2017浙大《运筹学》模拟)
- 格式:doc
- 大小:83.00 KB
- 文档页数:3
运筹模拟试题及答案
一、选择题
1. 进行运筹学研究时,下列哪种不是需要考虑的因素?
A. 成本
B. 时间
C. 资源
D. 颜色
答案:D
2. 运筹学中常用的优化方法包括以下哪种?
A. 贪心算法
B. 冒泡排序
C. 快速排序
D. 二分查找
答案:A
3. 下列哪种不是传统运筹学方法的代表性问题?
A. 线性规划
B. 背包问题
C. 旅行商问题
D. 贪心算法
答案:D
二、填空题
1. 运筹学最早是在(古代/近代)开始发展的。
答案:近代
2. 线性规划是运筹学中经典的(优化/排列)方法。
答案:优化
3. 旅行商问题是求解搜索过程中的最短(路径/时间)问题。
答案:路径
三、解答题
1. 请简要说明什么是线性规划,以及线性规划的基本原理。
答:线性规划是一种数学优化方法,用于找到使某种目标函数达到
最优的变量取值。
其基本原理是通过建立数学模型,确定决策变量和
约束条件,然后求解最优解,以达到最大化或最小化某项指标的目的。
2. 请简要介绍一下运筹学中的模拟方法以及其应用领域。
答:运筹学中的模拟方法是通过模拟系统的运行过程来进行决策分析和优化设计。
其应用领域包括生产调度、物流管理、金融风险分析等领域,在实际问题中具有广泛的应用。
以上为运筹模拟试题及答案,希望对您的学习和工作有所帮助。
如果还有其他问题,欢迎随时与我们联系。
祝您学习进步!。
《运筹学基础》模拟试卷一一、单项选择题(本大题共15小题,每小题1分,共15分)1.运筹学研究和应用的模型是()A.数学模型 B.符号和图像表示的模型C.数学和符号表示的模型D.数学模型、图形表示的模型、抽象的模型2.以下不属于运用运筹学进行决策的步骤的是()A.观察待决策问题所处的环境B.分析定义待决策的问题并拟定模型C.提出解并验证其合理性D.进行灵敏度分析3.问题域的外部环境一般是指()A、问题域界面与外界的人、财、物之间的交互活动;B、问题域外界的人、财、物之间的交互活动;C、问题域界面与问题域内部的人、财、物之间的交互活动;D、问题域界外部的人、财、物之间的交互活动。
4.科技预测的短期预测时间为()A.1~3年B.3~5年C.5~10年D.3~7年5.已知一组观察值的平均值为x=15.8,y =49.5,y对x的一元线性回归方程的回归系数b=2.5,则回归方程在y轴上的截距为()A.-10B.10C.896.在不确定的条件下进行决策,下列哪个条件是不必须具备的()A.确定各种自然状态可能出现的概率值B.具有一个明确的决策目标C.可拟订出两个以上的可行方案D.可以预测或估计出不同的可行方案在不同的自然状态下的收益值7.存货台套的运费应列入()A.订货费用B.保管费用 C.进厂价D.其它支出8.一般在应用线性规划建立模型时要经过四个步骤:(1)明确问题,确定目标,列出约束因素(2)收集资料,确定模型(3)模型求解与检验(4)优化后分析以上四步的正确顺序是()A.(1)(2)(3)(4)B.(2)(1)(3)(4)C .(1)(2)(4)(3)D .(2)(1)(4)(3)9. 在解运输问题时,若调整路线已确定,则调整运量应为( )A.负号格的最小运量B.负号格的最大运量C.正号格的最小运量D.正号格的最大运量10. 在箭线式网络图中,活动j i →的最迟完成时间ij LF 等于A.j ESB.ij LSC.j LFD.ij i T ES + 11. 箭线式网络图中,关键线路是从始结点到终结点( )A.占用时间最长的线路B.结点数目最多的线路C.作业数目最多的线路D.结点数目最少的线路12. 时间优化就是在人力、材料、设备、资金等资源基本上有保证的条件下,寻求最短的工程周期。
运筹学期末考试模拟试题及答案一、单项选择题(每题3分,共27分)1、 使用人工变量法求解极大化的线性规划问题时,当所有的检验数0j δ≤,但在基变量中仍含有非零的人工变量,表明该线性规划问题( D ) A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解2、对于线性规划121231241234max 24..3451,,,0z x x s tx x x x x x x x x x =-+-+=⎧⎪++=⎨⎪≥⎩如果取基1110B ⎛⎫= ⎪⎝⎭,则对于基B 的基解为( B )A 、(0,0,4,1)T X =B 、(1,0,3,0)T X =C 、(4,0,0,3)T X =-D 、(23/8,3/8,0,0)T X =-3、对偶单纯形法解最小化线性规划问题时,每次迭代要求单纯形表中( C ) A.b 列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零4、 在n 个产地、m 个销地的产销平衡运输问题中,( D )就是错误的。
