第5章第四节《功能关系_能量守恒》
- 格式:doc
- 大小:92.71 KB
- 文档页数:4
取夺市安慰阳光实验学校第4节功能关系能量守恒定律知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功等于物体重力势能的变化.(3)弹簧弹力做功等于弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.3.表达式(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.1.正误判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)(4)能量在转化或转移的过程中,其总量会不断减少.(×)(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(6)滑动摩擦力做功时,一定会引起能量的转化.(√)2.[功能关系的理解]自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )图541A.增大B.变小C.不变D.不能确定A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]3.[摩擦生热的理解]如图542所示,木块A放在木板B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )【:92492233】图542A. W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2A[设木板B长s,木块A从木板B左端滑到右端克服摩擦力所做的功W =F f s,因为木板B不固定时木块A的位移要比木板B固定时长,所以W1<W2;摩擦产生的热量Q=F f l相对,两次都从木块B左端滑到右端,相对位移相等,所以Q1=Q2,故选A.]4.[几种常见的功能关系应用](多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh -12mv2C.他的机械能减少了FhD.他的机械能减少了mghAC[合力做的功等于动能的变化,合力做的功为(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]对功能关系的理解及应用1(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.2.几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性1.(多选)(2017·枣庄模拟)如图543所示,取一块长为L的表面粗糙的木板,第一次将其左端垫高,让一小物块从板左端的A点以初速度v0沿板下滑,滑到板右端的B点时速度为v1;第二次保持板右端位置不变,将板放置水平,让同样的小物块从A点正下方的C点也以初速度v0向右滑动,滑到B点时的速度为v2.下列说法正确的是( )图543A.v1一定大于v0B.v1一定大于v2C.第一次的加速度可能比第二次的加速度小D.两个过程中物体损失的机械能相同BCD[物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则物块做加速运动,若重力向下的分力小于摩擦力,则物块做减速运动.故A错误;斜面的倾角为θ时,物块受到滑动摩擦力:f1=μmg cos θ,物块克服摩擦力做功W1=f1L=μmg cos θ·L.板水平时物块克服摩擦力做功:W2=μmg·L cos θ=W1.两次克服摩擦力做的功相等,所以两个过程中物体损失的机械能相同;第一次有重力做正功.所以由动能定理可知第一次的动能一定比第二次的动能大,v1一定大于v2,故B、D正确.物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则:a1=mg sin θ-fm,板水平时运动的过程中a2=fm,所以第一次的加速度可能比第二次的加速度小,故C正确.]2.(多选)(2017·青岛模拟)如图544所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为F f,则小球从开始下落至最低点的过程( )【:92492234】图544A.小球动能的增量为零B.小球重力势能的增量为mg(H+x-L)C.弹簧弹性势能的增量为(mg-F f)(H+x-L)D.系统机械能减小F f HAC[小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功W G=mgh=mg(H+x-L),根据重力做功量度重力势能的变化W G=-ΔE p得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:W G+W f+W弹=0-0=0,所以W弹=-(mg-F f)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔE p得:弹簧弹性势能的增量为(mg-F f)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:F f(H+x-L),所以系统机械能减小为:F f(H+x-L),故D 错误.]功能关系的应用技巧1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析,W总=ΔE k.