决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题12 算法(原卷版) 无答案
- 格式:doc
- 大小:294.50 KB
- 文档页数:7
解答题1.【 2016年第二次全国大联考(江苏卷)】【选修4—1几何证明选讲】(本小题满分10分)若AB 为定圆O 一条弦(非直径),4AB =,点N 在线段AB 上移动,F 90∠ON =,F N 与圆O 相交于点F ,求F N 的最大值.2.【 2016年第二次全国大联考(江苏卷)】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求A 的逆矩阵.3. 【 2016年第二次全国大联考(江苏卷)】【选修4—4:坐标系与参数方程】(本小题满分10分)过点P (-3,0)且倾斜角为30°的直线和曲线2cos 24ρθ=相交于A 、B 两点.求线段AB 的长.4.【 2016年第二次全国大联考(江苏卷)】【选修4—5:不等式选讲】(本小题满分10分)设 x ,y ,z ∈R +,且1x y z ++=,求证:2222221x y z y z z x x y++≥+++ 5【 2016年第二次全国大联考(江苏卷)】一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p ,摸出白球概率为q ,摸出红球加1分,摸出白球减1分,现记“n 次试验总得分为n S ”.(Ⅰ)当21==q p 时,记||3S =ξ,求ξ的分布列及数学期望; (Ⅱ)当32,31==q p 时,求)4,3,2,1(028=≥=i S S i 且的概率.6. 【 2016年第二次全国大联考(江苏卷)】数列}{n a 各项均为正数,211=a ,且对任意的*N ∈n ,有)0(21>+=+c ca a a n n n .(Ⅰ)求证:121ni icca =<+∑;(Ⅱ)若20161=c ,是否存在*N ∈n ,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由.7.【2016年第三次全国大联考【江苏卷】】[选修4-1:几何证明选讲](本小题满分10分) 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE AC =,求证:PDE POC ∠=∠.A8.【2016年第三次全国大联考【江苏卷】】[选修4-2:矩阵与变换](本小题满分10分) 变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦.求函数2y x =的图象依次在1T ,2T 变换的作用下所得曲线的方程. 9.【2016年第三次全国大联考【江苏卷】】[选修4-4:坐标系与参数方程](本小题满分10分)已知参数方程为0cos sin x x t y t θθ=+⎧⎨=⎩(t 为参数)的直线l 经过椭圆2213x y +=的左焦点1F ,且交y 轴正半轴于点C ,与椭圆交于两点A 、B (点A 位于点C 上方).若1F C B =A ,求直线l 的倾斜角θ的值.10.【2016年第三次全国大联考【江苏卷】】[选修4-5:不等式选讲](本小题满分10分)已知函数()2(0)f x x a x a =-+->,若正实数c b ,满足1=++c b a ,且不等式cb c b a x f +++≥222)(对任意实数x 都成立,求a 的取值范围.11.【2016年第三次全国大联考【江苏卷】】(本小题满分10分) 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为71.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲,乙最终得分差的绝对值. (1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布列及期望E ξ.12.【2016年第三次全国大联考【江苏卷】】(本小题满分10分)已知三位数abc ,其中c b a ,,不全相同,若将这个三位数的三个数字按大小重新排列,得出最大数和最小数(如百位数字为0,也视作三位数),两者相减得到一个新数,定义这一操作为f ,如792038830)308(=-=f ,再对新数进行第二次操作f ,依次类推,若记经过第n 次后所得新数为n f(1)已知618=abc ,求2f ,3f ;(2)设abc 的三个数字中的最大数字与最小数字之差为d ,经n 次操作后新数n n n c b a 的三个数字中的最大数字与最小数字之差为n d ①已知61=d ,求证:当1>n 时,5=n d ; ②求证:当6≥n 时,495=n f .13.【2016年第四次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 的交点分别为,D E ,且DF AC ⊥于点F .(Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.14.【2016年第四次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ),求1x y -⎡⎤⎢⎥⎣⎦M .15. 【2016年第四次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),直线l 过点P ,且倾斜角为π6,圆C :θρsin 6=.(Ⅰ)求直线l 的参数方程和圆C 的直角坐标方程; (Ⅱ)设直线l 与圆C 相交于,A B 两点,求PA PB ⋅.16.【2016年第四次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知函数()f x =R .(Ⅰ)求实数m 的取值范围;(Ⅱ)若m 的最大值为n ,当正数b a ,满足41532n a b a b+=++时,求47a b +的最小值.17. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)过直线2y =-上的动点P 作抛物线214y x =的两条切线,PA PB ,其中A ,B 为切点. (Ⅰ)若切线,PA PB 的斜率分别为12,k k ,求证:12k k 为定值; (Ⅱ)求证:直线AB 过定点.18. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)设f (n )=(a +b )n(n ∈N *,n ≥2),若f (n )的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f (n )具有性质P . (Ⅰ)求证:f (7)具有性质P ;(Ⅱ)若存在n ≤2016,使f (n )具有性质P ,求n 的最大值.19.【2016年第一次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交BA 的延长线于点C .若DB DC =,求证:CA AO =.20.【2016年第一次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 21. 【2016年第一次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,设直线l过点2),(3,)32A B ππ,且直线l 与曲线:sin (0)C a a ρθ=>有且只有一个公共点,求实数a 的值.22.【2016年第一次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)求函数y =的最大值.23. 【2016年第一次全国大联考【江苏卷】】在四棱锥P ABCD -中,直线,,AP AB AD 两两相互垂直,且//,AD BC 2AP AB AD BC ===. (1)求异面直线PC 与BD 所成角的余弦值; (2)求钝二面角B PC D --的大小.24. 【2016年第一次全国大联考【江苏卷】】设数列{}n a 按三角形进行排列,如图,第一层一个数1a ,第二层两个数2a 和3a ,第三层三个数45,a a 和6a ,以此类推,且每个数字等于下一层的左右两个数字之和,如123245356,,,a a a a a a a a a =+=+=+.(1)若第四层四个数为0或1,1a 为奇数,则第四层四个数共有多少种不同取法? (2)若第十一层十一个数为0或1,1a 为5的倍数,则第十一层十一个数共有多少种不同取法?12345678910a a a a a a a a aa25.【2016高考押题卷(1)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,AD 与⊙O 相切,割线DM 与⊙O 相交于点M ,N ,若∠B=30°,AC=1,求DM ⋅DNA PB CD26.【2016高考押题卷(1)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知曲线C :1xy =,若矩阵M -⎥=⎥⎥⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程.27. 