A.运输问题就是线性规划问题B.基变量的个数就是数字格的个数C.非基变量的个数有1mn n m --+个D.每一格在运输图中均有一闭合回路 5、 关于线性规划的原问题与对偶问题,下列说法正确的就是( B )A.若原问题为无界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解C.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解6.已知规范形式原问题(max 问题)的最优表中的检验数为12(,,...,)n λλλ,松弛变量的检验数为12(,,...,)n n n m λλλ+++,则对偶问题的最优解为( C ) A 、 12(,,...,)n λλλ B 、 12(,,...,)n λλλ--- C.12(,,...,)n n n m λλλ+++--- D 、 12(,,...,)n n n m λλλ+++ 7、当线性规划的可行解集合非空时一定( D )A 、包含原点B 、有界 C.无界 D 、就是凸集 8、线性规划具有多重最优解就是指( B )A 、目标函数系数与某约束系数对应成比例。
一、判断(对错表示的)判断下列说法是否正确(1)已知为线性规划的对偶问题的最优解,若,说明在最优生产计划中第i种资源已完全耗尽( y )(2)一个线性规划问题若转化为动态规划方法求解时,应严格按变量的下标顺序来划分阶段,如将决定的值作为第一阶段,决定的值作为第二阶段等。
( n )(3)动态规划只是用来解决和时间有关的问题。
( n )(4)在动态规划模型中,问题的阶段等于问题的子问题的数目。
( )(5)不管决策问题怎么变化,一个人的效用曲线总是不变的;( n )(6)单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解;( n )(7)若某种资源的影子价格等于k,在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k( n )(8)若线性规划问题中的值同时发生变化,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行解的情况( n )(9)若线性规划的原问题和其偶问题都有最优解,则最优解一定相等。
( y )(10)用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值;( n )(11)矩阵对策中当局势达到平衡时,任何一方单方面改变自己的策略(纯策略或混合策略)将意味着自己更少的赢得或更大的损失;( y )二、计算解答(1)用对偶单纯形法求解下列线性规划问题:(2)已知线性规划问题:用单纯形法求解时得到的最终单纯形表如表所示。
366求:(a)当约束条件(1)变为时,问题的最优解如何变化?(b)如约束条件不变,目标函数变为时,求在[0,4]区间范围内变化时最优解的变化。
(3)已知线性规划问题:用单纯形法求得最终表如表所示。
3/21试用灵敏度分析的方法分别判断:(a)目标函数系数或分别在什么范围内变动,上述最优解不变;(b)约束条件右端项,当一个保持不变时,另一个在什么范围内变化,上述最优基保持不变;(c)问题的目标函数变为时上述最优解的变化;(d)约束条件右端项由变为时上述最优解的变化。
模拟试题一一、单项选择题:(共7题,35分)1、在线性规划模型中,没有非负约束的变量称为(C)A. 多余变量B. 松弛变量C. 自由变量D. 人工变量2、约束条件为AX=b,X≥0的线性规划问题的可行解集是(B ) A. 补集 B. 凸集 C. 交集 D. 凹集3、线性规划的图解法适用于( B )A. 只含有一个变量的线性规划问题B. 只含有2~3个变量的线性规划问题C. 含有多个变量的线性规划问题D. 任何情况4、单纯形法作为一种常用解法,适合于求解线性规划(A )A. 多变量模型B. 两变量模型C. 最大化模型D. 最小化模型5、在单纯性法计算中,如果检验数都小于等于零,而且非基变量的检验数全为负数,则表明此问题有(D )。
A. 无穷多组最优解B. 无最优解??C. 无可行解D. 唯一最优解6、在线性规划中,设约束方程的个数为m,变量个数为n,m<n时,可以把变量分为基变量和非基变量两部分,基变量的个数为m个,非基变量的个数为(C )A. m个B. n个C. n-m个D. 0个7、使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题(D ) A. 有唯一的最优解 B. 有无穷多最优解 C. 为无界解 D. 无可行解二、填空题:(共5题,25分)1、运筹学是一门研究如何有效地组织和管理决策的科学.2、线性规划是一种合理利用资源、合理调配资源的应用数学方法,其基本特点是模型中的目标函数和约束方程都是线性表达式.3、线性规划模型由三个要素构成:决策变量、目标函数、约束条件。
