液压传动斜盘式向柱塞泵工作原理03共18页PPT资料
- 格式:ppt
- 大小:4.44 MB
- 文档页数:18
轴向柱塞泵工作原理之巴公井开创作轴向柱塞泵中的柱塞是轴向排列的.当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角γ时,称为斜轴式轴向柱塞泵.轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点.图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图.工作原理斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的.柱塞3均布于缸体4内, 柱塞的头部靠机械装置或在高压油作用下紧压在斜盘上.斜盘法线和缸体轴线的夹角为γ.当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动.显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出.缸体每转一周,每个柱塞完成吸、压油一次. 如果可以改变斜角γ的年夜小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵.在图3.28b(动画)中,当传动轴1在电念头的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的正面带动活塞连同缸体一同旋转.配油盘5是固定不动的.如果斜角度γ的年夜小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵.轴向柱塞泵的排量和流量设柱塞直径为d,柱塞数为Z,柱塞中心分布圆直径为D, 斜盘倾角为γ,则柱塞行程泵的排量和流量分别为式中,n一泵的转速;ηpv一泵的容积效率.轴向柱塞泵的输出流量是脉动的.理论分析和实验研究标明, 当柱塞个数多且为奇数时流量脉动较小.从结构和工艺考虑,柱塞个数多采纳7或9.表3.3 流量脉动率与柱塞数Z的关系Z56789101112δq(%) 14轴向柱塞泵结构图3.30 滑靴的静压支承原理图1.柱塞2.滑靴3.斜盘(1)斜盘式轴向柱塞泵图3.29 是一种轴向柱塞泵的结构简图.传动轴8通过花键带动缸体6旋转.柱塞5(七个)均匀装置在缸体上. 柱塞的头部装有滑靴4,滑靴与柱塞是球铰连接,可以任意转动.由弹簧通过钢球和压板3将滑靴压靠在斜盘2上.这样,当缸体转动时,柱塞就可以在缸体中往复运动,完成吸油和压油过程.配油盘7与泵的吸油口和压油口相通,固定在泵体上.另外,在滑靴与斜盘相接触的部份有一个油室,压力油通过柱塞中间的小孔进入油室,在滑靴与斜盘之间形成一个油膜,起着静压支承作用,从而减少了磨损. 滑靴的静压支承原理如图3.30(动画)所示.这种泵的变量机构是手动的.转入手把1,通过丝杠螺母副可以改变斜盘的倾角,从而改变泵的输出流量.图3.31 A2F型斜轴式轴向柱塞泵1.主轴 2.轴承组 3.连杆柱塞副 4.缸体 5.泵体 6.球面配油盘 7.后盖 8.蝶形弹簧9.中心轴(2)斜轴式轴向柱塞泵图3.31 是一种斜轴式轴向柱塞泵的结构简图.这是一个定量泵.它由主轴l、轴承组2、连杆柱塞副3、缸体4、泵体5、球面配油盘6和后盖7等组成.由于缸相对主轴有一个倾角,故称斜轴泵.连杆3和中心轴9的两端都是球铰结构.中心轴支承着缸体.套在中心轴上的蝶形弹簧8将缸体压在配油盘上,保证了缸体在旋转时具有良好的密封性和自位性.当主轴旋转时,连杆与柱塞内壁接触,通过柱塞带动缸体旋转,同时连杆带动柱塞在缸体柱塞孔内作往复运动,使柱塞底部的密封容积发生周期性的变动,通过配油盘的吸、压窗口完成吸油和压油过程.这种泵的流量计算公式与斜盘式轴向柱塞泵的形式相同,只不外要用缸体轴线与主轴之间夹角取代斜盘倾角.时间:二O二一年七月二十九日。