【2016高考押题卷(1)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系下,已知圆O :cos sin ρθθ=+和直线:sin()4l πρθ-=, (1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求直线l 与圆O 公共点的一个极坐标.28.【2016高考押题卷(1)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知,,a b c均为正数,证明:2222111()a b c a b c+++++≥29. 【2016高考押题卷(1)【江苏卷】】如图,在空间直角坐标系O - xyz 中,正四棱锥P -ABCD的侧棱长与底边长都为M ,N 分别在PA ,BD 上,且13PM BN PA BD ==. (1)求证:MN ⊥AD ;(2)求MN 与平面PAD 所成角的正弦值.30. 【2016高考押题卷(1)【江苏卷】】设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个.(1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率;(2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE .31.【2016高考押题卷(3)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,已知圆O 的半径OB 垂直于直径M AC ,为AO 上一点,BM 的延长线交圆O 于点N ,过N 点所作的切线交CA 的延长线于点P . (1)求证:PC PA PM ⋅=2; (2)若圆O 的半径为32,且OM OA 3=,求MN 的长.PBC32.【2016高考押题卷(3)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵⎢⎣⎡-=12A ⎥⎦⎤21,⎢⎣⎡=01B ⎥⎦⎤-12. (1)计算AB ;(2)若矩阵B 将直线0232:=+-y x l 变为直线/l ,求直线/l 的方程.33. 【2016高考押题卷(3)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)已知直线l 的参数方程⎩⎨⎧-=+=t y t x l 11:(t 为参数)曲线C 的参数方程为⎩⎨⎧==θθsin cos 2:y x C (πθ20≤≤),若直线l 与曲线C 交于两点N M ,,求MN 的长度.34.【2016高考押题卷(3)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)若c b a ,,是正数,且1=++c b a .(1)求证:9111≥++c b a ; (2)求证:29111≥+++++a c c b b a .35、【2016高考押题卷(3)【江苏卷】】某品牌汽车S 4店经销C B A ,,三种排量的汽车,其中C B A ,,三种排量的汽车依次有5,4,3款不同的车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B 排量的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.36、【2016高考押题卷(3)【江苏卷】】已知各项均为正数的数列}{n a 的首项11=a ,其前n 项和为n S ,若))(1(21*∈+=N n a a S nn n . (1)求5432,,,a a a a 的值;(2)由此归纳出通项n a 的表达式,并用数学归纳法加以证明.37.【2016高考押题卷(2)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,在⊙O 直径AB 的延长线上任取一点C ,过点C 做直线CE 与⊙O 交于点D 、E ,在⊙O 上取一点F ,使点A 是弧EF 的中点,连接DF 交直线AB 于G .若CB=OB ,求CGCB的值.38.【2016高考押题卷(2)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)若二阶矩阵M 满足:12583446M ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦.曲线22:221C x xy y ++=在矩阵M 所对应 的变换作用下得到曲线C ',求曲线C '的方程.39.【2016高考押题卷(2)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分)已知曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数),设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.40.【2016高考押题卷(2)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知a ,b ,c R ∈,若444444a b c m ++=,关于x 的不等式|2|1x m -≤的整数解有且仅有一个值为3(m 为整数),求222a b c ++的最大值. 41.【2016高考押题卷(2)【江苏卷】】(本小题满分10分)如图,在四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,E 为SC 的中点,F 为AC 上一点,且2=AB ,22=SA .(Ⅰ)若//EF 平面SBD ,试确定F 点的位置; (Ⅱ)求二面角D SC B --的余弦值.42. 【2016高考押题卷(2)【江苏卷】】(本小题满分10分)对于数列{}n a ,称∑-=+--=11111)(k i i i k a a k a P ,其中N k k ∈≥,2为数列{}n a 的前k 项“波动均值”.若对任意的N k k ∈≥,2,都有)()(1k k a P a P <+,则称数列{}n a 为“趋稳数列”. (1)若数列2,,1x 为“趋稳数列”,求x 的取值范围;(2)已知数列{}n a 的首项为1,各项均为整数,前k 项的和为k S ,且对任意N k k ∈≥,2,都有)(2)(3k k a P S P =,试计算:)()1()(2)(3322n nn n n a P C n a P C a P C -+++ , 其中N n n ∈≥,243.【2016高考冲刺卷(2)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.44.【2016高考冲刺卷(2)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 45. 【2016高考冲刺卷(2)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.46.【2016高考冲刺卷(2)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分) 设,x y 均为正数,且x y >,求证:2212232x y x xy y +≥+-+.47. 【2016高考冲刺卷(2)【江苏卷】】 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的,,A B C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量h 表示该网民购买商品的种数,求h 的概率分布和数学期望. 48. 【2016高考冲刺卷(2)【江苏卷】】设集合{}1,2,3,,(3)M n n =≥,记M 的含有三个元素的子集个数为n S ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为n T . (1)求33T S ,44T S ,55T S ,66T S 的值; (2)猜想nnT S 的表达式,并证明之.49.【2016高考冲刺卷(4)【江苏卷】】【选修4—1几何证明选讲】如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.50.【2016高考冲刺卷(4)【江苏卷】】【选修4—2:矩阵与变换】在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90得到点B ',求点B '的坐标.51. 【2016高考冲刺卷(4)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为sin()3πρθ-=椭圆C 的参数方程为2cos x t y t =⎧⎪⎨=⎪⎩(t 为参数) . (1)求直线l 的直角坐标方程与椭圆C 的普通方程; (2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.52.【2016高考冲刺卷(4)【江苏卷】】【选修4—5:不等式选讲】设x ,y 均为正数,且x >y ,求证:x +4x 2-2xy +y 2≥y +3.53. 