4、可行域中任意两点间联结线段上的点均在可行域内,这样的点集叫凸集。
5、线形规划的标准形式有如下四个特点:目标函数的最大化、约束条件为等式、决策变量费非负、右端常数项非负。
三、简答题:(共3题,40分)1、简述线性规划模型的三个基本特征。
(1)每一个问题都有一个极大或极小的目标且能用有一组线性函数表示出来。
一、填空题:(10分)1、 运输问题中,求总利润最大时,当运输图所有空格的检验数 ,得最优解;求总运费最小时,当运输图所有空格的检验数 ,得最优解。
2、 若线性规划问题的最优基为B ,则问题的最优值为 ,线性规划的对偶问题的最优解是 ,其中C B 是基B 所对应的基变量在目标函数中的系数向量,线性规划问题是: ⎩⎨⎧≥==0max X bAX CXZ3、 运输问题中,当总供应量小于总需求量时,求解时需虚设一个 点,此点的供应量应 (总需求量与总供应量之差)。
4、 结点的最迟完成时间又称 时间,若将最迟完成时间后延,将使整个网络工期 。
5、 树是 的连通图,在树上任意除去一条边则该树余下的图 。
二、单项选择题(10分)1、为了在各住宅之间安装一条供暖管道,若要求所用材料最省,则应采用( )。
A .求最大流量法 B.求最小支撑树法 C .求最短路线法 D.树的逐步生成法2、在网络计划中,进行时间与成本优化时,随工期延长,简介费用将( )。
A .减少 B.增加 C.不变 D.不易估计3、图论中,图的基本要素是( )。
A .点和带方向的连线 B.点和线C .点及点与点之间的连线 D.点和一定要带权的连线 三、判断题。
(10分)1、 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
2、 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
3、 运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
4、 目标规划中,英同时包含系统约束(绝对约束)与目标约束。
5、 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值得下界。
四、建立数学模型题:(8分)某饲养场饲养动物出售,设每头动物每天至少需700克蛋白质、30克矿物质、100毫克维生素。
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
一、选择题(本题共5小题,每小题3分,满分15分,把答案填在题后括号内.) 1.使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在基变量中仍含有非零的人工变量,表明该线性规划问题( C )A. 有唯一的最优解;B. 有无穷多个最优解;C. 无可行解;D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( D ) A .b 列元素不小于零 B .检验数都大于零C .检验数都不小于零D .检验数都不大于零3、对于线性规划问题,下列说法正确的是( D )A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D 上述说法都正确4、如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足( B )A. 0d +> B. 0d += C. 0d -= D. 0,0d d -+>>5、下列说法正确的为( D )A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可 行解的目标函数值都一定不超过其对偶问题可行解的目标函数D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 二、判断题:正确的在括号内打“√”,错误的打“×”。
(本题共5小题,每小题3分,满分15分,) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ ) 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一个基变量的值为负。
( √ ) 3、任何线性规划问题存在并具有惟一的对偶问题。
( √ ) 4、目标规划模型中,应同时包含绝对约束与目标约束。
( × )5、如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。