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析,即W G =-ΔE p.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,即W其他=ΔE.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析,即W电=-ΔE p.对能量守恒定律的理解及应用1(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE 增,最后由ΔE减=ΔE增列式求解.[多维探究]●考向1 涉及弹簧的能量守恒定律问题1.如图545所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止.现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度.在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是( )图545A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加B[在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误.]2.如图546所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图546(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.【:92492235】【解析】(1)A与斜面间的滑动摩擦力f=2μmg cos θ,物体从A向下运动到C点的过程中,根据能量守恒定律可得:2mgL sin θ+12·3mv20=12·3mv2+mgL+fL解得v=v20-gL.(2)从物体A接触弹簧,将弹簧压缩到最短后又恰回到C点,对系统应用动能定理-f·2x=0-12×3mv2解得x=v202g-L2.(3)弹簧从压缩到最短到恰好能弹到C点的过程中,对系统根据能量守恒定律可得:E p+mgx=2mgx sin θ+fx所以E p=fx=3mv204-3mgL4.【答案】(1)v20-gL(2)v202g-L2(3)3mv204-3mgL4●考向2 能量守恒定律与图象的综合应用3.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图547中两直线所示.g 取10 m/s 2,下列说法正确的是( )图547A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 JD [在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理得:-fH -mgH =12mv 2-12mv 20,解得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理得:-fh ′-mgh ′=E k2-12mv 20,解得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.]摩擦力做功与能量的转化关系1.(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量. (2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量. 2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l相对,产生的内能Q =F f ·l 相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:图 5-4-8(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【自主思考】(1)1.9 s 内工件是否一直加速?应如何判断?提示:若工件一直匀加速,由v m 2×t =hsin θ可得:工件的最大速度v m =61.9m/s>v 0,故工件在1.9 s 内应先匀加速运动再匀速运动.(2)工件在上升过程中其所受的摩擦力是否变化? 提示:变化,先是滑动摩擦力,后是静摩擦力.(3)电动机传送工件的过程中多消耗的电能转化成了哪几种能量? 提示:工件的动能、重力势能及因摩擦力做功产生的热量三部分. 【解析】 (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmg cos θ-mg sin θ=ma解得:μ=32.(2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J.【答案】 (1)32 (2)230 J[母题迁移]●迁移1 水平传送带问题1.如图549所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )【:92492236】 图549A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv ,选项D 正确.]●迁移2 倾斜传送带 逆时针转动 2.(多选)(2017·太原模拟)如图5410所示,与水平面夹角为θ=37°的传送带以恒定速率v =2 m/s沿逆时针方向运动.将质量为m =1 kg 的物块静置在传送带上的A 处,经过1.2 s 到达传送带的B 处.