七年级数学下册 第6章实数6.2立方根达标测试 新人教版
- 格式:doc
- 大小:43.50 KB
- 文档页数:2
6.2 立方根一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个2.下列等式成立的是()A. B.C.D.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1二.填空题(共3小题)4.已知=﹣3,则a=.5.的平方根是,﹣125的立方根是.6.若a2=9,b3=﹣8,则a﹣b=.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣278.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.11.按要求填空:(1)填表:a0.00040.04 4400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.12.已知是m+3的算术平方根是n ﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.人教新版七年级下学期《6.2 立方根》2020年同步练习卷参考答案与试题解析一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(1)﹣3是的平方根,(1)正确;(2)7是(﹣7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点评】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.2.下列等式成立的是()A. B.C.D.【分析】根据立方根的含义和求法,逐项判断即可.【解答】解:∵=﹣1,∴选项A不符合题意;∵=≠,∴选项B不符合题意;∵=﹣3,∴选项C符合题意;∵﹣=﹣2,∴选项D不符合题意.故选:C.【点评】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.【点评】本题考查了立方根,解题的关键是明确正数的立方根是正数,0的立方根是0,负数的立方根是负数.二.填空题(共3小题)4.已知=﹣3,则a=﹣6 .【分析】根据立方根的意义,列出方程即可解决问题;【解答】解:由题意4a﹣3=﹣27∴a=﹣6,故答案为﹣6【点评】本题考查立方根的意义,解题的关键是学会用转化的思想思考问题,属于中考常考题型.5.的平方根是±3 ,﹣125的立方根是﹣5 .【分析】直接利用平方根、立方根、算术平方根的定义得出答案【解答】解:因为=9,所以的平方根是±3;﹣125的立方根是﹣5.故答案为:±3,﹣5.【点评】此题主要考查了立方根、平方根、算术平方根的定义,正确把握相关定义是解题关键.6.若a2=9,b3=﹣8,则a﹣b=﹣1或5 .【分析】根据平方根和立方根的定义即可求出a,b的值,进一步计算即可.【解答】解:因为a2=9,b3=﹣8,所以a=±3,b=﹣2,所以a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣(﹣2)﹣1.故答案为:﹣1或5.【点评】此题主要考查了平方根和立方根,能够根据平方根和立方根的定义正确得出a,b的值是解题关键.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣27【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可.(2)两边开立方,即可得出一个一元一次方程,求出方程的解即可.【解答】解:(1)开方得:x﹣1=±3,解得:x1=4,x2=﹣2.(2)两边开立方得:2(x﹣1)=﹣3,解得:x=﹣.【点评】本题主要考查了立方根、平方根.解题的关键是能根据平方根和立方根定义得出一元一次方程.8.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.即a+b的平方根为±3.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【分析】(1)要先根据正方体的体积即可求出每个小正方体的棱长;(2)设长方形宽为x,可得4x2=36,再根据算术平方根的定义解答即可.【解答】解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,∵x>0,∴x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.【点评】此题主要考查了实数的运算,解答此题的关键是把正方形进行分割,可以自己动手试一试.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】(1)根据被开方数是非负数,可得x的值,根据开平方,可得答案;(2)根据平方根的意义、立方根的意义,可得答案.【解答】解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.【点评】本题考查了二次根式有意义的条件,用被开方数是非负数得出不等式组是解(1)题关键;利用平方根的意义、立方根的意义是解(2)的关键.11.按要求填空:(1)填表:a0.00040.04 4400(2)根据你发现规律填空:已知:=2.638,则=26.38 ,=0.02638 ;已知:=0.06164,=61.64,则x=3800 .【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.