二、设一线性规划问题为(25分)⎧⎨⎪⎩⎪m a x ,,z x x x x x x x x x j j =-+++≤-+≤≥=27624013123121232 目标函数变为max z x x x =++23123;3 约束条件右端项由(6,4)T 变为(3,5)T;4 增加一个约束条件-+≥x x 1322三、某种产品今后四周的需求量分别为300,700,900,600件,必须得到满足。
已知每件产品的成本在起初两周是10元,以后两周是15元。
工厂每周能生产这种产品700件,且在第二、三周能加班生产。
加班后,每周可增产200件产品,但成本每件增加5元。
产品如不能在本周交货,则每件每周存贮费是3元。
问如何安排生产计划,使总成本最小,要求建立运输问题数学模型求解。
(25分)四、某校蓝球队准备从以下6名预备队员中选拔3名为正式队员,并使平均身高尽可能高,这6名预备队员情况如下表所示,试建立数学模型。
(20分)队员的挑选要满足下列条件: 2 少补充一名后卫队员;3 大李或小田中间只能入选一名;4 最多补充一名中锋;5 如果大李或小赵入选,小周就不能入选。
五、某高校拟开设文学、艺术、音乐、美术四个学术讲座。
每个讲座每周下午举行一次。
经调查知,每周星期一至星期五不能出席某一讲座的学生数如下表:(20分)学生总数。
六、某飞行队有5名正驾驶员和5名副驾驶员。
由于种种原因,某些正、副驾驶员不能同机飞行,某些则可以,如下表所示。
每架飞机出航时需正,副驾驶员各一人。
问最多能有几架飞机同时出航?应如何安排正,副驾驶员?用图论方法求解。
(20分)七、填空:(20分)1.某工程公司拟从四个项目中选择若干项目,若令11,2,3,40i i i ix ìïï==íïïïî,第个项目被选中;,第个项目未被选中;用i x 的线性表达式表示下列要求:(1)从1,2,3项目中至少选2个: ;(2)只有项目2被选中,项目4才能被选中: ;2.用表上作业法求解某运输问题,若已计算出某空格的检验数为-2,则其经济意义是 ,若从该空格出发进行调整,设调整量为2,则调后可使总运费下降 ;3. 动态规划中的Bellman 最优性原理是。
模拟试题一一、单项选择题:(共7题,35分)1、在线性规划模型中,没有非负约束的变量称为(C)A. 多余变量B. 松弛变量C. 自由变量D. 人工变量2、约束条件为AX=b,X≥0的线性规划问题的可行解集是(B ) A. 补集 B. 凸集 C. 交集 D. 凹集3、线性规划的图解法适用于( B )A. 只含有一个变量的线性规划问题B. 只含有2~3个变量的线性规划问题C. 含有多个变量的线性规划问题D. 任何情况4、单纯形法作为一种常用解法,适合于求解线性规划(A )A. 多变量模型B. 两变量模型C. 最大化模型D. 最小化模型5、在单纯性法计算中,如果检验数都小于等于零,而且非基变量的检验数全为负数,则表明此问题有(D )。
A. 无穷多组最优解B. 无最优解??C. 无可行解D. 唯一最优解6、在线性规划中,设约束方程的个数为m,变量个数为n,m<n时,可以把变量分为基变量和非基变量两部分,基变量的个数为m个,非基变量的个数为(C )A. m个B. n个C. n-m个D. 0个7、使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题(D ) A. 有唯一的最优解 B. 有无穷多最优解 C. 为无界解 D. 无可行解二、填空题:(共5题,25分)1、运筹学是一门研究如何有效地组织和管理决策的科学.2、线性规划是一种合理利用资源、合理调配资源的应用数学方法,其基本特点是模型中的目标函数和约束方程都是线性表达式.3、线性规划模型由三个要素构成:决策变量、目标函数、约束条件。
4、可行域中任意两点间联结线段上的点均在可行域内,这样的点集叫凸集。
5、线形规划的标准形式有如下四个特点:目标函数的最大化、约束条件为等式、决策变量费非负、右端常数项非负。
三、简答题:(共3题,40分)1、简述线性规划模型的三个基本特征。
(1)每一个问题都有一个极大或极小的目标且能用有一组线性函数表示出来。
运筹学模拟试卷及详细答案解析填空(含答案)一、填空题(每题2分,共40分)1. 线性规划问题中,若决策变量为非负约束,则该约束条件可以表示为______。
2. 在线性规划中,若目标函数为最大化问题,则其标准形式中目标函数的系数应为______。
3. 线性规划问题中,若约束条件为等式约束,则该约束条件对应的松弛变量为______。
4. 在运输问题中,若产地A到销地B的运输成本为2元/吨,则对应的运输成本矩阵中的元素为______。
5. 对偶问题的最优解是原问题的______。
6. 在指派问题中,若甲完成某项工作的时间为3小时,则对应的效率矩阵中的元素为______。
7. 网络图中,若两个节点之间的距离为5,则对应的弧长为______。
8. 在排队论中,若服务时间为负指数分布,则其平均服务时间为______。
9. 随机规划问题中,目标函数和约束条件的参数都是______。
