唯一);(2)()()()()101010100110a b a b a a b b ++-=++-⎡⎤⎣⎦,证明见解析;(3)4221;9025【分析】(1)观察上面几个式子,发现:左边两个因数的十位数字相同,个位数字和是10;则右边的结果是一个四位数,其中个位和十位上的数是左边两个因数的个位相乘,百位和千位上的数是左边十位上的数字和大于十位数字1的数相乘.根据这一规律即可写出; (2)根据(1)发现的两个数的特点,用字母表示出来,然后运用公式展开进行证明; (3)根据所得规律进行计算即可.【详解】解:(1) 81×89=720934×36=1224;故答案为:81×89=7209,34×36=1224;(答案不唯一)(2)设十位上的数字为a ,个位上的数字为b ,则上述规律可表示为:()()()()101010100110a b a b a a b b ++-=++-⎡⎤⎣⎦证明:∵(10a+b )[10a+﹙10-b ﹚]=(10a+b )×10a+(10a+b )×﹙10-b ﹚=2210010010a a b b ++-=100a ﹙a+1﹚+b ﹙10-b ﹚∴左边等于右边∴()()()()101010100110a b a b a a b b ++-=++-⎡⎤⎣⎦成立.(3)63×67=422129595959025=⨯=【点睛】此题主要考查了整式混合运算的应用,找出题中的规律是解本题的关键.。
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3- 3.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,4.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4) 5.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .46.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 7.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×2014 8.下列有关叙述错误的是( )A .2是正数B .2是2的平方根C .122<<D .2是分数 9.如图,若1234//,//l l l l ,则图中与1∠互补的角有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离11.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③ 12.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个二、填空题13.写一个第三象限的点坐标,这个点坐标是_______________.14.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.15.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知22360c d d --=,求d +c 的平方根.16.已知mn 、是两个连续的整数,且410m n <+<,则m n +=_______________________. 17.8的相反数是_____;16的平方根为_____;()34-的立方根是_____. 18.小明在楼上点A 处行到楼下点B 处的小丽的俯角是32︒,那么点B 处的小丽看点A 处的小明的仰角是_______________度.19.直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______.20.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.三、解答题21.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.22.如图,将△ABC 向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′. (1)请画出平移后的图形△A ′B ′C ′.(2)写出△A ′B 'C '各顶点的坐标.(3)求出△A ′B ′C ′的面积.23.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=24.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举25.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠26.如图,已知∠1+∠2=180°,∠B =∠DEF ,求证:DE ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3( 对顶角相等 )∴∠1+∠3=180°∴AB ∥EF ( ),∴∠B =∠EFC ( )∵∠B =∠DEF ( ),∴∠DEF = ( )∴DE ∥BC ( )【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.2.D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】1,3-,∵与点P关于原点对称的点Q为()-.∴点P的坐标是:()1,3故选D.【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.3.C解析:C【分析】应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.【详解】解:根据题意,则∵点A位于x轴上方,且位于y轴的左边,∴点A在第二象限,∵点A距x轴5个单位长,距y轴10个单位长,-,;∴点A的坐标为(105)故选:C.【点睛】本题主要考查了点在第二象限时坐标的特点,注意到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.4.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A6(0,4)…,所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A2020(0,-2),故选:B本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.5.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.6.C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.7.A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴ 2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.8.D解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】A 、2是正数,此项叙述正确;B 、2是2的平方根,此项叙述正确;C 、122<<,此项叙述正确; D 、2是无理数,不是分数,此项叙述错误; 故选:D .【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键. 9.D解析:D【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.10.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.11.B解析:B【分析】由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC⊥FD,故③正确;∵AB∥CD,∴∠1=∠C,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG⊥CD,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D,故①不正确.故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.12.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.二、填空题13.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.14.(ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 15.(1)x=5169或;(2)±3【分析】(1)根据题意这两个式子互为相反数列方程求出x 的值然后算出这个数;(2)根据绝对值和算术平方根的非负性求出c 和d 的值再算出结果【详解】(1)解:①这个数是②这解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 16.【分析】估算确定出m 与n 的值即可求出m+n 的值【详解】解:∵∴即∴m=5n=6则m+n=5+6=11故答案为:11【点睛】此题考查了估算无理数的大小弄清无理数估算的方法是解本题的关键解析:11【分析】估算确定出m 与n 的值,即可求出m +n 的值.【详解】解:∵34<<, ∴526<+<,即56<<,∴m =5,n =6,则m +n =5+6=11,故答案为:11【点睛】此题考查了估算无理数的大小,弄清无理数估算的方法是解本题的关键. 17.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:22-4±4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】解:8=22,所以8的相反数是22-;16的平方根为4±;()34-的立方根是4-.故答案为:—22;±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.18.【分析】根据题意画出图形然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC=32°∵AC∥BO∴∠ABO=∠BAC∴∠ABO=32°即点B处解析:32【分析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数,本题得以解决.【详解】解:由题意可得,∠BAC=32°,∵AC∥BO,∴∠ABO=∠BAC,∴∠ABO=32°,即点B处的小丽看点A处的小明的仰角等于32度,故答案为32.【点睛】本题利用平行线间角的关系求仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt△ABC的直角顶点C在直线a上∠1=35°∴∠3=90°-35°=55°又∵a∥b∴∠2=∠3=55解析:55【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:∵Rt△ABC的直角顶点C在直线a上,∠1=35°,∴∠3=90°-35°=55°,又∵a∥b,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两个锐角互余的性质,解题时注意:两直线平行同位角相等.20.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.三、解答题21.(1)见解析;(2)4;(3)P(0,5)或(0,﹣3).【分析】(1)分别作出A1,B1,C1的对应点A,B,C即可;(2)利用分割法求解即可;(3)设P(0,m),利用三角形面积公式,构建方程求解即可.【详解】解:(1)如图,△ABC即为所求.(2)S△ABC=3×4﹣12×2×4﹣12×1×2﹣12×2×3=4.(3)设P(0,m),由题意,12•|m﹣1|•2=4,解得,m=5或﹣3,∴P(0,5)或(0,﹣3).【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.22.(1)见解析;(2)A′(3,0),B′(0,3),C′(1,﹣2);(3)6【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据点的位置写出坐标即可.(3)利用割补法求解即可.【详解】(1)如图,△A′B′C′即为所求;(2)A ′(3,0),B ′(0,3),C ′(1,﹣2);(3)S △A ′B ′C ′=3×5﹣12×3×3﹣12×1×5﹣12×2×2=6. 【点睛】本题考查了作图-平移变换,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 24.(1)6;(2)①2b -;②不一定,理由见解析.【分析】 (1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 25.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键. 26.见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB ∥EF (同旁内角互补,两直线平行),∴∠B =∠EFC (两直线平行,同位角相等),∵∠B =∠DEF (已知),∴∠DEF=∠EFC(等量代换),∴DE∥BC(内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.。
一、选择题1.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数2.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是()A.①②③B.①②④C.①③⑤D.①②⑤3.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y 与运动的时间x之间关系的图象大致是()A.B.C.D.4.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.5.用一副三角板不能画出的角是().A .75°B .105°C .110°D .135°6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB l ⊥于点B ,90APC ∠=︒,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P到直线l 的距离.其中正确的是( )A .②③B .①②③C .③④D .①②③④7.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[8.下列图形中,1∠与2∠是对顶角的是( ) A .B .C .D .9.有下列计算:①236a a a ⋅=;②33(2)6x x -=-;③0(11)-=;④122-=-;⑤426a a a -÷=.其中正确的个数为( ) A .4B .3C .2D .110.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 11.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.7512.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>二、填空题13.甲、乙两人在一条直线道路上分别从相距1500米的A ,B 两点同时出发,相向而行,当两人相遇后,甲继续向点B 前进(甲到达点B 时停止运动),乙也立即向B 点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y (米)与乙运动的时间x (秒) 之间的关系如图所示.则甲到B 点时,乙距B 点的距离是_____米.14.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.15.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.16.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 17.如图,一环湖公路的AB 段为东西方向,经过四次拐弯后,又变成了东西方向的FE 段,则B C D E ∠+∠+∠+∠的度数是______.18.如图1,在一个大正方形纸板中剪下边长为acm 和边长为bcm 的两个正方形,剩余长方形①和长方形②的面积和为8cm 2.若将剩余的长方形①和②平移进边长为acm 的正方形中(如图2),此时该正方形未被覆盖的面积为6cm 2,则原大正方形的面积为_____.19.计算33x x ⨯=____________.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程 后,乙开始出发,当乙超出甲 150 米时,乙停在原地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图所示是甲、乙两人在跑步的全过程中经过的路程 y (米)与甲出发的时间 x (秒)之间关系的图象.