(1)=0.02,=0.2,=2,【解答】解:=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.02638;3800.【点评】此题考查了计算器数的开方,属于基础题,解答本题的关键是熟练计算机的运用,难度一般.12.已知是m+3的算术平方根是n ﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.【分析】根据算术平方根和立方根的定义得出方程组,求出m、n,再求出A、B,即可得出答案.【解答】解:(1)∵A=是m+3的算术平方根,B=是n﹣2的立方根,∴m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,(2)∵m=6,n=3,∴A==3,B==1,∴A﹣B=3﹣1=2.【点评】本题考查了算术平方根和立方根的定义,能根据算术平方根和立方根的定义求出m、n的值是解此题的关键.文末学习倡导书:学习不是三天打鱼,两天晒网。
人教版七年级数学下册第6章实数6.2 立方根同步检测一、单选题(共10题;共30分)1.下列各式中,正确的是()A. =﹣B. =±4C. =﹣13D. =0.62.下列说法正确的是()A. 4的平方根是±2B. 8的立方根是±2C.D. ()3.﹣1的立方根为()A. -1B. ±1C. 1D. 不存在4.下列各式中,正确的是( )。
A. B. C. D.5.若5x+19的立方根是4,则2x+7的平方根是( )A. 25B. -5C. 5D. ±56.的值是()A. 2B. ﹣2C. ±2D. ±27.已知x没有平方根,且|x|=125,则x的立方根为()A. 25B. ﹣25C. ±5D. ﹣58.9的立方根是()A. ±3B. 3C. ±D.9.下列说法①任何数的平方根都是两个②如果一个数有立方根,那么它一定有平方根③算术平方根一定是正数④非负数的立方根一定是非负数,正确的个数为()A. 4B. 3C. 2D. 110.若a是的平方根,则=()A. ﹣3B.C. 或D. 3或﹣3二、填空题(共6题;共18分)11.如果2是m的立方根,那么m的值是________.12.﹣125的立方根是________.13.若,则=________.14.计算:=________15.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为________.16.﹣4是________ 的立方根.三、解答题(共8题;共52分)17.已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.18.已知2是x的立方根,且(y﹣2z+5)2+ =0,求的值.19.已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.20.求出下列各式的值:(1)﹣;(2)+,(3)﹣1;(4)+.21.已知一个正数的两个平方根分别是3a+2和a+14,求这个数的立方根.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?23.计算:+﹣π.(精确到0.01)24.求下列x的值①(x+3)3=﹣64;②4x2﹣25=0.答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】A4.【答案】C5.【答案】D6.【答案】A7.【答案】D8.【答案】D9.【答案】D10.【答案】C二、填空题11.【答案】812.【答案】﹣513.【答案】14.【答案】115.【答案】﹣16.【答案】﹣64三、解答题17.【答案】解:∵a是-8的立方根,∴a=-2,∵=5,∴b2=25,∴b=±5,∴当b=5时,a2+2b=4+2×5=14;当b=-5时,a2+2b=4-2×5=-6.故a2+2b的值是14或-6.18.【答案】解:∵2是x的立方根,∴x=8,∵(y﹣2z+5)2+ =0,∴,解得:,∴= =3.19.【答案】解:设第二个纸盒的棱长为x厘米,∵已知第一个正方体纸盒的棱长为6厘米,第二个正方体纸盒的体积比第一个纸盒的体积大127厘米3,∴x3-63=127,∴x3=127+216=343,x3=343=73,∴x=7厘米,答:第二个正方体纸盒的棱长是7厘米20.【答案】解:(1)﹣=3﹣2=1;(2)+=4+3=7;(3)﹣1=﹣1≈0.9565﹣1=-0.0435;(4)+=8﹣3=5.21.【答案】解:根据题意得:3a+2+a+14=0,解得:a=﹣4,∴这个正数是100,则这个数的立方根是22.【答案】解:设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm23.【答案】解:原式=1.414+1.732﹣=3.146﹣1.573=1.573≈1.57.24.【答案】解:①开立方得:x+3=﹣4,解得:x=﹣7;②方程整理得:x2=,开方得:x=±.。
人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
