基于数据选择Householder多级维纳滤波导航接收机空时抗干扰方法
- 格式:pdf
- 大小:1.50 MB
- 文档页数:5
抗干扰卫星导航接收机关键技术研究共3篇抗干扰卫星导航接收机关键技术研究1随着人们对卫星导航系统需求的增多,在各个行业,特别是高精度定位领域中,对卫星导航系统提出了更高的要求。
然而,由于当前的导航信号存在着频繁的干扰和攻击,必须加强卫星导航接收机的抗干扰能力,以保证其正常运行和安全性。
本文将介绍抗干扰卫星导航接收机关键技术的研究现状与进展。
一、干扰类型卫星导航系统的干扰主要包括三种类型:自然干扰、人为干扰和攻击。
自然干扰实际上是指地球的大气和行星的影响,例如电离层和晕层,磁暴和地貌等不可控因素。
人为干扰主要来源于电磁干扰(如雷达、通信设备、无线电干扰),主要是由于这些设备的操作产生的辐射,导致卫星信号受到干扰。
而攻击则是指有意识的破坏行为,如假卫星、GPS干扰器等。
二、抗干扰卫星导航接收机的关键技术研究1. 多普勒频移抑制技术多普勒频移是指由于卫星运动或导航信号的到达时延的变化而引起的频率变化。
多普勒频移的存在会导致接收机的工作困难,并严重影响其定位精度。
为了抑制多普勒频移产生的干扰,传统技术主要是采用数字信号处理算法,如FFT变换等,来处理接收到的信号。
同时,还运用自适应数字滤波技术进行滤波,来提高接收机的灵敏度和信噪比。
2. 载噪比提高技术载噪比是反映接收机性能的一个重要指标。
在面对复杂的干扰环境时,常常需要提高载噪比来保证接收机的性能。
在实际应用中,常采用跟踪回路的前端设计、算法改进以及抗干扰滤波器和优化匹配滤波器等技术,提高载噪比。
3. 数字信号处理技术数字信号处理是抗干扰卫星导航接收机研究中的关键技术之一。
数字信号处理可以对原始卫星信号进行滤波、正交解调、多普勒频移抑制、码跟踪等处理,从而提高接收机的抗干扰能力和抗噪声能力。
4. 电路设计电路设计是抗干扰卫星导航接收机研究的核心技术之一。
带有抗干扰能力的电路,能够有效地提高接收机的灵敏度和质量,从而实现卫星信号的有效捕捉。
同时,采用高品质材料、高容限电容器和高品质电阻等元件,也能显著提高电路的稳定性和抗干扰能力。
基于多级维纳滤波的机载共形阵雷达杂波抑制方法研究蒋浩;翟雯;饶妮妮;陈星波;周加兵;刘汉明【摘要】Multistage Wiener filter is currently one of the reduced rank space-time adaptive processing algorithms with the fastest convergent speed, but it is only suitable for stationary stochastic signal, so it is not able to directly suppress non-homogeneous clutter of airborne conformal array radar. Based on the characteristic analysis of conformal array radar clutter, a spatial filter in elevation is proposed to overcome the non-homogeneity of the clutter, the traditional covariance matrix taper algorithm is improved and finally a novel algorithm of suppressing clutter of airborne conformal array radar, named spatial filter in Elevation-based New Covariance Matrix Taper MultiStage Wiener Filter algorithm (ENCMT-MSWF) is constructed. Simulation results show that the proposed method has better performance in suppression of conformal array radar clutter than other existing methods, and it has the advantages of small amount of computation and fast convergence speed. It is easy to be realized in engineering and has practical application prospects in conformal array radar clutter suppression.%目前,多级维纳滤波器是一种收敛速度最快的降秩空时自适应处理算法,但它只适合于处理平稳随机信号,不能直接用于抑制非均匀的机载共形阵雷达杂波。
卫星导航系统接收机抗干扰关键技术综述卫星导航系统接收机抗干扰关键技术综述卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。
卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。
因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。