【2016高考冲刺卷(4)【江苏卷】】如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点. (Ⅰ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (Ⅱ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.54. 【2016高考冲刺卷(4)【江苏卷】】设(1-x )n=a 0+a 1x +a 2x 2+…+a n x n,n ∈N ,n ≥2.(1)设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值; (2)设b k =1k n k +-a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求1||m m n S C -55.【2016高考冲刺卷(8)【江苏卷】】【选修4—1几何证明选讲】如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .56.【2016高考冲刺卷(8)【江苏卷】】【选修4—2:矩阵与变换】 已知a ,b 是实数,如果矩阵A =32a b ⎡⎤⎢⎥-⎣⎦所对应的变换T 把点(2,3)变成点(3,4). (1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2.57. 【2016高考冲刺卷(8)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求MA MB ⋅的值.AMPCBA 1C 1B 158.【2016高考冲刺卷(8)【江苏卷】】【选修4—5:不等式选讲】求函数f (x )=的最大值.59. 【2016高考冲刺卷(8)【江苏卷】】 如图,在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的准线l 与x 轴交于点M ,过M 的直线与抛物线交于A ,B 两点.设A (x 1,y 1)到准线l 的距离为d ,且d =λp (λ>0).(1)若y 1=d =1,求抛物线的标准方程;(2)若AM AB λ+=0,求证:直线AB 的斜率为定值.60. 【2016高考冲刺卷(8)【江苏卷】】设实数12n a a a ,,,满足120n a a a +++=,且12||||||1n a a a +++≤(*n ∈N 且2)n ≥,令(*)nn a b n n=∈N .求证:1211||22n b b b n+++-≤(*)n ∈N . 61.【2016高考冲刺卷(1)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连接,AD BD . 若4AC =,3DE =,求BD 的长.62.【2016高考冲刺卷(1)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,求矩阵A 的特征值和特征向量. 63.【2016高考冲刺卷(1)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.64.【2016高考冲刺卷(1)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知正实数,,a b c 满足231a b c ++=,求证:24627111a b c ++≥. 65.【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC ,(1)求二面角A 1-BC 1-B 1的余弦值; (2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值.66【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)已知,N*k m ∈,若存在互不相等的正整数12,,a a …,m a ,使得1223,,a a a a …11,,m m m a a a a -同时小于k ,则记()f k 为满足条件的m 的最大值.(1)求(6)f 的值;(2)对于给定的正整数n (1)n >,1A 1B 1C ABCABDEOC·(ⅰ)当(2)(1)(2)n n k n n +<≤++时,求()f k 的解析式; (ⅱ)当(1)(2)n n k n n +<≤+时,求()f k 的解析式.67.【2016高考冲刺卷(3)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE BE ,,APE ∠的平分线与AE BE ,分别交于C D ,,其中30APE ∠=︒.(Ⅰ)求证:ED PB PDBD PA PC⋅=; (Ⅱ)求PCE ∠的大小.68.【2016高考冲刺卷(3)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 69.【2016高考冲刺卷(3)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C a a ρθθ=>过点(2,4)P --的直线(t为参数)与曲线C 相交于点,M N 两点.(1)求曲线C 的平面直角坐标系方程和直线l 的普通方程; (2成等比数列,求实数a 的值.70.【2016高考冲刺卷(3)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知函数()121f x x x =++- (1)解不等式()4f x <(2)若不等式()1f x a ≥+对任意的x R ∈恒成立,求实数a 的取值范围. 71.【2016高考冲刺卷(3)【江苏卷】】(本小题满分10分) 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17。
绝密★启用前2017年普通高等学校招生全国统一考试数学试题江苏卷参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球的体积34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.已知复数(1i)(12i)z =++,其中i 是虚数单位,则z 的模是 ▲ .【解析】(1i)(12i)1i 12i z =++=++==【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)a+b c+d =()()i(,)ac bd +ad +bc a,b,c d -∈R .其次要熟悉复数相关概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b (,)a b 、共轭复数为i a b -.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N . 4.右图是一个算法流程图,若输入x 的值为116,则输出y 的值是 ▲ .【答案】2-【解析】由题意得212log 216y =+=-,故答案为2-. 【考点】条件结构的流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5.若π1tan(),46α-=则tan α= ▲ .【答案】75【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的. (3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 6.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 【考点】圆柱的体积、球的体积【名师点睛】空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.记函数()f x D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .【答案】59【考点】几何概型【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8.在平面直角坐标系xOy 中,双曲线2213xy -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线、准线【名师点睛】(1)已知双曲线方程22221x y a b-=求渐近线:22220x y by x a b a -=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.9.等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列的前n 项和公式、通项公式【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 ▲ . 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.12.