已知物块与传送带间的动摩擦因数为μ=0.5,其他摩擦不计,物块可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列对物块从传送带A 处运动到B 处过程的相关说法正确的是( )【:92492237】图5410A .物块动能增加2 JB .物块机械能减少11.2 JC .物块与传送带因摩擦产生的热量为4.8 JD .物块对传送带做的功为-12.8 JBC [由题意可知μ<tan 37°,因而物块与传送带速度相同后仍然要加速运动.物块与传送带速度相同前,由牛顿第二定律有mg (sin θ+μcos θ)=ma 1,v =a 1t 1,x 1=12a 1t 21, 解得a 1=10 m/s 2,t 1=0.2 s ,x 1=0.2 m ,物块与传送带速度相同后,由牛顿第二定律有mg (sin θ-μcos θ)=ma 2,v ′=v +a 2t 2,x 2=vt 2+12a 2t 22,而t 1+t 2=1.2 s ,解得a 2=2 m/s 2,v ′=4 m/s ,x 2=3 m ,物块到达B 处时的动能为E k =12mv ′2=8 J ,选项A 错误;由于传送带对物块的摩擦力做功,物块机械能变化,摩擦力做功为W f =μmgx 1cos θ-μmgx 2cos θ=-11.2 J ,故机械能减少11.2 J ,选项B 正确;物块与传送带因摩擦产生的热量为Q =μmg (vt 1-x 1+x 2-vt 2)cos θ=4.8 J ,选项C 正确;物块对传送带做的功为W =-μmgvt 1cos θ+μmgvt 2cos θ=6.4 J ,选项D 错误.]1.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转移.2.滑动摩擦力做功,其他形式的能量转化为内能;静摩擦力做功,不产生内能.3.公式Q=F f·l相对中l相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则l相对为总的相对路程.。
第五章机械能第3讲功能关系能量守恒定律过好双基关————回扣基础知识训练基础题目一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒,ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对二、两种摩擦力做功特点的比较类型比较静摩擦力做功滑动摩擦力做功不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量不同点一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体可以做正功,也可以做负功,还可以不做功三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.研透命题点————细研考纲和真题分析突破命题点1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析.【例1】(多选)某运动员参加百米赛跑,他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心.如图所示,假设质量为m 的运动员,在起跑时前进的距离s 内,重心升高量为h ,获得的速度为v ,阻力做功为W f ,则在此过程中()A .运动员的机械能增加了12mv 2B .运动员的机械能增加了12mv 2+mgh C .运动员的重力做功为mghD .运动员自身做功W =12mv 2+mgh -W f 答案BD 解析运动员的重心升高h ,获得的速度为v ,其机械能的增量为ΔE =mgh +12mv 2,A 错误,B 正确;运动员的重心升高h ,重力做负功,W G =-mgh ,C错误;根据动能定理得,W+W f-mgh=1mv2-0,解得W=21mv2+mgh-W f,D正确.2【变式1】(多选)物体由地面以120J的初动能竖直向上抛出,当它从抛出至上升到某一点A的过程中,动能减少40J,机械能减少10J.设空气阻力大小不变,以地面为零势能面,则物体()A.落回到地面时机械能为70JB.到达最高点时机械能为90JC.从最高点落回地面的过程中重力做功为60JD.从抛出到落回地面的过程中克服阻力做功为60J答案BD解析物体以120J的初动能竖直向上抛出,向上运动的过程中重力和空气阻力都做负功,当上升到某一高度时,动能减少了40J,而机械能损失了10 J.根据功能关系可知:合力做功为-40J,空气阻力做功为-10J,对从抛出点到A点的过程,根据功能关系:mgh+F f h=40J,F f h=10J,得F f=1mg;3当上升到最高点时,动能为零,动能减小120J,设最大高度为H,则有:mgH+F f H=120J,解得mgH=90J,F f H=30J,即机械能减小30J,在最高点时机械能为120J-30J=90J,即上升过程机械能共减少了30J;当下落过程中,由于阻力做功不变,所以机械能又损失了30J,故整个过程克服阻力做功为60J,则该物体落回到地面时的机械能为60J,从最高点落回地面的过程中重力做功为mgH=90J,故A、C错误,B、D正确.【例2】(多选)(2020·全国Ⅰ卷)一物块在高3.0m、长5.0m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0m/s2D.