假设2
- 格式:ppt
- 大小:4.86 MB
- 文档页数:40
§2.2一元线性回归模型的参数估计一、一元线性回归模型的基本假设二、参数的普通最小二乘估计(OLS)三、参数估计的最大或然法(ML)四、最小二乘估计量的性质五、参数估计量的概率分布及随机干扰项方差的估计单方程计量经济学模型分为两大类:线性模型和非线性模型•线性模型中,变量之间的关系呈线性关系•非线性模型中,变量之间的关系呈非线性关系一元线性回归模型:只有一个解释变量i i i X Y μββ++=10i=1,2,…,nY 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。
估计方法有多种,其中最广泛使用的是普通最小二乘法(ordinary least squares,OLS)。
为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。
注:实际这些假设与所采用的估计方法紧密相关。
一、线性回归模型的基本假设假设1、解释变量X是确定性变量,不是随机变量;假设2、随机误差项μ具有零均值、同方差和不序列相关性:E(μi)=0i=1,2,…,nVar(μi)=σμ2i=1,2,…,nCov(μi,μj)=0i≠j i,j=1,2,…,n假设3、随机误差项μ与解释变量X之间不相关:Cov(X i,μi)=0i=1,2,…,n假设4、μ服从零均值、同方差、零协方差的正态分布μi~N(0,σμ2)i=1,2,…,n注意:1、如果假设1、2满足,则假设3也满足;2、如果假设4满足,则假设2也满足。
以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model,CLRM)。
二、参数的普通最小二乘估计(OLS)给定一组样本观测值(X i ,Y i )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares,OLS )给出的判断标准是:二者之差的平方和∑∑+-=-=ni i i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ最小。
假设检验的步骤
假设检验是统计学中用来判断关于总体参数的假设是否成立的方法。
它的步骤通常包括以下几个部分:
1. 提出假设:根据研究问题,明确原假设(H0)和备择假设(H1),它们是互斥的。
2. 选择合适的检验统计量:根据研究问题和数据的特性,选择合适的检验统计量,如t检验、χ²检验、F检验等。
3. 设置显著水平:明确显著水平(α),即拒绝原假设的最小可接受准则。
常见的显著水平有0.05和0.01。
4. 计算统计量的观察值:根据样本数据,计算统计量的观察值。
5. 确定拒绝域:根据显著水平和分布的特性,确定统计量观察值在拒绝域的位置。
6. 进行假设检验:根据统计量观察值的位置,判断是否拒绝原假设。
如果观察值落在拒绝域内,则拒绝原假设;如果观察值落在接受域内,则接受原假设。
7. 得出结论:根据假设检验结果,进行相应的结论,判断是否存在统计显著性或差异的实际意义。
需要注意的是,假设检验的步骤可以根据具体的情况和问题而有所差异,而且在实际应用中还需要考虑诸如样本选择、抽样误差等因素的影响。
假设的基本要求
1. 明确问题:在进行假设之前,我们需要明确要解决的问题或要探索的领域。
只有明确了问题,才能有针对性地进行假设。
2. 基于现实:假设应该基于已有的知识、经验和数据,而不是凭空想象。
这样可以提高假设的可信度和可靠性。
3. 合理性:假设应该符合逻辑和常理,不应过于离谱或荒谬。
否则,假设将失去其意义和价值。
4. 可验证性:假设应该是可以被验证或证伪的。
通过实验、观察或其他研究方法,可以对假设进行检验,以确定其是否正确。
5. 多样性:为了避免思维局限,我们应该考虑多种可能性和假设。
不同的假设可以为我们提供更多的思路和方向。
6. 开放性:假设应该保持一定的开放性,即不应该过于绝对或狭隘。
这样可以为进一步的研究和探索留下空间。
7. 记录和更新:对假设进行记录和跟踪是非常重要的。
随着时间的推移和新信息的出现,我们可能需要更新或修改假设。
总之,假设是科学研究和决策的重要工具。
为了使假设更加有效和可靠,我们需要明确问题、基于现实、保持合理性、可验证性、多样性、开放性,并及时记录和更新。