如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n += ▲ .【答案】3【解析】由tan 7α=可得sin α=cos α=易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100n m m +=⎪⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.13.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【考点】直线与圆、线性规划【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.14.设()f x 是定义在R 上且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1{n D x x n -==,*}n ∈N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况, 在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质,因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)先由平面几何知识证明EF AB ∥,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC ⊥平面ABD ,则BC ⊥AD ,再由AB ⊥AD 及线面垂直判定定理得AD ⊥平面ABC ,即可得AD ⊥AC .试题解析:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .【考点】线面平行判定定理、线面垂直判定与性质定理、面面垂直性质定理【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,取得最大值3;5π6x =时,取得最小值-.【解析】试题分析:(1)先由向量平行的坐标表示得3sin x x =,再根据同角三角函数的基本关系可得5π6x =;(2)先由向量数量积的坐标表示并结合配角公式得π(6))f x x =+,再根据x 的取值范围及余弦函数的性质可求得最值.试题解析:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan3x =-,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b .因为,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤于是,当ππ66x +=,即0x =时,取到最大值3;当π6x +=π,即5π6x =时,取到最小值-.【考点】向量共线、数量积、三角函数的最值【名师点睛】(1)向量平行:1221x y x y ⇒=∥a b ,,,λλ≠⇒∃∈=0R ∥a b b a b ,BA AC OA λ=⇔=111OB OC λλλ+++ ;(2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b ;(3)向量加减乘:±=a b 221212(,),||,||||cos ,x x y y ±±=⋅=⋅<>a a a b a b a b . 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2).试题解析:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b ==E 的标准方程是22143x y+=.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y +-,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得0077x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 【考点】椭圆方程、直线与椭圆的位置关系【名师点睛】直线与圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用根与系数关系或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上(点的坐标满足曲线方程)等. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16;(2)20.【解析】试题分析:(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===.于是4s i 3s555N Eα=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm) 【考点】正、余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.试题解析:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥,所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列. 【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法:①用定义证明:1(n n a a d d +-=为常数);②用等差中项证明:122n n n a a a ++=+;③通项法:n a 为关于n 的一次函数;④前n 项和法:2n S An Bn =+.20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >;(2)见解析;(3)36a <≤.试题解析:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1=3a x -,2=3a x -.列表如下:故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],. 【考点】利用导数研究函数得单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)PAC CAB ∠=∠; (2)2AC AP AB =⋅.【答案】(1)见解析;(2)见解析.(2)由(1)知,APC ACB △∽△,故AP ACAC AB=,即2·AC AP AB =. 【考点】圆的性质、相似三角形【名师点睛】(1)解决与圆有关的成比例线段问题的两种思路:①直接应用相交弦、切割线定理及其推论;②当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握. (2)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等. B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程. 【答案】(1);(2)228x y +=.(2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为点00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2:C 228x y +=. 【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''. C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】试题分析:先将直线l 的参考方程化为普通方程,再根据点到直线距离公式得点P 到直线l 的的距离d ==【考点】参数方程与普通方程的互化【名师点睛】(1)将参数方程化为普通方程,消参数时常用代入法、加减消元法、三角恒等变换法;(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.D .[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤【答案】见解析【考点】柯西不等式【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1120BAD ∠=︒. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17;(2)4. 【解析】试题分析:(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线A 1B 与AC 1的方向向量,根据向量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值. 试题解析:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以1{,,}AE AD AA为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2,AA 1120BAD ∠=︒.