当物块下滑2.0m时机械能损失了12J答案AB解析下滑5m的过程中,重力势能减少30J,动能增加10J,减小的重力势能并不等于增加的动能,所以物块下滑过程中机械能不守恒,A正确;斜面高3m、长5m,则斜面倾角为θ=37°.令斜面底端为零势面,则物块在斜面顶端时的重力势能mgh=30J,可得质量m=1kg.下滑5m过程中,由功能关系,机械能的减少量等于克服摩擦力做的功,μmg·cosθ·s=20J,求得μ=0.5,B正确;由牛顿第二定律mg sinθ-μmg cosθ=ma,求得a=2m/s2,C错误;物块下滑2.0m时,重力势能减少12J,动能增加4J,所以机械能损失了8J,D选项错误.故选AB.【变式2】(多选)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中()A.物块在A点时,弹簧的弹性势能等于W-12μmgaB.物块在B点时,弹簧的弹性势能小于W-32μmgaC.经O点时,物块的动能小于W-μmgaD.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能答案BC解析设O点到A点距离为x,则物块从O点运动到A点过程中,根据功能关系可得μmgx+E p A=W,从A点到B点过程中同理可得E p A=μmga+E p B,由于克服摩擦力做功,则E p B<E p A,则B点到O点距离一定小于a2,且x>a2,则E p A=W-μmgx<W-1μmga,A错误;在B点有E p B=W-μmg(a+x)<W2-3μmga,B正确;物块经过O点,同理可得E k O=W-2μmgx<W-μmga,2C正确;物块动能最大时所受弹力kx=μmg,而在B点弹力与摩擦力大小关系未知,故物块动能最大时弹簧伸长量与物块在B点时弹簧伸长量大小未知,故两位置弹性势能的大小关系不好判断,D错误.圆轨道与水平【例3】(多选)如图所示,竖直平面内有一半径为R的固定14轨道相切于最低点B.一质量为m的小物块P(可视为质点)从A处由静止滑下,经过最低点B后沿水平轨道运动到C处停下,B、C两点间的距离为R,物块P与圆轨道、水平轨道之间的动摩擦因数均为μ.现用力F将物块P沿下滑的路径从C处缓慢拉回圆弧轨道的顶端A,拉力F的方向始终与物块P的运动方向一致,物块P从B处经圆弧轨道到达A处过程中,克服摩擦力做的功为μmgR,下列说法正确的是()A.物块P在下滑过程中,运动到B处时速度最大B.物块P从A滑到C的过程中克服摩擦力做的功等于2μmgRC.拉力F做的功小于2mgRD.拉力F做的功为mgR(1+2μ)答案CD解析当重力沿圆轨道切线方向的分力等于滑动摩擦力时,速度最大,此位置在AB之间,故A错误;将物块P缓慢地从B拉到A,克服摩擦力做的功为μmgR,而物块P从A滑到B的过程中,物块P做圆周运动,根据向心力知识可知物块P所受的支持力比缓慢运动时要大,则滑动摩擦力增大,所以克服摩擦力做的功W f大于μmgR,因此物块P从A滑到C的过程中克服摩擦力做的功大于2μmgR,故B错误;由动能定理得,从C到A的过程中有W F -mgR-μmgR-μmgR=0-0,则拉力F做的功为W F=mgR(1+2μ),故D 正确;从A到C的过程中,根据动能定理得mgR-W f-μmgR=0,因为W f>μmgR,则mgR>μmgR+μmgR,因此W F<2mgR,故C正确.【变式3】高速公路部分路段旁建有如图所示的避险车道,车辆可驶入避险.若质量为m的货车刹车后以初速度v0经A点冲上避险车道,前进距离l时到B点减速为0,货车所受阻力恒定,A、B两点高度差为h,C为A、B 中点,已知重力加速度为g,下列关于该货车从A运动到B的过程说法正确的是()A.克服阻力做的功为1mv202B.该过程产生的热量为1mv20-mgh2C.在AC段克服阻力做的功小于在CB段克服阻力做的功D.在AC段的运动时间等于在CB段的运动时间答案B解析根据动能定理有-mgh-F f l=0-1mv20,克服阻力做的功为W f=F f l=21mv20-mgh,故A错误;克服阻力做的功等于系统产生的内能,则该过程产2生的热量为1mv20-mgh,故B正确;阻力做的功与路程成正比,在AC段克2服阻力做的功等于在CB段克服阻力做的功,故C错误;从A到B做匀减速运动,AC段的平均速度大于BC段的平均速度,故在AC段的运动时间小于在CB段的运动时间,故D错误.1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的总功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【例4】如图所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段物体与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间因摩擦产生的热量等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功答案C解析对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A错误;由动能定理知,合力做的总功等于物体动能的增加量,B错误;物体机械能的增加量等于摩擦力对物体所做的功,D错误;设第一阶段物体的运动时间为t,传送带速度为v,对物体有x1=v2t,对传送带有x′1=v·t,因摩擦产生的热量Q=F f x相对=F f(x′1-x1)=F f·v2t,物体机械能增加量ΔE=F f·x1=F f·v2t,所以Q=ΔE,C正确.【变式4】(多选)水平地面上固定有两个高度相同的粗糙斜面体甲和乙,斜面长分别为s、L1,如图所示.