(1) 在跑步的全过程中,甲一共跑了 米,甲的速度为 米/秒. (2) 求图中标注的 a 的值及乙跑步的速度. (3) 乙在途中等候了多少时间?22.金融危机虽然给世界各国带来不小的冲击,但某公司励精图治,决定投资开发新项目,通过考察确定有6个项目可供选择,各项目所需资金及预计年利润如下表: 所需资金/亿元 1 2 4 6 7 8 预计年利润/千万元0.20.350.550.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果要预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多个项目的投资,可以有几种投资方案?哪种方案年利润最大?最大是多少?23.如图,点O 为直线AB 上一点,将一直角三角板OMN 的直角顶点放在点O 处.射线OC 平分∠MOB .(1)如图1,若∠AOM =30°,求∠CON 的度数;(2)将图1中的直角三角板OMN 绕顶点O 顺时针旋转至图2的位置,一边OM 在射线OB 上方,另一边ON 在直线AB 的下方.①探究∠AOM 和∠CON 之间的数量关系,并说明理由; ②当∠AOC =3∠BON 时,求∠AOM 的度数.24.如图,直线AB 与CD 相交于点O ,90AOF ∠=︒,90COE ∠=︒,60DOF ∠=︒,OH 平分∠BOE .求:(1)∠BOE 的度数; (2)AOH ∠的度数.25.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷(-2x ),其中x=-3,y=﹣202026.化简:()()()2222x y y x x y -+--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】结合表格中数据变化规律进而得出y 是x 的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.2.D解析:D【解析】【分析】根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.【详解】①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选D.【点睛】本题考查了一次函数的定义,是基础知识,比较简单.3.B解析:B【解析】周长y与运动的时间x之间成正比关系,故选B点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.4.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.5.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
【必考题】七年级数学下期中第一次模拟试题(含答案) (3)一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个3.若10x x y -++=,则xy 的值为( ) A .0B .1C .-1D .24.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( ) ①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油; ③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④5.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .326.若x y <,则下列不等式中成立的是( ) A .11x y ->- B .22x y -<- C .22x y < D .3232x y -<-7.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b += 8.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠89.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ; ②点C 的对应点是点B ; ③AC ∥EB ;④平移的距离等于线段BF 的长度. A .1B .2C .3D .410.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm11.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( )A .6B .3C .-2D .112.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题13.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________14.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.15.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=____.16.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.17.将点P 向下平移3个单位,向左平移2个单位后得到点Q (3,-1),则点P 坐标为______.18.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.19.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.三、解答题21.如图,已知∠1+∠2=180°,∠3=∠B ,求证:DE ∥BC .22.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元? 23.2018年5月12日是我国第十个全国防灾减灾日,也是汶川地震十周年.为了弘扬防灾减灾文化,普及防灾减灾知识和技能,郑州W 中学通过学校安全教育平台号召全校学生进行学习,并对学生学习成果进行了随机抽取,现对部分学生成绩(x 为整数,满分100分)进行统计.绘制了如图尚不完整的统计图表: 调查结果统计表 组别 分数段 频数 A 50≤x <60 a B 60≤x <70 80 C 70≤x <80 100 D 80≤x <90 150 E 90≤x <100120 合计b根据以上信息解答下列问题: (1)填空:a= ,b= ;(2)扇形统计图中,m的值为,“D”所对应的圆心角的度数是度;(3)本次调查测试成绩的中位数落在组内;(4)若参加学习的同学共有2000人,请你估计成绩在90分及以上的同学大约有多少人?24.解不等式:121123x x+--≤,并把解集在数轴上表示出来.25.通过对某校七年级学生体育选修课程的统计,得到以下信息:①参加选课的总人数为300;②参加选课的学生在“足球、篮球、排球、乒乓球”中都选择了一门;③选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%.设选足球的人数为x,选排球的人数为y,试列出二元一次方程组,分别求出选择足球、篮球、排球、乒乓球各门课程的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒Q .故选A.2.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB,∴DG∥BC,∴∠CDG=∠BCD,∴∠CDG=∠BFE,∴乙正确;③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;④如果连接GF,则只有GF⊥EF时丁的结论才成立;∴丙错误,丁错误;故选:C.【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.3.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.4.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.5.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.6.C解析:C 【解析】 【分析】各项利用不等式的基本性质判断即可得到结果. 