轴向柱塞泵工作原理轴向柱塞泵中的柱塞是轴向排列的。
当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角γ时,称为斜轴式轴向柱塞泵。
轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。
图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。
工作原理斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。
柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。
斜盘法线和缸体轴线的夹角为γ。
当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。
显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出。
缸体每转一周,每个柱塞完成吸、压油一次。
如果可以改变斜角γ的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。
在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。
配油盘5是固定不动的。
如果斜角度γ的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。
轴向柱塞泵的排量和流量设柱塞直径为d,柱塞数为Z,柱塞中心分布圆直径为D,斜盘倾角为γ,则柱塞行程泵的排量和流量分别为式中,n一泵的转速;ηpv一泵的容积效率。
轴向柱塞泵的输出流量是脉动的。
理论分析和实验研究表明,当柱塞个数多且为奇数时流量脉动较小。
从结构和工艺考虑,柱塞个数多采用7或9。
表3.3流量脉动率与柱塞数Z的关系Z56789101112δq(%) 4.9814 2.537.8 1.53 4.98 1.02 3.45轴向柱塞泵结构图3.30 滑靴的静压支承原理图1.柱塞2.滑靴3.斜盘(1)斜盘式轴向柱塞泵图3.29是一种轴向柱塞泵的结构简图。
目录第1章绪论第2章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理2.2 斜盘式轴向柱塞泵主要性能参数第3章斜盘式轴向柱塞泵运动学及流量品质分析3.1 柱塞运动学分析3.1.1柱塞行程s3.1.2柱塞运动速度v3.1.3柱塞运动加速度a3.2 滑靴运动分析3.3 瞬时流量及脉动品质分析3.3.1脉动频率3.3.2脉动率第4章柱塞受力分析与设计4.1 柱塞受力分析4.1.1 柱塞底部的液压力P b4.1.2 柱塞惯性力P g4.1.3 离心反力P l4.1.4 斜盘反力N4.1.5 柱塞与柱塞腔壁之间的接触力R和R4.1.6 摩擦力p i f和Rf4.2 柱塞设计4.2.1 4.2.2 4.2.3柱塞结构型式柱塞结构尺寸设计柱塞摩擦副比压P、比功pv验算第5章滑靴受力分析与设计5.1 滑靴受力分析5.1.1 5.1.2 5.1.3分离力P f压紧力P y力平衡方程式5.2 滑靴设计5.2.1剩余压紧力法5.2.2 最小功率损失法5.3 滑靴结构型式与结构尺寸设计5.3.1滑靴结构型式5.3.2结构尺寸设计第6章配油盘受力分析与设计6.1 配油盘受力分析6.1.1压紧力P y6.1.2分离力P f6.1.3力平横方程式6.2 配油盘设计6.2.1 过度区设计6.2.2 配油盘主要尺寸确定623 验算比压p、比功pv Avy r第7章缸体受力分析与设计7.1缸体地稳定性7.1.1压紧力矩M y7.1.2分离力矩M f7.1.3力矩平衡方程7.2 缸体径向力矩和径向支承7.2.1 径向力和径向力矩7.2.2 缸体径向力支承型式7.3 缸体主要结构尺寸的确定7.3.1 通油孔分布圆半径R'和面积F a7.3.2 缸体内、外直径D、D2的确定7.3.3 缸体高度H结论摘要斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。