两个完全相同的小滑块A、B可视为质点,同时由静止开始从甲、乙两个斜面的顶端释放,小滑块A一直沿斜面甲滑到底端C点,而小滑块B沿斜面乙滑到底端P点后又沿水平面滑行距离L2到D点(小滑块B在P点从斜面滑到水平面时速度大小不变),且s=L1+L2.小滑块A、B与两个斜面以及水平面间的动摩擦因数相同,则()A.滑块A到达底端C点时的动能一定比滑块B到达D点时的动能小B.两个滑块在斜面上加速下滑的过程中,到达同一高度时,动能可能相同C.A、B两个滑块从斜面顶端分别运动到C、D的过程中,滑块A重力做功的平均功率小于滑块B重力做功的平均功率D.A、B两个滑块从斜面顶端分别运动到C、D的过程中,由于克服摩擦而产生的热量一定相同答案AC解析设斜面体甲的倾角为α,斜面体乙的倾角为β,根据动能定理,滑块A 由甲斜面顶端到达底端C点的过程,mgh-μmg cosα·s=12mv2C,滑块B由乙斜面顶端到达D点的过程,mgh-μmg cosβ·L1-μmgL2=12mv2D,又s=L1+L2,根据几何关系得s cosα>L1cosβ+L2,所以12mv2C<12mv2D,故A正确;两个滑块在斜面上加速下滑的过程中,到达同一高度时:mgh-μmg cosθ·hsinθ=12mv2,重力做功相等,但克服摩擦力做功不等,所以动能不同,故B错误;整个过程中,两滑块所受重力做功相同,但由于滑块A运动时间长,故重力对滑块A做功的平均功率比滑块B的小,故C正确;滑块A、B分别到达C、D时的动能不相等,由能量守恒定律知滑块A、B运动过程中克服摩擦产生的热量不同,故D错误.【例5】如图所示,半径为R=1.0m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向的夹角θ=37°,另一端点C 为轨道的最低点.C点右侧的光滑水平面上紧挨C点静止放置一木板,木板质量M=1kg,上表面与C点等高.质量为m=1kg的物块(可视为质点)从空中A点以v0=1.2m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,g 取10m/s 2.求:(1)物块经过C 点时的速率v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .答案(1)6m/s (2)9J 解析(1)设物块在B 点的速度为v B ,从A 到B 物块做平抛运动,有:v B sin θ=v 0从B 到C ,根据动能定理有:mgR (1+sin θ)=12mv 2C -12mv 2B 解得:v C =6m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起运动.设相对滑动时物块加速度大小为a 1,木板加速度大小为a 2,经过时间t 达到共同速度v ,则:μmg =ma 1,μmg =Ma 2,v =v C -a 1t ,v =a 2t根据能量守恒定律有:12(m +M )v 2+Q =12mv 2C 联立解得:Q =9J.【变式5】(多选)如图所示,固定的光滑竖直杆上套一个滑块A ,与滑块A 连接的细绳绕过光滑的轻质定滑轮连接滑块B ,细绳不可伸长,滑块B 放在粗糙的固定斜面上,连接滑块B 的细绳和斜面平行,滑块A 从细绳水平位置由静止释放(不计轮轴处的摩擦),到滑块A 下降到速度最大(A 未落地,B 未上升至滑轮处)的过程中()A.滑块A和滑块B的加速度大小一直相等B.滑块A减小的机械能等于滑块B增加的机械能C.滑块A的速度最大时,滑块A的速度大于B的速度D.细绳上的张力对滑块A做的功等于滑块A机械能的变化量答案CD解析两滑块与绳构成绳连接体,沿绳方向的加速度大小相等,则A沿绳的分加速度等于B的加速度,A错误;绳连接体上的一对拉力做功不损失机械能,但B受到的斜面摩擦力对B做负功,由能量守恒可知滑块A减小的机械能等于滑块B增加的机械能和摩擦生热之和,B错误;滑块A的速度最大时,将滑块A的速度分解,如图所示,绳连接体沿绳方向的速度大小相等,则A沿绳的分速度等于B的运动速度,显然滑块A的速度大于B的速度,C 正确;对A受力分析可知,除重力外,只有细绳的张力对滑块A做功,由功能关系可知,细绳上的张力对滑块A做的功等于滑块A机械能的变化量,D正确.。
第四节 功能关系 能量守恒 【知识梳理】一、功能关系1.内容:(1)功是能量转化的量度,即做了多少功就有多少能量转化;(2)做功的过程一定伴随着能量的转化,而且能量的转化必通过做功来实现。
2.功能关系对应 合外力的功 能的变化 重力做功 重力势能变化 弹簧弹力做功弹性势能变化 外力(除重力、弹力)做功 机械能变化 一对滑动摩擦力做的总功 内能变化 电场力做功 电势能变化 分子力做功分子势能变化3.几种常见的功能关系(1)合外力做的功等于物体动能的变化,即k 1k 2k E E -E ∆==合W (2)重力做的功等于物体重力势能的改变,即p p p G W E E E 12∆-=-= (3)弹簧弹力做功等于弹性势能的改变,即p 1p 2p E -E -E ∆==弹W(4)除了重力和弹簧弹力之外的其他力所做的总功等于物体机械能的改变,即E E E W ∆=-=12二、能量守恒定律1.内容:能量既不会消灭,也不会消失,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个个物体,而在转化和转移的过程中,能量的总量不变。
2.表达式:增减E E ∆=∆3.对定律的理解:(1)某种形式的能量减少,一定存在另一种形式的能量增加,且减少量和增加量相等。
(2)某个物体的能量减少,一定存在别的物体的能量增加,切减少量和增加量相等。