10. 在库存管理中,若每次订购成本为100元,则对应的订购成本系数为______。
11. 在动态规划中,最优策略是______。
12. 在非线性规划中,若目标函数为凹函数,则该问题为______。
13. 线性规划问题中,若目标函数为最小化问题,则其标准形式中目标函数的系数应为______。
14. 在整数规划中,若决策变量为整数变量,则该约束条件可以表示为______。
15. 在排队论中,若到达率为λ,则单位时间内的平均到达人数为______。
16. 在指派问题中,若乙完成某项工作的时间为2小时,则对应的效率矩阵中的元素为______。
17. 在运输问题中,若产地A的供应量为100吨,则对应的供应量矩阵中的元素为______。
18. 在非线性规划中,若目标函数为凸函数,则该问题为______。
19. 在动态规划中,最优子策略是______。
20. 在随机规划问题中,目标函数和约束条件的参数都是______。
二、详细答案解析1. 答案:x ≥ 0解析:线性规划问题中,决策变量通常为非负约束,表示为x ≥ 0。
模拟试题一一、单项选择题:(共7题,35分)1、在线性规划模型中,没有非负约束的变量称为(C)A. 多余变量B. 松弛变量C. 自由变量D. 人工变量2、约束条件为AX=b,X≥0的线性规划问题的可行解集是(B ) A. 补集 B. 凸集 C. 交集 D. 凹集3、线性规划的图解法适用于( B )A. 只含有一个变量的线性规划问题B. 只含有2~3个变量的线性规划问题C. 含有多个变量的线性规划问题D. 任何情况4、单纯形法作为一种常用解法,适合于求解线性规划(A )A. 多变量模型B. 两变量模型C. 最大化模型D. 最小化模型5、在单纯性法计算中,如果检验数都小于等于零,而且非基变量的检验数全为负数,则表明此问题有(D )。
A. 无穷多组最优解B. 无最优解??C. 无可行解D. 唯一最优解6、在线性规划中,设约束方程的个数为m,变量个数为n,m<n时,可以把变量分为基变量和非基变量两部分,基变量的个数为m个,非基变量的个数为(C )A. m个B. n个C. n-m个D. 0个7、使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题(D ) A. 有唯一的最优解 B. 有无穷多最优解 C. 为无界解 D. 无可行解二、填空题:(共5题,25分)1、运筹学是一门研究如何有效地组织和管理决策的科学.2、线性规划是一种合理利用资源、合理调配资源的应用数学方法,其基本特点是模型中的目标函数和约束方程都是线性表达式.3、线性规划模型由三个要素构成:决策变量、目标函数、约束条件。
4、可行域中任意两点间联结线段上的点均在可行域内,这样的点集叫凸集。
5、线形规划的标准形式有如下四个特点:目标函数的最大化、约束条件为等式、决策变量费非负、右端常数项非负。
三、简答题:(共3题,40分)1、简述线性规划模型的三个基本特征。
(1)每一个问题都有一个极大或极小的目标且能用有一组线性函数表示出来。
运筹学期末考试模拟试题及答案一、单项选择题(每题3分,共27分)1. 使用人工变量法求解极大化的线性规划问题时,当所有的检验数0j δ≤,但在基变量中仍含有非零的人工变量,表明该线性规划问题( D ) A .有唯一的最优解 B .有无穷多最优解 C .为无界解 D .无可行解2.对于线性规划121231241234max 24..3451,,,0z x x s tx x x x x x x x x x =-+-+=⎧⎪++=⎨⎪≥⎩如果取基1110B ⎛⎫= ⎪⎝⎭,则对于基B 的基解为( B )A.(0,0,4,1)T X =B.(1,0,3,0)T X =C.(4,0,0,3)T X =-D.(23/8,3/8,0,0)T X =-3.对偶单纯形法解最小化线性规划问题时,每次迭代要求单纯形表中( C ) A .b 列元素不小于零 B .检验数都大于零 C .检验数都不小于零 D .检验数都不大于零4. 在n 个产地、m 个销地的产销平衡运输问题中,( D )是错误的。
A .运输问题是线性规划问题B .基变量的个数是数字格的个数C .非基变量的个数有1mn n m --+个D .每一格在运输图中均有一闭合回路 5. 关于线性规划的原问题和对偶问题,下列说法正确的是( B )A .若原问题为无界解,则对偶问题也为无界解B .若原问题无可行解,其对偶问题具有无界解或无可行解C .若原问题存在可行解,其对偶问题必存在可行解D .若原问题存在可行解,其对偶问题无可行解6.已知规范形式原问题(max 问题)的最优表中的检验数为12(,,...,)n λλλ,松弛变量的检验数为12(,,...,)n n n m λλλ+++,则对偶问题的最优解为( C ) A. 12(,,...,)n λλλ B. 12(,,...,)n λλλ--- C .12(,,...,)n n n m λλλ+++--- D. 12(,,...,)n n n m λλλ+++ 7.当线性规划的可行解集合非空时一定( D )A.包含原点B.有界 C .无界 D.是凸集8.线性规划具有多重最优解是指( B )A.目标函数系数与某约束系数对应成比例。