假设法解题(二)班级:________ 姓名:________例1:一列快车从甲地开往乙地,每小时行200千米;与此同时一列慢车从乙地开往甲地,每小时行160千米。
途中快车因故停留了4小时,所以比慢车迟1小时到达目的地。
求甲、乙两地的距离?例2:甲车站有222辆汽车,乙车站有48辆汽车。
每天从甲站开往乙站23辆,从乙站开往甲站26辆。
多少天后,甲站的汽车辆数是乙站的8倍?例3:甲仓库有货物58吨,乙仓库有货物32吨。
现在甲仓库每天进货4吨,乙仓库每天进货20吨。
多少天后,乙仓库的货物是甲仓库的2倍?例4:某农民饲养鸡、兔若干,已知鸡比兔多13只,鸡的脚比兔的脚多16只,鸡和兔各几只?例5:百货公司委托物流公司运送1000只玻璃花瓶,双方商定每只的运费是1元5角;如打破一只,这一只不但不计运费,并且要赔偿9元5角。
物流公司最后共得运费1456元。
搬运过程中共打破了多少只花瓶?例6:甲、乙两人投飞镖比赛,规定每投中一次得10分,脱靶一次倒扣6分。
两人各投10次,共得152分,其中甲比乙多得16分。
两人各投中多少次?例7:文化宫电影院有座位2000张,前排票每张20元,后排票每张15元。
已知前排票比后排票的总价少9000元,该电影院有前排座位和后排座位各多少个?练习:1、甲每小时行12千米,乙每小时行8千米。
某日甲从东村到西村,乙同时从西村到东村,已知乙到东村时,甲已先到西村5小时。
求东、西两村的距离。
2、一艘船从甲地到乙地,去时每小时行75千米,回来时每小时行50千米,求这艘船往返的平均速度是每小时多少千米?3、加工一批机器零件,王师傅要4小时,李师傅要6小时。
如果两人一起加工,几小时可以完成任务?4、甲池有水112吨,乙池有水120吨。
每小时从甲池往乙池流入9吨,几小时后,乙池的水为甲池的3倍?5、哥哥和弟弟同时从家往学校走,走了1分钟后,哥哥发现忘带铅笔盒,原路返回;取盒后重新出发,最后与弟弟同时到学校。
假设法解题举例(二)例1某农民养鸡和兔若干。
已知鸡比兔多13只,鸡的脚比兔的脚多16只。
问鸡和兔各有多少只?分析与解答:(1)提出假设:假设兔也是2只脚.(2)假设结论:那么鸡的脚应该比兔的脚多13×2=26(只).(3)与实际的差距:比实际多算26-16=10(只)脚.(4)原因:这是因为,每只兔子只算了2只脚,鸡脚数与兔脚数相减时,就会多出2只脚.一共多出10只脚,可求有多少只兔子:(13×2-16)÷(4-2)=10÷2=5(只)鸡的只数是:5+13=18(只)检验:18×2-5×4=36-20=16(只).正确.答:鸡有18只,兔有5只.例2五(1)班50名同学为灾区人民捐款.平均每个女同学捐8元,每个男同学捐5元.已知全班女同学共比男同学多捐101元,求这个班男、女同学各多少人?分析与解答:(1)提出假设:假设男、女同学一样多,都是25人。
(2)假设结论:女同学应比男同学共多捐(8-5)×25=75(元)(3)与实际的差距:比实际少算了101-75=26(元)(4)原因:每少算一个女同学,同时就多算了一个男同学.女同学的捐款总数就会比男同学的捐款总数少算(8+5)=13元.共少算了26元,所以,女同学少算了(26÷13)=2(人).女同学有(25+2)=27(人).男同学有(50-27)=23(人)检验:27×8-23×5=216-115=101(元).正确.答:男同学有23人,女同学有27人.例3有面值分别为10元、5元、2元的人民币共34张,总面值为178元。
10元的张数和5元的张数相同。
10元、5元和2元的人民币各有多少张?分析和解答:(1)提出假设:假设34张都是2元的.(2)假设结论:总面值应为:34×2=68(元)(3)与实际差距:比实际总面值少了178-68=110(元)(4)原因:把10元和5元的人民币当作2元的算了.而10元的和5元人民币的张数一样多.所以,需要每次拿2张2元的换1张10元和1张5元的.每换一次,总面值可增加(10+5-2×2)=11(元).要增加110元,需要换(110÷11)=10次,因此.10元和5元的人民币各有10张.2元的人民币有(34-10×2)=14(张)检验:10×10+5×10+2×14=100+50+28=178(元).正确.答:10元的和5元的人民币各有10张.2元的有14张.例4一群公猴、母猴和小猴共38只,每天共摘桃266个。