4.应用定律解题的一般步骤:(1)分清有多少种形式的能在变化(2)明确增加的能量,减少的能量,并且列出能量表达式 (3)列守恒关系式解题【经典例题】例1.(2010山东理综)如图11所示,倾角θ=30°的粗糙斜面固定在地面上,长为l 、质量为m 、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平。
用细线将物块与软绳相连,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面)在此过程中A.物块的机械能逐渐增加B.软绳的重力势能共减少了mgl/4C.物块重力势能的减少等于软绳克服摩擦力所做的功D.软绳的重力势能的减少小于软绳动能的增加与软绳克服摩擦力所做的功之和【答案】BD例2.(2010山东理综)如图11所示,倾角 =30°的粗糙斜面固定在地面上,长为l、质量为m、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平。
5.4功能关系与能量守恒定律【学习目标】1、理解功是能量转化的量度;2、知道几种常见力做功与能量转化的对应关系;3、掌握能量的转化和守恒定律;【学习内容】一、功能关系1、功是能量转化的量度,即做了多少功就有多少能量发生了转化.2、做功的过程一定伴随着能量的转化,而且能量的转化必通过做功来实现.【一个力做功改变两个能量,其中有一个一定是动能】3、几种常见力做功与能量转化的对应关系(1)重力做功:重力势能和其他形式能相互转化 W G =-ΔE p =E p1-E p2(2)弹簧弹力做功:弹性势能和其他形式能相互转化W 弹=-ΔE p =E p1-E p2(3)合力做功:动能和其他形式的能互相转化(动能定理) W 合 = △E k(4)除重力和弹力以外的力做功:机械能和其他形式的能互相转化W 其他=ΔE 机.(5)滑动摩擦力做功:内能和其他形式的能互相转化Q =fl 相对(l 相对为两物体的相对位移)二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式:(1)E 1=E 2. (2) ∣ΔE 减∣=∣ΔE 增.∣3.用能量守恒解题的步骤(1)对运动过程中的物体受力分析,看看有几个力做功,分清有多少种形式的能在变化;(2)分别列出减少的能量∣E ∆减和增加的能量E ∆增;(3)列恒等式∣ΔE 减∣=∣ΔE 增.∣求解;【例题1】【重力做功】一个物体从高h 的光滑斜面顶端由静止开始滑下,不计空气阻力,求(1)下滑过程中,什么力在做功?做了多少功?(2)下滑过程中,有什么能量发生改变?什么能量转化什么能量?(3)物体滑到底端速度多大?(分别用动能定理和能量守恒法列式求解)法一:动能定理法法二:能量守恒法【例题2】【弹簧弹力做功】如图轻质弹簧的左端固定,质量为m 的物体B (可视为质点)放置在光滑的水平面上并紧靠弹簧右端(不拴接)。
§5.4 功能关系、能量守恒定律学案
【高考要求】
功能关系(B )
能量守恒定律(B ) 一、功能关系
【问题情境1】(2013全国大纲卷20)如图所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于重力加速度的大小g 。
物块上升的最大高度为H ,则此过程中,物块的( )
A .动能损失了2mgH
B .动能损失了mgH
C .机械能损失了mgH
D .机械能损失了
【知识回扣】
1.功是__________的量度,即做了多少功就有多少能量发生了转化.
2.做功的过程一定伴随着_________,而且__________必通过做功来实现.
【跟踪练习1】(2013山东卷16)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮。
质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。
两滑块由静止释放后,沿斜面做匀加速运动。
若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中
A. 两滑块组成系统的机械能守恒 B .重力对M 做的功等于M 动能的增加
C .轻绳对m 做的功等于m 机械能的增加
D .两滑块组成系统的机械能损失等于M 克服摩擦
力做的功
【变式训练】一质量均匀的不可伸长的绳索(其重力不可忽略).A 、B 两端固定在天花板上,如图所示,今在最低点C 施加一竖直向下的力将绳索拉至D 点,在此过程中,绳索的重心位置将( )
A .逐渐升高
B .逐渐降低
C .先降低后升高
D .始终不变
二、能量守恒定律
【问题情境2】(2009山东卷22)图示为某探究活动小组设计的节能运动系统。
斜面轨道倾角为30°,质量为M
的木箱与轨道的动摩擦因数为
36。
木箱在轨道端时,c m a M b
自动装货装置将质量为m的货物装入木箱,然后
木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩
至最短时,自动卸货装置立刻将货物卸下,然后木
箱恰好被弹回到轨道顶端,再重复上述过程。
下列
选项正确的是()
A.m=M
B.m=2M
C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
【知识回扣】
1.能量既不会凭空产生,也不会凭空消失,它只能从一种形式_____为另一种形式,或者从一个物体_____到别的物体,在转化或转移的过程中,能量的总量_________.