则11(0,0,0),1,0),(0,2,0),A B D E A C -.(1)111,AB AC =-= ,则1111111,1cos ,77||||A B AC A B AC A B AC ⋅-⋅===-. 因此异面直线A 1B 与AC 1所成角的余弦值为17.设二面角B -A 1D -A 的大小为θ,则3|cos |4θ=. 因为[0,]θ∈π,所以sin θ==.因此二面角B -A 1D -A. 【考点】空间向量、异面直线所成角及二面角【名师点睛】利用法向量求解空间线面角、面面角的关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”. 23.(本小题满分10分)已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n + 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+ .(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.【答案】(1)nm n+;(2)见解析. 试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n m n n m nn p m n -+-+==+. (2)随机变量X 的概率分布为随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k n m nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++- 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++- 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++- 12221(C C )(1)C n n m n m n nm nn --+-+-+==+- 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p ),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.。
一、填空1.【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】如图是一个算法的流程图,则输出的的值为__________.【答案】62.【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】据记载,在公元前3世纪,阿基米德已经得出了前个自然数平方和的一般公式.下图是一个求前个自然数平方和的算法流程图,若输入的值为1,则输出S的值为.【答案】14【解析】第一次循环:; 第二次循环:; 第三次循环:;结束循环,输出3.【南京市、盐城市2017届高三年级第一次模拟】如图是一个算法流程图,则输出的x 的值是▲..【答案】9【解析】第一次循环:5,7x y==,第二次循环:9,5x y==结束循环,输出9x=4.【2017年第二次全国大联考江苏卷】运行如图所示的流程图,其结果为_______.【答案】开始结束x←1y←9x>yx←x+4y←y-2否是输出x第4题图5.【2017年第三次全国大联考江苏卷】若(mod)n N m≡表示正整数除以正整数后的余数为,则执行该程序框图输出的n=______.【答案】17【解析】第一次循环,11,2mod(3),/1(mod4)n n n≡=≡,第二次循环,12,/2mod(3),n n≡=第三次循环,13,/2mod(3),n n≡=第四次循环,14,2mod(3),/1(mod4)n n n≡=≡,第五次循环,15,/2mod(3),n n≡=第六次循环,16,/2mod(3),n n≡=第七次循环,17,2mod(3),1(mod4)n n n≡≡=,结束循环,输出17.n=6.【2017年第一次全国大联考江苏卷】运行如图所示的伪代码,其结果为____________.S←2, I←1While 2017I≤S←11S-I←I+1End WhilePrint S第4题图【答案】 1.-7.【2016—2017学年度苏锡常镇四市高三教学情况调研(一)】下图是给出的一种算法,则该算法输出的结果是.(第4题图)【答案】248.【2017年高考原创押题预测卷01(江苏卷)】已知某程序框图如图所示,则该程序运行后输出的结果为()【答案】0.81t←2i←While4i≤t t i←⨯1i i←+End WhliePr int t然后第2018次循环:是,是,0.8,20192018A n==>;第2019次循环:不满足2018n≤,否,输出0.8A=,退出循环程序,故此时输出的0.8A=.9.【2017年高考原创押题预测卷02(江苏卷)】执行如图所示的算法流程图,则输出的结果S的值为_______.【答案】1-.10.【2017年高考原创押题预测卷03(江苏卷)】某城市缺水问题比较突出,为了制定节水管理办法,对开始0,1S n==2016n<是否πcos2nS S=+1n n=+输出S结束全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为12,,,nx x x ⋅⋅⋅(单位:吨).根据如图所示的程序框图,若2n =,且12,x x 分别为1,2,则输出的结果s 为.【答案】14【解析】设22111()s s s i i =-,当1i =时,2211211101,01,(11)011s x s x s =+==+==⨯-⨯=;当2i =时,22122211113,15,(53)224s x s x s =+==+==⨯-⨯=,当3i =时,循环结束,输出14s =. 11. 【南京市、盐城市2017届高三年级第二次模拟】根据如图所示的伪代码,输出S 的值为 ▲ .(第5题图)S ←1I ←1While I ≤8 S ←S +I I ←I +2 End While Print S【答案】1712.【2017南通扬州泰州苏北四市高三二模】根据如图所示的伪代码,可知输出的结果S是▲.【答案】1713.【苏北四市2016-2017学年度高三年级第一学期期末调研】根据如图所示的伪代码,则输出S的值为.【答案】2014.【苏州市2017届高三第一学期期末调研】阅读下面的流程图,如果输出的函数)(xf的值在区间],[2141内,那么输入的实数x的取值范围是.S←1I←While5I≤1I I←+S S I←+End WhliePr int S【答案】[2,1]--15.【南通市、泰州市2017届高三第一次调研测试】如图是一个算法流程图,则输出的n的值为。
一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知一组数据8,10,9,12,11,那么这组数据的方差为_______. 【答案】2【解析】先算平均值:8+10+9+12+11=105,再算方差:22222(810)+(1010)+(910)+(1210)+(1110)=25-----.2. 【 2016年第二次全国大联考(江苏卷)】袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为_______.3. 【2016年第三次全国大联考【江苏卷】】春风商店对某类商品销售数量(单位:个)进行统计,统计时间是9月1日至9月30日,每5天一组分组统计,绘制了如图的销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的此类商品数(单位:个)为 .【答案】1200【解析】由直方图得12003146432180=+++++⨯.4. 【2016年第三次全国大联考【江苏卷】】已知实数]10,0[∈a ,则函数3)4()(--=x a x f 在区间(0,+∞)内为增函数的概率为________. 【答案】52【解析】因4)4(3)('---=x a x f ,故当)(x f 在区间(0,+∞)内为增函数时,04<-a ,即4<a ,因]10,0[∈a ,故所求概率为52104==P . 5. 【2016年第四次全国大联考【江苏卷】】 已知一组数据:8,10,,12,11a 的方差为2,那么相对应的另一组数据:17,21,21,25,23a +的方差为_______. 【答案】8【解析】由题意得:所求方差为222=8.⨯6. 【2016年第四次全国大联考【江苏卷】】袋中有形状、大小都相同的五只球,其中2只红球,3只白球,从中一次随机摸出2只球,则至少有1只白球的概率为_______. 【答案】910【解析】从五只球中一次随机摸出2只球共有10种基本事件,其中全是红球包含1种基本事件,因此至少有1只白球的概率为191=.1010-7. 【2016年第一次全国大联考【江苏卷】】分别在集合{1234}A =,,,和集合{5678}B =,,,中各取一个数相乘,则乘积为偶数的概率为_______.8. 【2016高考押题卷(1)【江苏卷】】袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_______.【答案】13【解析】从中4个球中任取两个球共有6种基本事件,其中两个球颜色相同包含两种基本事件,故概率为21=63.9. 【2016高考押题卷(3)【江苏卷】】一汽车检测站对100辆汽车在一个时段经过某一雷达测速区进行测试,并将这些汽车运行时速绘制成频率分布直方图,则从图中可以看出时速超过h km /60的汽车数目约为 辆.km/h0。