但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。
因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。
1 卫星导航系统抗干扰技术卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。
欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。
为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。
而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。
而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。
1.1 自适应滤波技术自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。
除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。
1.2 卡尔曼滤波技术卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。
这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。
基于数据选择Householder多级维纳滤波导航接收机空时抗干扰方法黄庆东;张林让;王纯;张波【期刊名称】《电子学报》【年(卷),期】2011(039)006【摘要】Due to suppression the influence of impulsive noise spikes (outliers) from desired signal direction of arrival in GPS signals,the Householder multistage wiener filter is improved,and the sample selected Householder multistage wiener filter is proposed.The enhanced algorithm is adopted in space-time arti-jamming processing in GPS receiver. The method has the ability of avoiding the influence of impulsive noise spikes (outliers) to weights calculation,and to the desired signal waveform. Simulation results indicate the algorithm achieves favorable anti-jamming perforrance.%针对抑制GPS信号中期望信号方向的冲激毛刺干扰影响问题,对Householder多级维纳滤波方法进行改进,提出一种数据选择Householder多级维纳滤波器.改进方法用于GPS信号空时抗干扰处理中,可以避免期望信号方向的冲激毛刺干扰对最优权值计算的影响,同时保持期望信号不受影响.仿真结果验证了算法良好的抗干扰性能.【总页数】5页(P1368-1372)【作者】黄庆东;张林让;王纯;张波【作者单位】西安电子科技大学雷达信号处理重点实验室,陕西西安710071;西安邮电学院通信与信息工程学院,陕西西安710121;西安电子科技大学雷达信号处理重点实验室,陕西西安710071;西安电子科技大学雷达信号处理重点实验室,陕西西安710071;西安电子科技大学雷达信号处理重点实验室,陕西西安710071【正文语种】中文【中图分类】TN911.23【相关文献】1.基于 Householder 多级维纳滤波器的全联通WSN 分布式 LCMV 波束形成器方法 [J], 黄庆东;庞胜利;卢光跃2.基于Householder多级最小模级联相消器导航接收机空时抗干扰方法 [J], 黄庆东;张林让;王纯;张波3.基于多级维纳滤波器的空时自适应信号处理及其在无线通信系统中的应用 [J], 洪玺;王文杰;殷勤业4.基于多级嵌套维纳滤波器的空时自适应处理 [J], 唐斌;郑晓霞5.一种基于多级维纳滤波的改进空时抗干扰算法 [J], 杨阳;晓聪;李立欣;张会生因版权原因,仅展示原文概要,查看原文内容请购买。
一种多路并行盲搜索的空时二维抗干扰算法秦明峰;惠沈盈;范广伟【摘要】In satellite navigation anti⁃interference,the traditional space⁃time adaptation processing algorithm has such defects as heavy computation and low processing speed.Based on analyzing the principle of multi⁃stage wiener filtering,this paper puts forward a space⁃time two⁃dimensional adaptive processing algorithm of multi⁃channel parallel