2021-2022学年人教版七年级数学下册《6-2立方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.﹣8的立方根是()A.4B.2C.﹣2D.±22.的算术平方根为()A.3B.±3C.9D.±93.下列计算正确的是()A.B.C.D.4.下面有四种说法,其中正确的是()A.﹣64的立方根是4B.的立方根是C.49的算术平方根是±7D.的平方根是±35.若a3=﹣216,则a的相反数是()A.6B.﹣6C.36D.﹣366.的平方根与的和是()A.0B.﹣4C.2D.0或﹣47.下列各数中,化简结果为﹣2021的是()A.﹣(﹣2021)B.C.|﹣2021|D.8.若a满足,则a的值为()A.1B.0C.0或1D.0或1或﹣1二.填空题(共8小题,满分40分)9.81的平方根是,64的立方根是.10.已知:2a+1的算术平方根是3,3a﹣b﹣1的立方根是2,=.11.实数的平方根是x,﹣27的立方根是y,则2x﹣y的值为.12.若一个正数的平方根分别是2a﹣1和﹣a+2,则=.13.已知=2,=20,=0.2,则=.14.一个正方体木块的体积是343cm3,现将他锯成8块同样大小的小正方体木块,则每个小正方体的木块的表面积是.15.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.16.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是.(2)分析发现,当实数x取时,该程序无法输出y值.三.解答题(共4小题,满分40分)17.求下列各式中的未知数x的值:(1)2x2﹣8=0;(2)(x+1)3=﹣64;(3)25x2﹣49=0;(4)﹣(x﹣3)3=8.18.若一个正数m的平方根是2a﹣1和3﹣a,若a+3b﹣16的立方根是3,则2b﹣3a的平方根是多少?19.已知(2m﹣1)2=9,(n+1)3=27.求出2m+n的算术平方根.20.(1)填空:=0.01,=,=1,=10,=,…(2)观察上述求算术平方根的规律,并利用这个规律解决下列问题:①已知≈3.16,则≈;.4≈2.022,≈202.2,则a=.②已知088(3)根据上述探究过程类比一个数的立方根:已知≈1.26,≈12.6,求m.参考答案一.选择题(共8小题,满分40分)1.解:﹣8的立方根是﹣2.故选:C.2.解:∵=9,9的算术平方根为3,∴的算术平方根为3.故选:A.3.解:A、=4,故本选项不合题意;B、=3,故本选项不合题意;C、=﹣4,故本选项不合题意;D、=5,故本选项符合题意.故选:D.4.解:A、﹣64的立方根是﹣4,故本选项错误;B、的立方根是,故本选项正确;C、49的算术平方根是7,故本选项错误;D、的平方根是±,故本选项错误.故选:B.5.解:∵a3=﹣216,∴a==﹣6,则a的相反数是6.故选:A.6.解:=4,4的平方根是±2,=﹣2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.故的平方根与的和是0或﹣4.故选:D.7.解:A、﹣(﹣2021)=2021,故此选项不符合题意;B、=2021,故此选项不符合题意;C、|﹣2021|=2021,故此选项不符合题意;D、=﹣2021,故此选项符合题意;故选:D.8.解:当a=0时,;当a=1时,;即a的值为0或1.故选:C.二.填空题(共8小题,满分40分)9.解:81的平方根为±9,64的立方根为4.故答案为:±9,4.10.解:由题意,有,解得,则.故答案为:4.11.解:=4,4的平方根为±2,即x=±2,y==﹣3,当x=2,y=﹣3时,2x﹣y=4+3=7,当x=﹣2,y=﹣3时,2x﹣y=﹣4+3=﹣1,故答案为:7或﹣1.12.解:∵一个正数的平方根分别是2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0,解得a=﹣1,∴==﹣1,故答案为:﹣1.13.解:∵=2,=20,=0.2,∴=200,故答案为:200.14.解:一个正方体木块的体积是343cm3,则边长为=7cm,现将他锯成8快同样大小的正方体小木块,则每个小正方体木块的边长3.5cm,每个正方体边长为:3.5cm,其中一个小正方体表面积为6×(3.5)2=73.5cm2;故答案为:73.5cm2.15.解:∵2x+1的平方根是±3,∴2x+1=9,∴x=4,∴﹣5x﹣7=﹣27,∴﹣5x﹣7的立方根是﹣3,故答案为:﹣3.16.解:(1)当x=64时,=8,=2,当x=2时,y=;故答案为:;(2)当x为负数时,不能计算,因为负数没有算术平方根;当x=0时,=0,=0,一直计算,0的算术平方根和立方根都是0,不可以是无理数,不能输出y值,当x=1时,=1,=1,一直计算,1的算术平方根和立方根都是1,不可以是无理数,不能输出y值,∴当实数x取0或1或负数时,该程序无法输出y值,故答案为:0或1或负数.三.解答题(共4小题,满分40分)17.解:(1)方程整理得:x2=4,开方得:x=±2;(2)开立方得:x+1=﹣4,解得:x=﹣5;(3)方程整理得:x2=,开方得:x=±;(4)开立方得:x﹣3=﹣2,解得:x=1.18.解:∵一个正数m的平方根是2a﹣1和3﹣a,∴2a﹣1+3﹣a=0,∴a=﹣2,又∵a+3b﹣16的立方根是3,∴a+3b﹣16=27,∴b=15,∴2b﹣3a=30+6=36,∴2b﹣3a的平方根为±=±6.19.解:∵(2m﹣1)2=9,2m﹣1=±3,2m﹣1=3或2m﹣1=﹣3,∴m1=﹣1,m2=2,∵(n+1)3=27,n+1=3,∴n=2,∴2m+n=0或6,∴2m+n的算术平方根为0或.20.解:(1)=10×0.01=0.1,=10×10=100.故答案为:0.1,100.(2)①∵≈3.16,∴≈≈≈≈10×3.16≈31.6.故答案为:31.6..4≈2.022,≈202.2,2.022×100=202.2,②∵088∴.∴.∴a=36800.故答案为:36800.(3)∵≈1.26,≈12.6,1.26×10=12.6,∴.∴.∴m=2000.故答案为:2000.。