一、填空题1. 【 2016年第二次全国大联考(江苏卷)】运行如图所示的伪代码,其输出的结果S 为_______.2. 【2016年第三次全国大联考【江苏卷】】如图所示的流程图的运行结果是 .【答案】27【解析】由流程图得第一次循环:1,2s n ==;第二次循环:6,3s n ==;第三次循环:27,43s n ==>;结束循环输出27.s =3. 【2016年第四次全国大联考【江苏卷】】运行如图所示的伪代码,其运行后输出的结果为0,1s n ←←第3题图 I ←0While I <9S ←2I + 1I ←I +3End WhilePrint S_______.4. 【2016年第一次全国大联考【江苏卷】】运行如图所示的伪代码,其结果为_______.【答案】10082017【解析】由题意得111111*********(1)(1)133520152017233520152017220172017S =+++=-+-++-=-=⨯⨯⨯L L 5. 【2016高考押题卷(1)【江苏卷】】下图是一个算法流程图,则输出的x 的值是_______. S ←0For I From 1 To 2015 step 2S ←S + 1(2)I I + End ForPrint S第4题图p ←1For k From 1 To 10 Step 3p ←2k p -End ForPrint p第4题图【答案】59.【解析】第一次循环:3,7x y ==,第二次循环:13,33x y ==,第三次循环:59,151x y ==,结束循环,输出59.x =6. 【2016高考押题卷(3)【江苏卷】】给出一个算法程序框图(如图),其作用是输入x 的值,输出相应的y 值,要使输入x 的值与输出的y 值相等,则这样的x 值有个.y=2x-3x ≤2y=1x 输入x否是x ≤5y=x 2否是输出y开始结束7. 【2016高考冲刺卷(2)【江苏卷】】运行如图所示的伪代码,则输出的结果S 为 .【答案】9【解析】试题分析:第一次循环,123,112S I =+==+=,第二次循环,322,213S I =+==+=,第三次循环,527,314S I =+==+=,第四次循环,729,415S I =+==+=,则9S =.8. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】右图是一个算法流程图,则输出的k 的值是 ▲ . 开始k >9输出k结束k 0k 2k +k 2YN【答案】17【解析】试题分析:第一次循环,1k =,第二次循环,3k =,第三次循环,179k =>,结束循环,输出17.k =9. 【2016高考冲刺卷(8)【江苏卷】】右边程序输出的结果是___________.10. 【2016高考押题卷(2)【江苏卷】】算法流程图如图所示,则输出的k 值是.【答案】5【解析】由042>-k k 得4>k 或0<k ,得之.11. 【江苏省扬州中学2016届高三4月质量监测】运行如图所示的伪代码,其结果为 .12. 【2016高考冲刺卷(3)【江苏卷】】如图是一个算法的流程图,它最后输出的k 值为 .S ←1For I From 1 To 7 step 2S ←S + IEnd ForPrint S(第3题) 结束k ←k +1 N 输出kY开始k ←1240k k ->13. 【2016高考冲刺卷(5)【江苏卷】】执行如图所示的流程图,则输出的k的值为___▲_____.【答案】5【解析】由程序框图,,S k 的初始值为1,1,执行循环时,S k 依次为3,2S k ==,8,3S k ==,16,4S k ==,27,5S k ==,满足判断条件,退出循环,输出5k =.14. 【2016高考冲刺卷(6)【江苏卷】】已知某运算程序的程序语言如右,则输出的S 的值为15. 【2016高考冲刺卷(7)【江苏卷】】如图,该程序运行后输出的y 值为 .【答案】32【解析】程序执行中的数据变化为:1,13,3,8,33,5,32,53n n y n y =>==>==>成立,输出32y =16. 【2016高考冲刺卷(9)【江苏卷】】右图是一个算法流程图,则输出的S 的值是 .【答案】3【解析】第一次运算结果为3,11==n S ,第二次运算结果为5,8==n S ,第三次运算结果为7,3==n S ,此时n S <,故输出的3=S17. 【盐城市2016届高三年级第三次模拟考试】如图所示,该伪代码运行的结果为 ▲ . Y开始(第4题) 结束n ←1,S ←12输出Sn ←n +2S < nN S ←S -n18. 【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】执行如图所示的流程图,则输出k的值为.19. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】某算法流程图如右图所示,该程序运行后,若输出的15x ,则实数a 等于 ▲ .S←0i←1While S≤20S←S+ii←i+2End WhilePrint i第5题图【答案】1【解析】试题分析:第一次循环21,2x a n =+=,第二次循环43,3x a n =+=,第三次循环87,43x a n =+=>,结束循环输出8715, 1.x a a =+==20. 【南京市2016届高三年级第三次模拟考试】执行如图所示的伪代码,输出的结果是▲ .(第7题) 结束开始n ← 1x ← ax ← 2x + 1输出x N n ≤3n ← n + 1Y。
2017年江苏卷数学高考试题解析(精编版)【试卷点评】【命题特点】2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。
2017年江苏数学试卷在―稳中求进‖中具体知识点有变化。
1.体现新课标理念,实现平稳过渡。
试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新。
如第7题首次考查几何概型概率问题。
2.关注通性通法。
试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。
如第17题解析几何考查两直线交点以及点在曲线上。
第20题以极值为载体考查根与系数关系、三次方程因式分解。
第19题以新定义形式多层次考查等差数列定义。
3.体现数学应用,关注社会生活。
第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。
4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。
两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。
【试卷解析】参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球体积公式34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = 则实数a 的值为 ▲ . 【答案】1【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知复数(1i)(12i),z =++其中i 是虚数单位,则z 的模是 ▲ .【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b 、对应点为(,)a b 、共轭为.-a bi3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】所求人数为300601810000⨯=,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .4. 右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 ▲ .【答案】2-【解析】由题意212log 216y =+=-,故答案为-2. 【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5. 若π1tan(),46α-= 则tan α= ▲ .【答案】75【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(第4题)(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 6. 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32.【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ . 【答案】59【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用―比例解法‖求解几何概型的概率. 