blind search. This algorithm uses the dimension re⁃ducing processing of multi⁃stage Wiener filter to solve the interference subspace and signal subspace so as to make the output SINR op⁃timal and realize effective interference suppression.The simulation results show that this algorithm has better anti⁃interference perform⁃ance,with low computation and a good application prospects.%针对卫星导航抗干扰中传统的空时自适应处理算法运算量大、处理速度较慢的问题,在介绍多级维纳滤波基本原理的基础上,提出了一种多路并行的盲搜索空时二维抗干扰自适应处理算法。
基于数据选择Householder 多级维纳滤波导航接收机空时抗干扰方法黄庆东1,2,张林让1,王 纯1,张 波1(1.西安电子科技大学雷达信号处理重点实验室,陕西西安710071;2.西安邮电学院通信与信息工程学院,陕西西安710121)摘 要: 针对抑制GPS 信号中期望信号方向的冲激毛刺干扰影响问题,对Householder 多级维纳滤波方法进行改进,提出一种数据选择Householder 多级维纳滤波器.改进方法用于GPS 信号空时抗干扰处理中,可以避免期望信号方向的冲激毛刺干扰对最优权值计算的影响,同时保持期望信号不受影响.仿真结果验证了算法良好的抗干扰性能.关键词: 阵列信号处理;全球定位系统(GPS);低复杂度;抗干扰(AJ);空时(ST)中图分类号: TN911 23 文献标识码: A 文章编号: 0372 2112(2011)06 1368 05Interferen ce Suppression Method of Sample SelectedHouseholder Multistage Wiener Filter for Spa ce Time Navigation ReceiversHUANG Qing dong 1,2,ZHANG Lin rang 1,WANG Chun 1,Z HANG Bo1(1.Ke y Lab for Radar Signal Processing ,Xidian U nive rsity,Xi an,Shaanxi 710071,China ;2.School o f Communic ation and In formation Engine ering ,Xi an U ni versity o f Posts and Telec ommunications ,Xi an,Shaanxi 710121,China )Abstract: Due to su pp ression the influence of impulsive noise spikes (outliers)from desired signal direction of arrival in GPS signals,the Householder multistage wiener filter is improved,and the sample selected Householder multistage wiener filter is propo sed.The enhanced algorithm is adopted in space time anti jamming processing in GPS receiver.The method has the ability of avoiding the influence of impulsive nois e spikes (outliers)to weights calculation,and to the desi red signal waveform.Simulation re sults indicate the algorithm achieves favorable anti jamming performance.Key words: array signal processing;global positioning system(GPS);low complex i ty;anti jamming(AJ);space time(ST)1 引言高精度卫星导航系统如GPS 和Galileo,在一些现代化民用和军事应用中起着非常重要的作用.由于GPS信号的功率很低,所以导航接收机很容易受到各种射频干扰的影响.空时信号处理(STAP)可用于抑制大量的宽带干扰、窄带干扰和人为有意干扰.自适应算法中,Goldstein 等人[1]提出的多级维纳滤波器(MSWF)由于其良好性能,倍受广大学者关注.黄磊等人[2]对MSWF 算法进行降维处理并进行维数估计,能用于快时变和小样本环境中.Myric k 等人[3,4]将MSWF 技术成功应用于空时GPS 抗干扰处理中,Werne r 等人[5]将Householde r 算法(又称初等反射算法)引入MSWF 算法中,进一步降低了MSWF 算法计算复杂度.迭代最优[6,7]算法,如归一化最小均方(NL MS)算法和递归最小平方(RLS)算法,通过正交投影或共轭梯度方式通过逐次迭代达到最优解[8,9].