《6.2立方根》测试与评价本测评考查的主要内容有:立方根,开立方,用计算器求立方根.以下题目分为三个水平等级:水平1(用★☆☆表示):运用基本知识、基本技能就能解决的题目;水平2(用★★☆表示):灵活运用基本知识、基本技能,并要具备一定的运算能力和推理能力才能解决的题目;水平3(用★★★表示):综合运用基本知识、基本技能、方法技巧,并要具备一定的运算能力和推理能力才能解决的题目.一、选择题1.下列说法正确的是().A.一个数的立方根有两个,互为相反数B.负数没有立方根C.如果一个数有立方根,那么它一定有平方根D.如果一个数的平方根和立方根都等于它本身,那么这个数是0考查目的:本题考查立方根的概念和性质.水平等级:★☆☆.解析:选项A错误,一个数的立方根只有一个;选项B错误,负数有立方根;选项C 错误,负数有立方根,但没有平方根;选项D正确.故选D.答案:D.2.某数的立方根是它本身,这样的数有().A.1个B.2个C.3个D.4个考查目的:本题考查立方根的概念和性质.水平等级:★★☆.解析:立方根是它本身的数有0,1,-1,共3个,故选C.答案:C.3.下列运算中不正确的是().=A=B3C1-D.4考查目的:本题考查立方根的性质及开立方运算.水平等级:★☆☆.解析:3=-.故选项B 不正确.答案:B .二、填空题4.计算:--=_________. 考查目的:本题考查开立方运算及绝对值、相反数的知识.水平等级:★★☆.解析:32-=--=-=-. 答案:32-.51147.2472.05325.≈ . 考查目的:本题考查立方根的小数点随被开方数的小数点的移动而相应移动的规律. 水平等级:★★☆.解析:因为被开方数的小数点每向左或向右移动三位,其立方根的小数点就向相应的方1147.11.47.答案:11.47.6=_________.考查目的:本题考查用计算器求立方根.水平等级:★☆☆.解析:在计算器上依次按键即可得答案.答案:15.三、解答题7.求下列各式的值:(1)(2)-(3;(4) 考查目的:本题考查开立方运算.水平等级:★★☆.解析:运用立方根的性质进行开立方运算.解:(1)65==;(2)12 -=-;(36=-;(4)25=-.8.求下列各式中x的值:(1)8x3+125=0;(2)(x+2)3= -27.考查目的:本题考查开立方运算.水平等级:★★★.解析:根据题目给出的已知条件进行开立方运算.解:(1)∵8x3+125=0,∴8x3= -125.∴3125 8x=-.∴52x=-.(2)∵(x+2)3= -27,∴x+2= -3.∴x= -2-3= -5.9.求下列各数的立方根:(1)61164-;(2)932125.考查目的:本题考查立方根的概念和立方根的性质.水平等级:★★★.解析:依据立方根的概念与性质求带分数的立方根,注意先转化为假分数然后求解.解:(1)∵6112516464-=-,而35125464⎛⎫-=-⎪⎝⎭,∴35611464⎛⎫-=-⎪⎝⎭.∴61164-的立方根是54-.(2)∵933432125125=,而373435125⎛⎫=⎪⎝⎭,∴379325125⎛⎫=⎪⎝⎭.∴932125的立方根是75.。
人教版初中数学七年级下册第六章《实数》6.2立方根同步练习题(含答案)1 / 4 《6.2立方根》同步检测题一、选择题(每小题只有一个正确答案)1.下列说法中错误的是( )a 可以是正数、负数或零中的a 不可能是负数.C 数a 的平方根有两个.D 数a 的立方根有一个.2.下列各式正确的是( ).A. ±√0.36=±0.6B. √9=±3C. √(−3)33=3D. √(−2)2=−2328.72==等于( )A. 0.2872B. 28.72C. 2.872D. 287.24.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A. 4B. -4C. ±4D. ±85.估计96的立方根的大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.一个数的立方根等于它本身,则这个数是( )A. 0B. 1C. -1D. ±1-07.下列各组数中互为相反数的一组是( )A. |-2|B. -4C.与|D.二、填空题 8.若一个数的平方根是8±,则这个数的立方根是__________ .9.已知(x-1-3=64,则x 的值为_____-107,则a =_______.11.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是________.12.已知一个数的平方根是3a+1和a+11,求这个数的立方根__________。
三、解答题13.求下列各式的值:(1);(2)(3)-14.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;(3)274x 3-2=0; (4)12(x+3)3=4.15.已知A-√n −m +3m−n 是n-m-3的算术平方根,B-√m +2n m−2n+3是m-2n 的立方根,求B-A 的立方根.16.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n =a ,则x 叫做a 的n 次方根.如:24=16=(=2)4=16,则2==2是16的4次方根,或者说16的4次方根是2和-2;再如(=2)5==32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是 ==243的5次方根是 =0的10次方根是 =(2)归纳一个数的n 次方根的情况.人教版初中数学七年级下册第六章《实数》6.2立方根同步练习题(含答案)1 / 4 参考答案1.C 2.A3.A4.B5.C6.D7.C8.49.510.-34311.±312.413.