^高等教育《运筹学》模拟试题及答案一、名词解释运筹学:运筹学主要运用数学方法研究各种系统的优化途径及方案。
为决策者提供科学的决策依据线性规划:一般地,如果我们要求出一组变量的值,使之满足一组约束条件,这组约束条件只含有线性不等式或线性方程,同时这组变量的值使某个线性的目标函数取得最优值(最大值或最小值)。
这样的数学问题就是线性规划问题可行解:在线性规划问题的一般模型中,满足约束条件的一组12,,.........n x x x 值称为此线性规划问题的可行解, 最优解:在线性规划问题的一般模型中,使目标函数f达到最优值的可行解称为线性规划问题的最优解。
运输问题:将一批物资从若干仓库(简称为发点)运往若干目的地(简称为收点),通过组织运输,使花费的费用最少,这类问题就是运输问题闭回路:如果在某一平衡表上已求得一个调运方案,从一个空格出发,沿水平方向或垂直方向前进,遇到某个适当的填有调运量的格子就转向前进。
如此继续下去,经过若干次,就一定能回到原来出发的空格。
这样就形成了一个由水平线段和垂直线段所组成的封闭折线,我们称之为闭回路二、单项选择1、最早运用运筹学理论的是( A )A 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B 美国最早将运筹学运用到农业和人口规划问题上C 二次世界大战期间,英国政府将运筹学运用到政府制定计划D 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上2、下列哪些不是运筹学的研究范围( D )A 质量控制B 动态规划C 排队论D 系统设计3、对于线性规划问题,下列说法正确的是( D )A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如果有最优解,则最优解可以在可行解区域的顶点上到达D 上述说法都正确4、下面哪些不是线性规划问题的标准形式所具备的( C )A 所有的变量必须是非负的B 所有的约束条件(变量的非负约束除外)必须是等式C 添加新变量时,可以不考虑变量的正负性D 求目标函数的最小值5、在求解运输问题的过程中运用到下列哪些方法( D )A 西北角法B 位势法C 闭回路法D 以上都是6、在用单纯形法求解线性规划问题时,下列说法错误的是( D )A 如果在单纯形表中,所有检验数都非正,则对应的基本可行解就是最优解B 如果在单纯形表中,某一检验数大于零,而且对应变量所在列中没有正数,则线性规划问题没有最优解C 利用单纯形表进行迭代,我们一定可以求出线性规划问题的最优解或是判断线性规划问题无最优解D 如果在单纯形表中,某一检验数大于零,则线性规划问题没有最优解三、填空1、 运筹学的主要研究对象是各种有组织系统的管理问题及生产经营活动,其主要研究方法是量化和模型化方法,2、 运筹学的目的在于针对所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
模拟试题第一卷一、 基本题(共5题,每题6分,共30分) 1, 线性规划最优解存在的形式有哪些,并说明如何判断?2, 互为对偶规划解与解之间有什么关系,最优解的存在有什么联系? 3, 平衡运输问题的特征及如何将运输问题平衡化? 4, 叙述对策问题的基本要素及其含义? 5,判定下列非线性规划是否为凸规划22min f x =x +x +821()221212x 0x x 20x ,x 0⎧-≥⎪--+=⎨⎪≥⎩21x二、(10分)写出以下规划的对偶规划 123Maxf (x)7x 14x 3x =-++123123123231x 6x 28x 52x 3x 17x 6x x 4x 1x ,x 0,x ++≤⎧⎪-+-≥⎪⎨-+-=⎪⎪≥⎩无限制三,(10分)证明题如果X 1,,Y 1分别为(L,P )与(D,P )的可行解,且CX 1=Y 1b,则X 1与Y 1分别是(L,P )与(D,P )的最优解。
其中,(L,P )与(D,P )是互为对偶线性规划。
四、(20分)用单纯形求解以下线性规划123MaxZ=2x -x +2x1231323123x +x x 62x x 22x x 0x ,x ,x 0+≥⎧⎪-+≥⎪⎨-≥⎪⎪≥⎩五、(20分)建立以下问题的模型并进行求解某城市希望建造五个物流中心,现有六个地点可以选择建设,据估算各中心在各地点的建造费用(单位:千万元)如下表,问如何选择才能使总投资最低?六、(20分)用动态规划的方法求解下列非线性规划 3j j 1MaxZ j x ==∏123j x 3x 3x 12x 0,j 1,2,3++≤⎧⎪⎨≥=⎪⎩七、(20分)某机场有两条跑道,飞机的到达和起飞过程可看作泊松流,平均到达率λ=10架次/天,飞机在起飞与降落时都将占用跑道,并由机场设备对其装卸货物,设飞机占用跑道的时间服从负指数分布,平均占用率μ=30架次/天。