8. 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线【名师点睛】1.已知双曲线方程22221x y a b -=求渐近线:22220x y by x a b a-=⇒=±2.已知渐近线y mx = 设双曲线标准方程222m x y λ-=3,双曲线焦点到渐近线距离为b ,垂足为对应准线与渐近线的交点.9. 等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符学#科.网合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用―巧用性质、整体考虑、减少运算量‖的方法. 10. 某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ . 【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意―拆、拼、凑‖等技巧,使其满足基本不等式中―正‖(即条件要求中字母为正数)、―定‖(不等式的另一边必须为定值)、―等‖(等号取得的条件)的条件才能应用,否则会出现错误. 11. 已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉―f ‖,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内12. 如图,在同一个平面内,向量OA ,OB ,OC 的模分别为,OA 与OC的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R , 则m n += ▲ .【答案】3【解析】由tan 7α=可得sin α=,cos α=,根据向量的分解,(第12题)易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0+==,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题. (2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.13. 在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14. 设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩ 其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p =,则10()nm q p= ,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ,所以EF AB ∥.【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)(第15题)ADBC EF已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为-【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最学.科网大值3;当π6x +=π,即5π6x =时,取到最小值-.【考点】向量共线,数量积【名师点睛】(1)向量平行:1221//a b x y x y ⇒=,//,0,a b b a b λλ≠⇒∃∈=R ,111BA AC OA OB OC λλλλ=⇔=+++(2)向量垂直:121200a b a b x x y y ⊥⇔⋅=⇔+=,(3)向量加减乘: 221212(,),||,||||cos ,a b x x y y a a a b a b a b ±=±±=⋅=⋅<>17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)【解析】解:(1)设椭圆的半焦距为c .从而直线1l 的方程:001(1)x y x y +=-+, ①(第17题)直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.因此点P的坐标为. 【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为cm,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)容器Ⅱ容器ⅠAH 11E 1A (第18题)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473s i n s i n ()s i n ()s i n c o 3s c o s s i n ()5252555N E Gαβαβαβαβ=π--=+=+=⨯+∠.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 【考点】正余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④所以数列{}n a 是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法: (1)用定义证明:1(n n a a d d +-=为常数); (2)用等差中项证明:122n n n a a a ++=+; (3)通项法: n a 为n 的一次函数; (4)前n 项和法:2n S An Bn =+ 20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤【解析】解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥.3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=x ,2x 列表如下故()f x 的极值点是12,x x . 从而3a >,因为3a >,所以>(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=因此a 的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内..........作答..,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A. [选修4—1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1);PAC CAB ∠=∠ (2)2AC AP AB =⋅.【答案】见解析【解析】证明:(1)因为PC 切半圆O 于点C ,所以PCA CBA =∠∠,所以2·AC AP AB = 【考点】圆性质,相似三角形【名师点睛】1.解决与圆有关的成比例线段问题的两种思路P(第21-A 题)(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为―相似三角形→比例式→等积式‖.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等. B. [选修4—2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A= ,B=.(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)(2)228x y +=【解析】解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦,所以AB =错误!未找到引用源。
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= 6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数()f x =的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是 8.在平面直角坐标系xoy k ,双曲线2213x y -= 的右准线与学科&网它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是11.已知函数()3xx 12x+e -e -f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。
O 21 x O 21x O 21 x O 21x A B C D 2017年普通高等学校招生全国统一考试(江苏卷)数学一、选择题:本大题共12小题,每小题5分,共60分。
(1)函数的最小正周期是( )。
A. B.C.D.(2)圆的圆心到直线的距离是( )。
A.B. C. 1 D.(3)不等式的解集是( )A. B.C.D.(4)在内,使成立的x 取值范围为( )A. B.C.D.(5)设集合,则( )A. B. C. D.(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。