(1)0.1;(2)-75;(3)- 23 解析: ()10.1.=()27.5=- ()23.3-==- 14.(1)x=7或x=-6;(2)x=-12或x=-16;(3)x=23;(4)x=-1. 解析=(1)方程整理得:(2x−1)2=169=开方得:2x−1=13或2x−1=−13=解得:x=7或x=-6=(2)方程整理得:(3x+1)2=14, 开方得:3x+1=±12, 解得:x=-12或x=-16; (3)方程整理得:x 3=827, 开立方得:x=23; (4)方程整理得:(x+3)3=8=开立方得:x+3=2=解得:x=−2.15.1解析:由题意,得{m −n =2m −2n +3=3- 解得{m =4n =2, -A =√2−4+3=1,B =√4+2×23=2-B −A =2−1=1,∴√B −A 3=√13=116.(1)±2,-3,0;(2)详见解析.解析:(1)±2,-3,0;(2)当n为偶数时,一个负数没有n次方根,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个;0的n次方根是0.点睛:本题关键在于理解n次方根的概念.。
3 a 七年级下册第 6 章实数( 6.1 平方根和 6.2 立方根复习测试题)第一部分知识点填空并加强背诵一、算术平方根一般地,如果的等于a,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为读作“根号a”,a 叫做.规定:0 的算术平方根是0. 也就是,在等式x 2 =a (x≥0)中,规定x = a 。
理解:x 2 =a (x≥0)<—> xa 是x 的平方x 的平方是a x 是a 的算术平方根 a 的算术平方根是x二、平方根1.平方根的定义:如果的平方等于a,那么这个数x 就叫做a 的.即:如果,那么x 叫做a的.理解:x 2 =a <—> x =a 是x 的平方x 的平方是a x 是a 的平方根 a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3 的平方等于9,9 的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数 a 的正的平方根可用表示,也是 a 的算术平方根;正数 a 的负的平方根可用 -表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a 的立方根,记作,读作:“三次根号a ”,其中a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。
理解:x3 =a <—>a 是x 的立方x 的立方是a x 是a 的立方根 a 的立方根是x3.一个正数有一个正的立方根;0 有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
人教版七年级数学下册 第六章 达标检测卷(考试时间:120分钟 满分:120分) 班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.下列实数中,是无理数的是 ( ) A.5 B .0 C .13 D . 22.4的算术平方根是( )A .4B .-4C .2D .±2 3.估计38 的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 4.在实数-13 ,-2,0, 3 中,最小的实数是 ( )A .-2B .0C .-13 D . 35.下列计算中正确的是 ( )A .0.9 =0.3B .169 =±13C .327 =±3 D .±0.16 =±0.4 6.立方根等于本身的数是( )A .-1B .0C .±1D .±1或0 7.★若a 2=9,3b =-2,则a +b = ( ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b| 10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为 ( ) A .3 B .4 C .5 D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是 .12.(海宁市期中)选用适当的不等号填空:-31 -π. 13.如果a 的算术平方根是3,那么a = .14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =_ . 15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是 .16.如图,数轴上A ,B 两点对应的实数分别是1和 3 ,若点A 关于点B 的对称点为点C(即AB=BC),则点C所对应的实数为.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ;(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21;(2)(x +2)3+1=78.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{ }; (2)无理数集合:{ }; (3)非负数集合:{ }; (4)分数集合:{ }; 22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A,B两点之间距离为9(A在B的左侧),且A,B两点经折叠后重合,此时点A表示的数是多少,点B表示的数是多少;(3)已知在数轴上点A表示的数是a,点A移动4个单位长度,此时点A表示的数和a是互为相反数,求a的值.