柱塞泵的工作原理引言概述:柱塞泵是一种常用的液压泵,广泛应用于工业领域。
它通过柱塞的往复运动来实现液体的输送。
本文将详细介绍柱塞泵的工作原理,包括其结构、工作过程以及应用。
正文内容:1. 柱塞泵的结构1.1 柱塞泵由柱塞、柱塞杆、泵体和阀门组成。
1.2 柱塞通过柱塞杆与泵体连接,形成一个密闭的腔体。
1.3 泵体内设有进、出口阀门,控制液体的流动方向。
2. 柱塞泵的工作过程2.1 进行吸液过程2.1.1 柱塞向后运动,腔体内形成负压。
2.1.2 进口阀门打开,液体被吸入腔体。
2.2 进行压液过程2.2.1 柱塞向前运动,腔体内形成正压。
2.2.2 出口阀门打开,液体被推出腔体。
2.3 循环进行吸液和压液过程,实现液体的连续输送。
3. 柱塞泵的优势3.1 高压力输出能力3.1.1 柱塞泵能够提供较高的压力输出,适合于高压液体输送。
3.1.2 可以满足工业生产中对压力的需求。
3.2 精确控制液体流量3.2.1 由于柱塞泵的往复运动,液体流量可精确控制。
3.2.2 可根据需求调整柱塞的运动速度和行程,实现流量的精确调节。
3.3 适合于各种液体3.3.1 柱塞泵适合于各种液体,包括高粘度液体和腐蚀性液体。
3.3.2 具有较好的适应性,可满足不同工况下的需求。
4. 柱塞泵的应用领域4.1 工业领域4.1.1 柱塞泵广泛应用于石油、化工、冶金等行业。
4.1.2 用于输送各种液体、压力测试等工艺。
4.2 农业领域4.2.1 柱塞泵可用于农田灌溉、农药喷洒等农业工作。
4.2.2 提高了农业生产效率和水资源的利用率。
4.3 汽车工业4.3.1 柱塞泵被广泛应用于汽车液压系统。
4.3.2 用于操控转向、制动等关键部件。
总结:柱塞泵通过柱塞的往复运动实现液体的输送。
其结构包括柱塞、柱塞杆、泵体和阀门。
工作过程包括吸液和压液过程,通过循环实现连续输送。
柱塞泵具有高压力输出能力、精确控制液体流量和适合于各种液体的优势。
广泛应用于工业、农业和汽车工业等领域。
图文讲解柱塞泵的结构及工作原理【本期内容,由上海神农冠名播出】柱塞泵的结构组成柱塞泵主要由动力端和液力端两大部分组成,并附有皮带轮、止回阀、安全阀、稳压器、润滑系统等组成。
01动力端(1)曲轴曲轴为此泵中关键部件之一。
采用曲拐轴整体型式,它将完成由旋转运动变为往复直线运动的关键一步,为了使其平衡,各曲轴柄销与中心成120°。
(2)连杆连杆将柱塞上的推力传递给曲轴,又将曲轴的旋转运动转换为柱塞的往复运动,其杆截面采取工字形,大头为剖分式,轴瓦采用对分薄壁瓦形式,小头瓦采用轴套式,并以其定位。
(3)十字头十字头连接摇摆运动的连杆和往复运动的柱塞,它具有导向作用,它与连杆为闭式连接,与柱塞卡箍相连。
(4)浮动套浮动套固定在机座上,它一方面起隔绝油箱与污油池的作用,另一方面对十字头导杆起一个浮动支承点的作用,能提高运动密封部件的使用寿命。
(5)机座机座是安装动力端和连接液力端部分的受力构件,机座后部两侧有轴承孔,前部设有与液力端连接的定位销孔保证滑道中心与泵头中心的对中性,在机座的前部一侧设有放液孔,用来排放渗漏的液体。
2液力端(1)泵头泵头为不锈钢整体锻造而成,吸、排液阀垂直布置,吸液孔在泵头底面,排液孔在泵头的侧面,同阀腔相通,简化了排出管路系统。
(2)密封函密封函与泵头以法兰连接,柱塞的密封形式为碳素纤维纺织的矩形软填料,具有良好的高压密封性能。
(3)柱塞(4)进液阀和排液阀进、排液阀及阀座,适合输送黏度较大的液体的低阻尼、锥形阀结构,具有降低黏度的特点。
接触面有较高的硬度和密封性能,以保证进、排液阀具有足够的使用寿命。
3附属配套部分主要有止回阀、稳压器、润滑系统、安全阀、压力表等。