【详解】 由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C . 【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.7.D解析:D 【解析】 【分析】 把3{2x y =-=-,代入1{2ax cy cx by +=-=,即可得到关于,,a b c 的方程组,从而得到结果.【详解】 由题意得,321322a c c b --=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963644a c c b --=⎧⎨-+=⎩③④-④③得941a b +=,故选:D .8.D解析:D 【解析】 【分析】 【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6; 根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°. 而∠4与∠8是AD 和BC 被BD 所截形成得内错角,则∠4=∠8错误, 故选D.9.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.11.B解析:B【解析】【分析】把12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,求出m、n的值,再代入要求的代数式求值即可.【详解】把12xy=⎧⎨=⎩代入3526x myx ny-=⎧⎨+=⎩得:325226mn-=⎧⎨+=⎩,解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m,n的值是解此题的关键.12.D解析:D【解析】【分析】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD , ∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°, ∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线, ∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°. 故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) - 【解析】 【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标. 【详解】∵()()7,0,1,0A B - ∴AB=8∵ABC ∆的面积为16∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4) 故答案为:(0,4)或(0,-4) 【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.14.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了解析:(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.15.54°【解析】【分析】两直线平行同旁内角互补可求出∠FEB再根据角平分线的性质可得到∠BEG然后用两直线平行内错角相等求出∠2【详解】∵AB∥CD∴∠BEF=180°−∠1=180°−72°=108解析:54°【解析】【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【详解】∵AB∥CD,∴∠BEF=180°−∠1=180°−72°=108°∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108°=54°∴∠2=∠BEG=54°.故答案为54°.16.2【解析】【分析】点在y轴上则横坐标为0可求得a的值然后再判断点到x轴的距离即可【详解】∵点P(a+32a+4)在y轴上∴a+3=0解得:a=-3∴P(0-2)∴点P到x轴的距离为:2故答案为:2【解析:2【解析】【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.17.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(解析:(5,2)【解析】【分析】设点P的坐标为(x,y),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.【详解】设点P的坐标为(x,y),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P的坐标为(5,2).故答案是:(5,2).【点睛】考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm的正方形ABCD先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.19.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<0解析:m<0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.20.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.三、解答题21.证明见解析.【解析】要证明DE∥BC.需证明∠3=∠EHC.而证明∠3=∠EHC可通过证明EF∥AB及已知条件∠3=∠B进行推理即可.证明:∵∠1+∠2=180°,∠1=∠4,∴∠2+∠4=180°.∴EH∥AB.∴∠B=∠EHC.∵∠3=∠B,∴∠3=∠EHC.∴DE∥BC.22.26元.【解析】【分析】通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.【详解】解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.【点睛】本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.23.(1)50、500;(2)30、108;(3)D (4)480人【解析】【分析】(1)由B 组频数及其所占百分比可得总人数b 的值,再根据各分组人数之和等于总人数可得a 的值;(2)用D 组人数除以总人数可得m 的值,用360°乘以D 组人数所占百分比; (3)根据中位数的定义求解可得;(4)利用样本估计总体思想求解可得.【详解】(1)∵被调查的总人数b=80÷16%=500人, ∴a=500﹣(80+100+150+120)=50,故答案为:50、500;(2)m%=150500×100%=30%,即m=30, “D”所对应的圆心角的度数是360°×150500=108°, 故答案为:30、108;(3)本次调查测试成绩的中位数是第250、251个数据的平均数,而这2个数据均落在D 组,∴本次调查测试成绩的中位数落在D 组,故答案为:D .(4)估计成绩在90分及以上的同学大约有2000×24%=480人. 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.1x ≥-【解析】【分析】当不等式有分母时,应先两边都乘6,去分母;然后去括号,移项及合并,系数化为1.【详解】解:去分母得,3(1+x )-2(2x-1)≤6去括号得,3+3x-4x+2≤6,移项得,3x-4x≤6-5,即-x≤1,∴x≥-1. 解集在数轴上表示得:【点睛】本题考查解不等式的一般步骤,需注意;去分母时单独的一个数也必须乘各分母的最简公分母;在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.25.135;120;15;30【解析】【分析】设选足球的人数为x ,选排球的人数为y ,根据“选足球和选排球的人数共占总人数的50%;选乒乓球的人数是选排球人数的2倍;选足球和选篮球的人数共占总人数的85%”列出方程组并解答.【详解】解:设选足球的人数为x ,选排球的人数为y ,根据题意,得30050%150230085%x y x y +=⨯⎧⎨+-=⨯⎩解这个方程组,得13515x y =⎧⎨=⎩ 当135x =,15y =时,230y =;1502120y -=.答:选择足球、篮球、排球、乒乓球课程的人数分别为135、120、15、30.【点睛】本题考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。