参考答案第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列实数中,是无理数的是 ( D ) A.5 B .0 C .13D . 22.4的算术平方根是 ( C ) A .4 B .-4 C .2 D .±23.估计38 的值在 ( C ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间4.在实数-13 ,-2,0, 3 中,最小的实数是 ( A )A .-2B .0C .-13D . 35.下列计算中正确的是 ( D ) A .0.9 =0.3 B .169 =±13 C .327 =±3 D .±0.16 =±0.46.立方根等于本身的数是 ( D )A .-1B .0C .±1D .±1或07.★若a 2=9,3b =-2,则a +b = ( C ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( D ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( C )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b|10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为( A )A .3B .4C .5D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是__2- 3 __. 12.(海宁市期中)选用适当的不等号填空: -31 __<__-π.13.如果a的算术平方根是3,那么a=__9__.14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =__293.8__.15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__ 6 __.16.如图,数轴上A,B两点对应的实数分别是1和 3 ,若点A关于点B的对称点为点C(即AB=BC),则点C所对应的实数为__2 3 -1__.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是__98 __.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为__-1__.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ; 解:原式=0.8+25 -(-4)-0.7=4.5.(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |. 解:原式= 2 -1+ 3 - 2 +2- 3 + 5 -2+ 6 - 5 = 6 -1.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21; 解:(x -3)2=25, ∴x -3=±5,∴x -3=5或x -3=-5, ∴x =8或x =-2.(2)(x +2)3+1=78.解:(x +2)3=-18,∴x +2=-12 ,∴x =-212.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{38 ,227,1.732,…}; (2)无理数集合:{ 2 ,π2,-33 ,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(3)非负数集合:{38 , 2 ,π2 ,227 ,0,1.732,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(4)分数集合:{-3.141 59,227 ,-78,-0.03,1.732,…}.22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?解:设长方体的长、宽、高分别是x 分米、x 分米、2x 分米,由题意得2x ·x ·x =1 024.解得x =8,则2x =16,答:长方体的长、宽、高分别为8分米、8分米、16分米.23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.解:∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=(±2)2=4,2x+y+7=33=27,∴x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根为±x2+y2=±100 =±10.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.解:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,∴结论成立.∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,∴x =4,∴1-x =1-2=-1.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A ,B 两点之间距离为9(A 在B 的左侧),且A ,B 两点经折叠后重合,此时点A 表示的数是多少,点B 表示的数是多少;解:(1)折叠纸面,使表示的点1与-1重合,折叠点对应的数为-1+12=0, 设-2表示的点所对应点表示的数为x ,于是有-2+x 2=0,解得x =2, 故答案为2.