2.几种常见的功与能的关系
①合外力对物体所做的功等于物体动能的增量,
即W合=ΔE k=E k2-E k1,即动能定理.
②重力做功对应重力势能的改变.
W G=-ΔE p=E p1-E p2
重力做多少正功,重力势能减少多少;重力做多少负功,重力势能增加多少.
③弹簧弹力做功与弹性势能的改变相对应.
W F=-ΔE p=E p1-E p2
弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少.
④除重力或弹簧的弹力以外的其他力做多少功与物体机械能的增量相对应,
即W其他=ΔE.
(a)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少.
(b)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少.
(c)除重力或弹簧的弹力以外的其他力不做功,物体的机械能守恒.
⑤电场力做功与电势能变化的关系
W AB=-ΔE p
电场力做正功,电势能减少;电场力做负功,电势能增加.
⑥安培力做正功,电能转化为其他形式的能;克服安培力做功,其他形式的能转化为电能.
特别提醒:在动能定理中,合外力的功包含重力和弹力在内的所有力所做功的代数和,所以可能包含着重力势能和弹性势能的转化.
【跟踪练习2】(2010山东卷22)如图所示,倾角θ=30°的粗糙斜面固定在地面上,长为l、质量为m、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平。
用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好
全部离开斜面(此时物块未到达地面),在此 过程中
A .物块的机械能逐渐增加
B .软绳重力势能共减少了4
1mgl C .物块重力势能的减少等于软绳克服摩擦力所做的功
D .软绳重力势能的减少小于其动能的增加与克服摩擦力所做功之和
三、摩擦力做功与机械能、内能之间的转化关系
【问题情境3】一木块静止在光滑水平面上,被水平方向飞来的子弹击中,子弹进入木块的深度为2 cm ,木块相对于桌面移动了1 cm ,设木块对子弹的阻力恒定,则产生的内能和子弹损失的动能之比是多少?
【知识回扣】
1.静摩擦力做功的特点
(1)静摩擦力可以做正功,可以做负功,还可以不做功.
(2)存在相互摩擦的系统内,一对静摩擦力所做的总功为零.
(3)在静摩擦力做功的过程中,有机械能的转移,而没有机械能转化为内能.
2.滑动摩擦力做功的特点
(1)滑动摩擦力可以对物体做正功,也可以做负功,还可以不做功.
(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;
②有一部分机械能在相互摩擦的物体间转移,另外部分转化为内能.
(3)摩擦生热的计算:Q =F f l 相.
【跟踪练习3】(满分样板)(2011年杭州模拟)如图所示,一质量为m 的滑块从高为h 的光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端B 与水平传送带相接,传送带的运行速度恒为v 0,两轮轴心间距为l ,滑块滑到传送带上后做匀加速运动,滑到传送带右端C 时,恰好加速到与传送带的速度相同,求:
(1)滑块到达底端B 时的速度大小v B ;
(2)滑块与传送带间的动摩擦因数μ;
(3)此过程中,由于克服摩擦力做功而产生的热量Q .
【课堂达标练习】(2013北京23)(18分)蹦床比赛分成预备运动和比赛动作两个阶段。
最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段。
把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx (x为床面下沉的距离,k为常量)。
质量m=50kg的运动员静止站在蹦床上,床面下沉x0=0.10m;在预备运动中,假定运动员所做的总功W全部用于其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为△t=2.0s,设运动员每次落下使床面压缩的最大深度均为x l。
取重力加速度g=10m/s2,忽略空气阻力的影响。
(1)求常量k,并在图中画出弹力F随x变化的示意图;
(2)求在比赛动作中,运动员离开床面后上升的最大高度h m;
(3)借助F-x图像可以确定弹力做功的规律,在此基础上,求x1和W的值。