由于其快收敛性能和低运算量,故而适合于空时信号处理中,同时在干扰抑制及GPS 信号抗干扰应用中体现了其价值[10].这些算法都是最小均方误差(MMSE)准则下的一种实现,即可看作协方差求逆(SMI)类算法的一种实现形式.在复杂电磁环境或人为有意干扰下,往往会在期望信号方向产生非平稳的冲激毛刺(impulsive noise spikes)干扰或大能量的异常值(i mpulsive noise out liers),这些干扰进入期望信号中形成含有突变冲激毛刺的期望信号.样本协方差矩阵对于非平稳冲激毛刺非常敏感,特别在期望信号方向的冲激毛刺况下,此时计算的权值会偏离最优权值,进而会使期望信号产生畸变,此时采样协方差求逆(SMI)类算法性能变得很差[11].收稿日期:2010 03 01;修回日期:2010 11 01基金项目:国家自然科学基金(No.60672130);教育部新世纪优秀人才支持计划(No.NCET 08 0891);陕西省自然科学基金(No.2010JQ80241)第6期2011年6月电 子 学 报ACTA ELECTRONICA SINICA Vol.39 No.6J un. 2011为了抑制期望信号方向冲激毛刺对最优权求解的影响,Picciolo等人[11]提出了中位数级联相消器(MCC)算法并将其用于STAP中,又将MCC算法与MSWF相结合,提出了多级中位数级联相消器算法[12],使其具有降维特性;Picciolo等人[13]又提出迭代多级中位数级联相消器(R MMCC)算法,通过多次迭代使收敛性能不再受干扰影响.文献[14]对MCC算法进行了改进,提出了最小模级联相消器(MMCC)算法,进一步改善了性能,降低了计算复杂度.但由于MMCC为次最优算法,对宽带干扰抑制不是很理想,在大功率宽带干扰存在时GPS 抗干扰抑制性能欠佳.本文针对冲激毛刺干扰非平稳特性,提出数据选择算法,并与Householder多级维纳滤波器(HMSWF)[5]相结合,形成数据选择Householde r多级维纳滤波器(SSHMSWF),将其用于GPS接收机空时抗干扰处理器中.最后仿真结果验证了此方法的优良性能.2 数据选择HMSWF空时干扰抑制模型空时处理器利用M个阵元和每阵元L个延迟抽头系数,用于抑制窄带和宽带干扰,如图1所示,导航卫星信号s k和干扰信号r j被空时阵列接收,数据选择抗干扰处理器用于抑制干扰影响,从而估计出来于已知方向 k的期望卫星信号s k.数据选择抗干扰处理器对每一个要接收的卫星信号采用独立的最小方差(MVDR)波束形成准则.接收到的信号在奈奎斯特采样速率下进行采样,在时刻n各个天线采样得到样本堆叠,构成矢量X(n) C(M 1),表示为X(n)= K s k=1a( k)s k(n)+ K j j=1a( j)r j(n)+n(n),k=1,2, ,K s,j=1,2, ,K j (1)这里a( k)和a( j)表示信号和干扰源的导向矢量, k和j 是它们各自的波达方向,sk(n)是第k颗卫星的信号,r j(n)是第j个干扰信号,n(n)是加性高斯白噪声, E[n(n)n H(n)]= 2n I.文中[]*表示复共轭,[]T表示转置,[]H表示复共轭转置.文中采用等距线阵,阵间距半波长,导向矢量为a( )=[1,e j si n( ), , e j (M-1)sin ]T.空时快拍样本矢量 X(n) C(ML 1)是将L 个连续的时间样本X(n)堆叠起来形成X(n)=[X T(n),X T(n-1), ,X T(n-L+1)]T(2)这里导航卫星信号可以被认为是窄带信号,而且其波达方向是已知的.数据选择抗干扰处理器目的是避免由期望信号方向进入的非平稳数据对最优权计算的影响,让产生的波束在期望信号波达方向增益为1,同时抑制所有其它干扰信号.数据选择S TAP抗干扰处理器可以描述为阵列权矢量 W C(ML 1)W=[W T1,W T2, ,W T L]T(3)这里Wi=[w i,1,w i,2, ,w i,M]T是阵列信号的第i个延迟滤波抽头系数.数据选择抗干扰处理器输出为^s(n)= W H X(n)(4)输出信号^s(n)最后被GPS接收机进行处理.单约束波束形成器中期望接收卫星信号的方向和对应的导向矢量a(k)被认为是已知的.这里采用一维线阵,只考虑方位角.单约束波束形成问题可以表示为非限制性广义旁瓣相消器(GSC)[5],如图2所示.图2中,d'(n)=a H( k)X(n),B C(M-1) M是阻塞矩阵,且Ba( k)=0. X (n)的计算为X (n)=BX(n)X(n-1)X(n-L+1)(5)数据选择算法中,信号d(n)是对期望方向信号d'(n)采用数据选择算法筛选出符合平稳分布的期望信号d(n),而 X(n)是在 X (n)中选择与d(n)样本对应的样本数据得到.经过数据选择后的样本数据d(n)、 X(n)用于估计最优权,避免期望信号中的冲激毛刺对权值计算的影响.输出信号e(n)=^s(n),是对第k颗卫星信号的估计.e(n)可以通过估计最优权 W 或者下面SSHMSWF计算得到.HMSWF算法对于期望信号与干扰在波达方向互不重叠的情况下,具有降维最优特性.然而,当干扰信号与期望信号同方向时,就算只存在一个足够大的冲激干扰样本,都会严重影响权值使其偏离最优权,使滤波器性能急剧恶化.