为改进民航系统的服务效率,管理者拟定了甲、乙两个方案。
《运筹学》作业第2章1.某公司计划生产两种产品,已知生产单位产品所需的三种原材料的消耗及所获的利润,如下表所示。
问应如何安排生产使该工厂获利最多?(建立模型,并用图解法求解)解:①决策变量:本问题的决策变量是第一种产品1和第二种产品2的产量。
可设:x为产品1的产量;y为产品2的产量。
②目标函数:本问题的目标函数是获利最多,则,总利润=40x+50y;③约束条件:本问题有四个约束条件:第一个原材料A的约束,x+2y≦30;第二个是原材料B的约束,3x+2y≦60;第三个是原材料C的约束,2y≦24;第四个是非负约束,由于产量不可能为负值,所以有,x≧0, y≧0.由上述分析可建立本问题的线性规划模型如下:o.b. max 40x+50ys.t. x+2y≦30(原材料A的约束)3x+2y≦60(原材料B的约束)2y≦24(原材料C的约束)x≧0, y≧0(非负约束)x如图C点是本题的最优解。
而C点是约束条件原材料B的约束和原材料A的约束的交点,即同时满足下述方程的点:x+2y=303x+2y=60.则x=15.y=7.5最大利润为40*15+50*7.5=975(万元)答:当工厂生产产品1为15件,产品2为7.5件时,工厂获利最多。
2. 某公司计划生产两种产品,已知生产单位产品所需的两种原材料的消耗和人员需要及所获的利润,如下表所示。
问应如何安排生产使该工厂获利最多?(建立模型,并用图解解:决策变量产品1为x ,产品2为y ; 最大获利为300x+500y; o.b. max 300x+500ys.t. x ≦4(原材料A 的约束) 2y ≦12(原材料B 的约束) 3x+2y ≦24(人时的约束) x ≧0, y ≧0(非负约束有约束条件可知,阴影部分为可行区域。
当A 目标函数与可行区域交与A 点时,利益最大 即A(4,6),最大利润为300*4+500*6=4200(万元)当工厂生产产品1为4件,产品2为6件时,是工厂获利最大。
运筹学复习模拟题1、 用图解法求解下列LP 问题,并指出各问题的解的类型(1)min z=6x 1+4x 2s.t.1212122134 1.50,0x x x x x x +≥⎧⎪+≥⎨⎪≥≥⎩ (2) max z=2.5x 1+x 2s.t.121212351552100,0x x x x x x +≤⎧⎪+≤⎨⎪≥≥⎩ (3) max z=2x 1+2x 2s.t.12121210.520,0x x x x x x -≥-⎧⎪-+≤⎨⎪≥≥⎩ (4) max z=x 1+x 2s.t.1212120330,0x x x x x x -≥⎧⎪-≤-⎨⎪≥≥⎩解答:(1)X*=(1/2,0)T ,Z*=3; (2)多重最优解,Z*=5; (3)无最优解(无界); (4)无可行解;2、 把下列线性规划问题化成标准形。
(1) min z=2x 1+3x 2+5x 3s.t.123123123125679151975130,0x x x x x x x x x x x --≥-⎧⎪-+-=⎪⎨++≤⎪⎪≥≤⎩标准形式:⎪⎪⎩⎪⎪⎨⎧≥''''=+''-'+'-=''-'-'--=+''-'+'--''-'-'+-='0,,,,,13)(571915)(9765)(..)(532max 543321533213321433213321x x x x x x x x x x x x x x x x x x x x t s x x x x z (2) min z=3x 1+4x 2+2x 3+x 4s.t.12312312341237 4664 1,0x x xx x xx x x xx x++≤⎧⎪++≥⎪⎨--++=-⎪⎪≥≥⎩标准形式:123344 123351233612334417123344567max342()() 3()746()6()()41,,,,,,,,0z x x x x x x x x x x xx x x x xx x x x x xx xx x x x x x x x x'''''''=------'''++-+=⎧⎪'''++--=⎪⎪''''''+----=⎨⎪-=⎪''''''⎪≥⎩3、在下列线性规划问题中,找出所有基解。
《运筹学》模拟卷
1.某公司计划生产两种产品,已知生产单位产品所需的三种原材料的消耗及所获的利润,如下表所示。
问应如何安排生产使该工厂获利最多?(建立模型,
解:产品1和产品2分别生产15和7.5单位,最大利润是975.