A. B.C.D.(7)函数是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD.(8)已知,则有( )。
A. B. C.D.(9)函数A. 在()内单调递增 B. 在()内单调递减 C. 在()内单调递增 D. 在()内单调递减(10) 极坐标方程与的图形是( )。
(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )。
A.8种B. 12种C. 16种D. 20种(12)据2017年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%,”如果“”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“”末,我国国内生产总值约为( )。
A. 115 000 亿元B. 120 000亿元C. 127 000亿元 D. 135 000亿元 二. 填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)椭圆的一个焦点是(0,2),那么k= 。
(14)的展开式中项的系数是 。
(15)已知,则。
(16)已知函数那= 。
三. 解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知复数,求实数a,b 使(18)(本小题满分12分)设为等差数列,为等比数列,,分别求出及的前10项的和及。
一、填空题1. 【 2016年第二次全国大联考(江苏卷)】运行如图所示的伪代码,其输出的结果S 为_______.2. 【2016年第三次全国大联考【江苏卷】】如图所示的流程图的运行结果是 . 【答案】27【解析】由流程图得第一次循环:1,2s n ==;第二次循环:6,3s n ==;第三次循环:27,43s n ==>;结束循环输出27.s =3. 【2016年第四次全国大联考【江苏卷】】运行如图所示的伪代码,其运行后输出的结果为_______.I ←0While I <9 S ←2I + 1 I ←I +3End While Print S0,1s n ←←第3题图4. 【2016年第一次全国大联考【江苏卷】】运行如图所示的伪代码,其结果为_______.【答案】10082017【解析】由题意得111111111111008(1)(1)133520152017233520152017220172017S =+++=-+-++-=-=⨯⨯⨯ 5. 【2016高考押题卷(1)【江苏卷】】下图是一个算法流程图,则输出的x 的值是_______.p ←1For k From 1 To 10 Step 3 p ←2k p -End For Print p第4题图S ←0For I From 1 To 2015 step 2S ←S + 1(2)I I +End For Print S第4题图【答案】59.【解析】第一次循环:3,7x y==,第二次循环:13,33x y==,第三次循环:59,151x y==,结束循环,输出59.x=6. 【2016高考押题卷(3)【江苏卷】】给出一个算法程序框图(如图),其作用是输入x的值,输出相应的y值,要使输入x的值与输出的y值相等,则这样的x值有个.7. 【2016高考冲刺卷(2)【江苏卷】】运行如图所示的伪代码,则输出的结果S为.【答案】9 【解析】试题分析:第一次循环,123,112S I =+==+=,第二次循环,322,213S I =+==+=,第三次循环,527,314S I =+==+=,第四次循环,729,415S I =+==+=,则9S =. 8. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】右图是一个算法流程图,则输出的k 的值是 ▲ .开始k >9输出k结束k 0k 2k +k 2Y N【答案】17 【解析】试题分析:第一次循环,1k =,第二次循环,3k =,第三次循环,179k =>,结束循环,输出17.k =9. 【2016高考冲刺卷(8)【江苏卷】】右边程序输出的结果是___________.10. 【2016高考押题卷(2)【江苏卷】】算法流程图如图所示,则输出的k 值是 .【答案】5【解析】由042>-k k 得4>k 或0<k ,得之.11. 【江苏省扬州中学2016届高三4月质量监测】运行如图所示的伪代码,其结果为 .12. 【2016高考冲刺卷(3)【江苏卷】】如图是一个算法的流程图,它最后输出的k 值为 .S ←1For I From 1 To 7 step 2 S ←S + I End For Print S13. 【2016高考冲刺卷(5)【江苏卷】】执行如图所示的流程图,则输出的k的值为___▲_____.【答案】5【解析】由程序框图,,S k 的初始值为1,1,执行循环时,S k 依次为3,2S k ==,8,3S k ==,16,4S k ==,27,5S k ==,满足判断条件,退出循环,输出5k =.14. 【2016高考冲刺卷(6)【江苏卷】】已知某运算程序的程序语言如右,则输出的S 的值为15. 【2016高考冲刺卷(7)【江苏卷】】如图,该程序运行后输出的y 值为 .【答案】32【解析】程序执行中的数据变化为:1,13,3,8,33,5,32,53n n y n y =>==>==>成立,输出32y =16. 【2016高考冲刺卷(9)【江苏卷】】右图是一个算法流程图,则输出的S 的值是 .【答案】3【解析】第一次运算结果为3,11==n S ,第二次运算结果为5,8==n S ,第三次运算结果为7,3==n S ,此时n S <,故输出的3=S17. 【盐城市2016届高三年级第三次模拟考试】如图所示,该伪代码运行的结果为 ▲ .(第4题)18. 【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】执行如图所示的流程图,则输出k 的值为 .19. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】某算法流程图如右图所示,该程序运行后,若输出的15x ,则实数a 等于 ▲ .第5题图【答案】1 【解析】试题分析:第一次循环21,2x a n =+=,第二次循环43,3x a n =+=,第三次循环87,43x a n =+=>,结束循环输出8715, 1.x a a =+==20. 【南京市2016届高三年级第三次模拟考试】执行如图所示的伪代码,输出的结果是 ▲ .(第7题)。
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题)。
本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,请务必将自己的姓名、准考证号用0。
5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗 一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上 1.已知集合{}=1,2A,{}=+2,3B a a ,若AB ={1}则实数a 的值为________2。
已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是5。
若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α=6。
如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数2()6f x x x =+-的定义域为D 。
在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是 8。
在平面直角坐标系xoy k,双曲线2213x y -=的右准线与学科&网它的两条渐近线分别交于点P,Q,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9。
一、填空题
1. 【 2016年第二次全国大联考(江苏卷)】运行如图所示的伪代码,其输出的结果S 为_______.
2. 【2016年第三次全国大联考【江苏卷】】如图所示的流程图的运行结果是 .
3. 【2016年第四次全国大联考【江苏卷】】运行如图所示的伪代码,其运行后输出的结果为_______.
p ←1
For k From 1 To 10 Step 3
p ←2k p -
End For
Print p
第4题图
0,1
s n ←←第3题图 I ←0
While I <9
S ←2I + 1
I ←I +3
End While
Print S
4. 【2016年第一次全国大联考【江苏卷】】运行如图所示的伪代码,其结果为_______.
5. 【2016高考押题卷(1)【江苏卷】】下图是一个算法流程图,则输出的x 的值是_______.
6. 【2016高考押题卷(3)【江苏卷】】给出一个算法程序框图(如图),其作用是输入x 的值,输出相应的y 值,要使输入x 的值与输出的y 值相等,则这样的x 值有 个.
S ←0
For I From 1 To 2015 step 2
S ←S + 1(2)
I I + End For
Print S
第4题图。