故而需要进行必要的前期数据处理.1369第 6 期黄庆东:基于数据选择Householder多级维纳滤波导航接收机空时抗干扰方法3 数据选择Householder多级维纳滤波方法 现实环境中往往在期望信号方向会存在冲激毛刺干扰,尤其是在复杂电磁环境[11].能够对测量数据产生冲激毛刺干扰的情况很多,例如快闪烁干扰、通常的电磁干扰、相干通道干扰、数字射频存储干扰、覆盖式反电子测量脉冲、互调制毛刺、间歇式坏的数据通道、近距离同频带脉冲雷达干扰和人为有意干扰等等.为了抑制此类情况对最优权值计算的影响,本文通过进行数据选择算法对空时数据进行筛选,滤除含有非平稳毛刺干扰的期望信号和其对应的空时数据,然后再利用HMSWF计算最优权,从而避开此类干扰对权值计算的影响.假设各个阵元的接收到的信号是零均值联合平稳的高斯随机分布,各个通道得到的采样信号是独立同分布的.接收数据中的第k颗卫星方向的信号为d'(n) =a H( k)X(n),则可以认为相邻数据d'(n)和d'(n+ 1)是独立同分布的高斯随机变量.若d'(n),d'(n+1) ~N(0, 2), 为标准差.则d'(n)-d'(n+1)也是一个服从高斯分布的随机变量,并且d'(n)-d'(n+1)~N (0,2 2).因此,如果由期望信号方向得到的信号集{d'(n)}进行逐个相邻相减,则得到的数据集服从高斯分布N(0,2 2).由概率论和数理统计知识,对于服从N(0, 2)高斯随机变量来说,它的值落在区间[-3 ,+ 3 ]内几乎是肯定的事,这就是所谓 3 规则 .所以逐次相减后得到的信号集{d'(n)-d'(n+1)},其分布区间近似[-32 ,+32 ].则可认为d'(n),d'(n+1) ~N(0, 2)时,{d'(n)-d'(n+1)}的值在区间[-32 ,+32 ]范围内,是符合平稳分布的数据,予以保留;而在[-32 ,+32 ]范围以外数据,认为是期望方向进入的干扰数据,进行筛除;同时筛除空时数据 X (n)中的对应样本.其中 为随机变量d'(n)的标准差.本文对{d'(n)-d'(n+1)}选取的区间为[-22 ,+22 ],这样选取的数据基本可以包含符合要求的绝大部分平稳数据,可以保证经过数据选择后的数据的可靠性.随机变量d'(n)-d'(n+1)在此区间的概率为P{-22 <d'(n)-d'(n+1) 22 }=0 9544,n=1,2, ,K (6) 故符合本文数据选择算法约束条件为P{|d'(n)-d'(n+1)| 22 },n=1,2, ,K (7) =E d'(n)-E d'(n)2(8)符合式(7)要求的数据将被采用,E()为统计平均算子;标准差 由式(8)计算得到.数据集{d'(n)}中符合式(7)要求的数据记为d(n);同时选择与d(n)相对应的 X' (n)中数据,记为 X (n).将选出的数据d(n)、 X (n)用于HMSWF中计算最优权.SSHMSWF算法从期望信号方向选择符合要求的平稳数据,用于计算最优权,从而避免了其对最优权值计算的影响.Householder多级维纳滤波器(HMSWF)通过采用一系列嵌套Householder投影变换等效替代MSWF的阻塞矩阵和相关匹配滤波器计算,从而降低了运算量,而且避免了采用样本协方差矩阵时数据域存储字长对计算精度的影响.采用相关相减SSHMSWF算法,可以避开Householder矩阵的计算,进一步减少计算复杂度,算法结构如图3所示.其中标量u(n)=d(n)表示经筛选的期望信号,X(n)= X (n)表示经筛选的含有干扰、噪声、其它卫星信号和时延信号的其余(ML-1)维数据.算法的具体步骤如下.步骤1:数据选择:求标准差:sn=std(d'(n));数据筛选:d(n)=find(|d'(n)-d'(n+1)| 22)空时数据选择: X (n)=position( X' (n),d(n));重置样本长度:K=length(d'(n));步骤2:数据初始化:u0(n)=d(n)和X0(n)= X (n);步骤3:前项递推:For i=1,2, ,D;p i=E[u*i-1(n)X i-1(n)]E[u*i-1(n)X i-1(n)]2;i=E[u*i-1(n)X i-1(n)]2;c i= p i,1/|p i,1|,p i,1是p i的第一个元素;vi=p i-c i i u1;u1=[1,0, ,0]T是和p i同维数的矢量;i=-1/(c*i i v i,1),v i,1是v i的第一个元素;ui(n)Xi(n)=X i-1(n)- i v i v H i X i-1(n);u i(n)=c*i u i(n);步骤4:后项递推:e D(n)=u D(n)For i=D,D-1, ,2,1;w i=min0,k{u*i-1(n)/e i(n)};e i-1(n)=u i-1(n)-w*i(n)e i(n);说明:其中n=1,2, ,K;D表示递推级数;4 计算量分析在算法的计算量方面,对于采用各种不同阻塞矩阵的MSWF算法,如MSWF、HMSWF等,其计算量主要1370 电 子 学 报2011年集中在算法的阻塞矩阵的构建和阻塞操作中,即计算量主要在于前项递推部分.本文提出的SSHMSWF 算法,是在HMSWF 算法的前面加了预处理,故SSHMSWF 算法相对于HMSWF 的运算量,是由预处理部分增加的运算量和由数据选择导致进入HMSWF 的样本量减少而引起的运算量减少两部分构成的.故需要分析预处理增加的运算量和样本量减少的运算量,两部分中孰多来确定运算量的增减.参考文献[5],下面将相关相减结构的MSWF 、HMSWF 和SSHMSWF 三种算法运算量列于表中.