2.医院护士24小时值班,每次值班8小时。
不同时段需要的护士人数不等。
据
解:设第1到第6班安排的护士人数分别是X1,X2,X3,X4,X5,X6。
Min X1+X2+X3+X4+X5+X6
X1+X2≥70
X2+X3≥60
X3+X4≥50
X4+X5≥20
X5+X6≥30
X6+X1≥60
3. 下表是一个线性规划模型的敏感性报告,根据其结果,回答下列问题:
1)是否愿意付出6元的加班费,让工人加班;
2)如果工人的劳动时间变为399小时,日利润怎样变化?
3)如果第二种家具的单位利润增加7元,生产计划如何变化?Microsoft Excel 9.0 敏感性报告
工作表 [ex2-6.xls]Sheet1
报告的建立: 2001-8-6 11:04:02
可变单元
格
终递减目标
式允许的允许的
单元格名字值成本系数增量减量$B$15 日产量(件)100 20 60 1E+30 20 $C$15 日产量(件)80 0 20 10 2.5 $D$15 日产量(件)40 0 40 20 5.0 $E$15 日产量(件)0 -2.0 30 2.0 1E+30
约束
终阴影约束允许的允许的
单元格名字值价格限制
值增量减量
$G$6 劳动时间(小时/件) 400 8 400 25 100 $G$7 木材(单位/件)600 4 600 200 50 $G$8 玻璃(单位/件)800 0 1000 1E+30 200
解:1)因为劳动时间的阴影价格是8,所以愿意付出6元的加班费,让工人加班(6分);
2)日利润减少1×8=16(8分)
3)因为允许的增加量是10,所以生产计划不变.(6分
4.某厂考虑生产甲、乙两种产品,根据过去市场需求统计如下:
解:乐观原则:选乙(6分) 悲观原则:选甲(6分)
最大期望值原则:选甲(8分)
5.某公司准备生产一种新产品,但该产品的市场前景不明朗。
公司一些领导认为应该是先做市场调查,以确定市场的大小,再决定是否投入生产和生产规模的大小,而另一些领导认为没有必要花钱与浪费时间进行市场调查,应立即投入生产。
根据估计,市场调查的成本是3000元,市场调查结果好的概率是0.6,而市场调查结果好时市场需求大的概率是0.8,市场调查结果不好时市场需求大的概率是0.3.在不同市场前景下,不同生产规模下企业的利润如下表.请你分析这个问题的决策过程,并通过建立概念模型(决策中的主要因素),用决策树方法辅助
解:1)正确的决策过程分析,主要的决策因素(5分) 2)建立决策树(15分)
好0.6
差0.4
需求市场
大0.8小0.2
大0.3小0.7
好0.5
差0.5
大0.5
小0.5
大0.5小0.5
调查
不调查
-3000
20000
10000-50001000020000
10000-5000
10000
18000
5500
13000
15000
2500
8750
进行市场调查的期望收益是10000,不做调查的期望收益是8750.因此,最优决策是先进行市场调查,然后在调查结果好室,选择大规模生产,调查结果不好时选择小规模生产.。