(2)折叠纸面,使表示的点-1与3重合,折叠点对应的数为-1+32=1, ①设5表示的点所对应点表示的数为y ,于是有5+y 2=1,解得y =-3, ②设 3 表示的点所对应点表示的数为z , 于是有z +32=1,解得z =2- 3 , ③设点A 所表示的数为a ,点B 表示的数为b ,由题意得a +b 2=1且b -a =9, 解得a =-3.5,b =5.5,故答案为-3,2- 3 ,-3.5,5.5.(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位长度,此时点A 表示的数和a 是互为相反数,求a 的值.解:①A 往左移4个单位长度:(a -4)+a =0.解得a =2.②A 往右移4个单位长度:(a +4)+a =0,解得a =-2.答:a 的值为2或-2.。
6.2 立方根一、选择题1.一个数的算术平方根与它的立方根的值相同,则这个数是( )A.1 B 。
0或1 C.0 D 。
非负数2.一个数的立方根等于它本身,则这个数是( )A.0B.1 C 。
-1 D 。
±1,03。
一个正数的算术平方根是8,则这个数的相反数的立方根是( )A 。
4 B.-4 C.4± D.8±4.-8的立方根与4的算术平方根的和是( )A.。
0 B 。
4 C.-4 D 。
0或45.下列命题中正确的是( )(1)0.027的立方根是0。
3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A 。
(1)(3)B 。
(2)(4)C 。
(1)(4)D 。
(3)(4)二、填空题1。
若642=x ,则3x =____。
2.立方根是-8的数是___, 64的立方根是____。
3。
若1253=x ,则x =___;336=x ,则x =___,若33)4(-=x ,则x =____。
4.当x <7时,33)7(-x =____。
5. -27的立方根与81的平方根之和是____.三、解答题1。
求下列各式的值或x 。
(1)327102--;(2)327174+;(3)43623=-x ;(4)027)3(3=++x2.若2x +19的立方根是3,求3x +4的平方根.3。
已知一个正方体的体积是10002cm ,现在要在它的8个角上分别截去8个大小相同的小正方体,截去后余下的体积是4882cm ,问截去的每个小正方体的棱长是多少?4.已知A =n m m n -+-3是n -m +3的算术平方根,B =322+-+n m n m 是m +2n 的立方根,求B -A 的立方根.5.先判断下列等式是否成立:(1)33722722=+( ) (2)3326332633=+( ) (3)3363446344=+( ) (4)331245512455=+() ……….经判断:(1)请你写出用含的自然数)2(>n n 的等式表示上述各式规律的一般公式.(2)证明你的结论.单元检测答案:一、选择题1。
人教版七年级下册第六章 立方根知识目标:①了解立方根的概念,会用根号表示一个数的立方根;②能用立方根求某些数的立方根,了解开立方与立方互为逆运算; ③了解立方根的性质;④区分立方根与平方根的不同. 能力目标:①在学习了平方根的基础上,要求学生用类比的方法学习立方根的有关知识,领会类比思想; ②发展学生的求同求异思维,使他们能在复杂环境中明辨是非. 情感目标:训练学生的类比思想的养成. 随堂练习1.立方根等于本身的数是( )A .—1B .0C .±1D .±1或02.的平方根是( ) A .2 B .±2C .±4D .不存在3.求下列各数的立方根:(1)343;(2)0.729;(3)10227- .4.下列说法正确的是( )A .±3;B .1的立方根是±1;C .1=±;D .0>.5在实数范围内有意义,则x 的取值范围为( ).A .0x >B .0x ≥C .0x ≠D .0x ≥且1x ≠6的平方根是 . 7.求下列各式的值:(1) (2(3); (48.当0a <可以化简为 .9:x y .10.已知31x +的平方根是±4,求919x +的立方根.能力提升:114=,且2(21)0y z -+的值.12.求下列各式的值:(1(2)(3)13.求下列各式的x:(1)(x+3)3+27=0;(2)(x-0.5)3+10-3=0.14,,内的10换成正数a,这种计算的规律是否仍然成立?参考答案1.D 2.B 3.(1)∵ 73=343,∴ 343的立方根是7,即3343=7;(2)∵ 0.93=0.729,∴0.729的立方根是0.9,即3729.0=0.9;(3)∵346410()232727-=-=-,∴10227-的立方根是43-,即43- 4.A 5.C 62,2的平方根是.7.3(1)40.35(3)3231060====-==⨯⨯=8111a a a a a +=++-=-+= 9.答案:由题意知0==又∵==,∴=1312y x -=-,∴:3:2x y =10.因为31x +的平方根是±4,31x +=16,∴16115533x -===. 把5x =代入919x +,得919x +=9×5+19=45+19=64,∴919x +的立方根是4. 114=,∴3464x ==又∵2(21)0y z -++∴210y z -+=且30z -=,即3z =,5y =6=.12.376;(2);(3)28=-=-. 13.(1)x =-6;(2)x =0.4.14210,==323410101010====上述各题的计算规律是:所得结果的幂指数等于被开方数的幂指数与根指数的比值,用式子表示为:(n n a a a =f .如果将根号内的10换成任意的正数,这种计算规律仍然成立.。