表1 不同结构的MSWF 算法运算量算法乘法运算量 MSWF CSS[5]2PD N HMSWF[5]2PD -D 2HMSWF 中估计p i [5][2PD -D 2]N MSWF CSS 中估计p i [5]2PD N SSHMSWF 中预处理部分2N注:P =M L -1为 X (n )的维数,N 为样本量,D 为前项递推的维数.下面分2种情况对运算量进行讨论:情况1:如果在期望信号方向没有冲激毛刺干扰情况下,可以由表1看到,直观看来SSHMSWF 算法会比HMSWF 多2N 次乘法运算量,但SSHMSWF 算法明显低于MSWF CSS 算法运算量,相对于HMSWF 总运算量([2PD -D 2]N +2PD -D 2)来说新增的2N 次乘法运算量所占比例是很少的.情况2:如果在期望信号方向有冲激毛刺干扰情况下,一方面,虽然SSHMSWF 算法预处理会增加2N 次乘法运算量;另一方面,样本量N 每减少一个,会节约2PD -D 2个乘法量.另外,由于预处理使样本数据满足平稳条件,会使HMSWF 算法快收敛性能提高,递推阶数D 每减少一维,会节约运算量[2(P -D )+1]N +2(P -D )+1次乘法运算.由此可见,如果在出现冲激毛刺干扰时其运算量要比HMSWF 少很多,而且在后面仿真部分会发现此时其性能远远超过HMSWF 算法.5 仿真结果GPS 抗干扰仿真中,接收机空时阵列采用7阵元等距线阵,间距半波长,延迟级数为7级,共有ML -1=48个自由度抑制干扰.接收机时域采样频率采用奈奎斯特采样频率.导航信号为粗/截获码(C/A c ode)信噪比为-22dB,所以期望信号基本不会被抑制,导航数据从-10 方位角的卫星发射.样本快拍数为200,5个窄带信号出现在方位角[-50 ,-30 ,10 ,30 ,50 ],归一化频率(对GPS L1带宽2 046MHz 归一化)为[0 1,0 25,0 55,0 75,0 9],干噪比均为30dB,0 5对应载波频率.另有5个宽带干扰覆盖整个L1带宽,干噪比均为30dB,方位角分别为[-60 ,-40 ,-20 ,0 ,20 ].图4、图5是对含有GPS 期望信号和窄带、宽带干扰和期望信号d '(n)中含有2个30dB 冲激毛刺干扰的空时信号分别经过HMSWF 和SSHMSWF 算法抗干扰处理归一化空时二维权方向图;图中 表示窄带干扰位置, 表示期望信号.从图4、图5可以看出在在各窄带和宽带干扰方向有明显零陷,而只有图5在期望信号方向出现波峰,可见图4直接采用HMSWF 算法后对期望信号产生影响.图6是对采用自适应空时干扰抑制后的数据与本地数据进行相关得到.图6(a)和图6(c)是只含有窄带和宽带干扰的导航数据分别进行HMSWF 和SSHM SWF 干扰抑制后的相关图形,两者均能对最大相关位置明显标记.图6(b)和图6(d)是当导航数据含有窄带和宽带干扰的同时,在期望信号d '(n)中含有2个30dB 冲激毛刺干扰,分别进行HMSWF 和SSHMSWF 干扰抑制后的相关图形,可以明显看出直接采用HMSWF 算法最大相关位置已经无法辨识,而采用SSHMSWF 算法能够清晰标识最大相关位置.说明采用SSHMSWF 算法在抑制窄带和宽带干扰的同时,并没有因为采用数据选择算法而使滤波后的期望信号发生改变.对于多个冲击毛刺干扰情况SSHMSWF 算法仿真效果保持良好,篇幅有限,仿真结果不再给出.由此说明SSHMSWF 具有良好的抑制窄带干扰和宽带干扰的性能,同时能够避免期望信号中含有的冲激毛刺干扰对权值准确计算的影响.1371第 6 期黄庆东:基于数据选择Householder 多级维纳滤波导航接收机空时抗干扰方法6 结论本文针对抑制GPS信号中期望信号方向进入的冲激毛刺干扰问题,提出了数据选择Householder多级维纳滤波方法,并将其用于GPS导航接收机空时抗干扰处理中.新算法采用数据选择方法避免了期望信号方向非平稳冲激毛刺干扰对最优权值计算的影响,保持了很好的抗干扰性能,同时秉承了HMSWF的优良特性,保持良好的抗窄带和宽带干扰性能.最后通过计算机仿真测试,验证了本文方法的良好抗干扰性能和避免冲激毛刺干扰对最优权值计算影响的优良特性.参考文献[1]J S Goldstein,I S Reed,L L Scharf.A multistage representationof the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Theory,1998,44(7):2943-2959.[2]黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981.Huang L ei,Wu Shu n jun,Z hang Lin rang,Feng Da zheng.A fast method for subspace decompo sition and its dimension esti mation[J].Acta Eledtronica Sinica,2005,33(6):977-981.(in Chinese)[3]W M yrick,M Zoltowski,J S Golds tein.Anti jam space timepreprocessor for GPS based on multis tage nested Wiener filter[A].Proc MILCOM1999[C].Atlantic City:IEEE Press,1999.675-681.[4]W M yrick,J S Golds tei n,M Zoltowski.Low complexity antijam space time processing for GPS[A].Proceeding s of IEEE International Conference on Acous tics,Speech,and Signal Pro cessing[C].Salt Lake City:IEEE Press,2001.2233-2236. [5]S Werner,M With,V Koivu nen.Householder multistage wienerfilter for space time navigation receivers[J].IEEE Transactions on Aero s pace and Electronic Systems,2007,43(3):975-988.[6]R C De Lamare,R Sampaio Neto.Reduced rank adaptive filtering bas ed on joint iterative optimization of adaptive filters[J].IEEE Signal Processi ng Letters,2007,14(12):980-983.[7]R C De Lamare,R Sampaio Neto.Adaptive reduced rank processing based on joint and iterative interpo lation,decimation, and filtering[J].IEEE Transactions on Signal Pro cessing,2009, 57(7):2503-2514.[8]M Y u kawa,R C De Lamare,I Yamad.Robust reduced rankadaptive algorithm based on parallel subgradient projection and krylov subs pace[J].IEEE Transactions on Signal Processing, 2009,57(12):4660-4674.[9]L L Scharf,E K P Chong,M D Zoltow s ki,J S Goldstein,I SReed.Subspace expansion and the equivalence of conjugate di rection and multistage wiener filters[J].IEEE Trans actions on Signal Processing,2008,56(10):5013-5019.[10]L Liu,M G Amin.Performance analysis of GPS receivers innon Gaussian noise incorporating precorrelation filter and sam pling rate[J].IEEE Transactions on Signal Processing,2008, 56(3):990-1004.[11]M L Piccio lo,K Gerlach.M edian cascaded canceller for robust adaptive array processing[J].IEEE Trans actions on Aero s pace and Electronic Systems,2003,39(3):883-900. [12]M L Picciolo,K Gerlach.An adaptive multistage median cascaded canceller[A].IEEE Radar Conference2002[C].Long Beach:IEEE Press,2002.22-25.[13]M L Picciolo,K Gerlach.Reiterative median cascaded canceller for robus t adaptive array processi ng[J].IEEE Transac tions on Aerospace and Electronic Systems,2007,43(2):428 -442.[14]黄庆东,张林让,卢光跃.一种最小模级联相消器[J],西安电子科技大学学报,2010,37(2):204-209.Huang Qing dong,Z hang L in rang,Lu Guang yue.Minimum module value cascaded canceller[J].Journal of X idian Uni versity,2010,37(2):204-209.(in Chines e)作者简介黄庆东 男,1977年1月出生于新疆沙湾县.2006进入西安邮电学院通信工程系任教,讲师.现为西安电子科技大学博士研究生,主要从事阵列信号处理、低复杂度算法、GPS信号处理方面研究.E mail:huangqi ngdong@张林让 男,1966年1月生于陕西,西安电子科技大学博士生导师,曾获电子部科技进步一等奖和陕西省教委科技进步二等奖,主要从事自适应信号处理、阵列波达方向估计、方向图综合.E mail:lrzhang@1372 电 子 学 报2011年。