(1)止回阀泵头排出的液体,通过低阻尼止回阀流人高压管道,液体反向流动时,止回阀关闭,阻尼高压液体流回泵体。
(2)稳压器泵头排出的高压脉动液体,经过稳压器后,变为较平稳的高压液体流动。
(3)润滑系统主要是由齿轮油泵从油箱中抽油,给曲轴、十字头等转动部位润滑。
目录第1章绪论第2章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理2.2 斜盘式轴向柱塞泵主要性能参数第3章斜盘式轴向柱塞泵运动学及流量品质分析3.1 柱塞运动学分析3.1.1 柱塞行程s3.1.2 柱塞运动速度v3.1.3 柱塞运动加速度a3.2 滑靴运动分析3.3 瞬时流量及脉动品质分析3.3.1 脉动频率3.3.2 脉动率第4章柱塞受力分析与设计4.1 柱塞受力分析4.1.1 柱塞底部的液压力Pb4.1.2 柱塞惯性力Pg4.1.3 离心反力Pl4.1.4 斜盘反力N4.1.5 柱塞与柱塞腔壁之间的接触力P1和P24.1.6 摩擦力p1f和P2f4.2 柱塞设计4.2.1 柱塞结构型式4.2.2 柱塞结构尺寸设计4.2.3 柱塞摩擦副比压p、比功pv验算第5章滑靴受力分析与设计5.1 滑靴受力分析5.1.1 分离力Pf5.1.2 压紧力Py5.1.3 力平衡方程式5.2 滑靴设计5.2.1 剩余压紧力法5.2.2 最小功率损失法5.3 滑靴结构型式与结构尺寸设计5.3.1 滑靴结构型式5.3.2 结构尺寸设计第6章配油盘受力分析与设计6.1 配油盘受力分析6.1.1 压紧力Py6.1.2 分离力Pf6.1.3 力平横方程式6.2 配油盘设计6.2.1 过度区设计6.2.2 配油盘主要尺寸确定6.2.3 验算比压p、比功pv第7章缸体受力分析与设计7.1 缸体地稳定性7.1.1 压紧力矩My7.1.2 分离力矩Mf7.1.3 力矩平衡方程7.2 缸体径向力矩和径向支承7.2.1 径向力和径向力矩7.2.2 缸体径向力支承型式7.3 缸体主要结构尺寸的确定7.3.1 通油孔分布圆半径Rf ´和面积Fα7.3.2 缸体内、外直径D1、D2的确定7.3.3 缸体高度H结论摘要斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。
柱塞泵工作原理斜盘式轴向柱塞泵的工作原理柱塞装在柱塞泵缸体中,沿轴向圆周均匀分布。
柱塞端部带有滑靴,由弹簧通过回程盘将其压紧在斜盘上,同时在弹簧力和工作油压力作用下,缸体被压向固定的配流盘。
配流盘上有两个腰形配流窗和,一个与泵壳体的吸油口相连,称进油窗口;另一个壳体的排油口相连,称排油窗口。
配流窗口之间的宽度应大于缸体底部通油口宽度,以防高低压腔串通。
轴向液压柱塞泵在工作中,主传动轴带动缸体转动。
由于斜盘具有倾角,当柱塞泵缸体转动时柱塞就在缸体的柱塞孔内作往复运动,完成液压泵的吸油压油过程。
轴向柱塞泵工作原理轴向柱塞泵工作原理轴向柱塞泵中的柱塞是轴向排列的。
当缸体轴线和传动轴轴线重合时,称为斜盘式轴向柱塞泵;当缸体轴线和传动轴轴线不在一条直线上,而成一个夹角丫时,称为斜轴式轴向柱塞泵。
轴向柱塞泵具有结构紧凑,工作压力高,容易实现变量等优点。
图3.28a(动画)和图3.28b(动画)分别为斜盘式和斜轴式轴向柱塞泵的工作原理图。
工作原理斜盘式轴向柱塞泵由传动轴1带动缸体4旋转,斜盘2和配油盘5是固定不动的。
柱塞3均布于缸体4内,柱塞的头部靠机械装置或在低压油作用下紧压在斜盘上。
斜盘法线和缸体轴线的夹角为Y。
当传动轴按图示方向旋转时,柱塞一方面随缸体转动,另一方面,在缸体内作往复运动。
显然,柱塞相对缸体左移时工作容腔是压油状态,油液经配油盘的吸油口a吸入;柱塞相对缸体右移时工作容腔是压油状态,油液从配油盘的压油口b压出。
缸体每转一周,每个柱塞完成吸、压油一次。
如果可以改变斜角Y的大小和方向,就能改变泵的排量和吸、压油的方向,此时即为双向变量轴向柱塞泵。
在图3.28b(动画)中,当传动轴1在电动机的带动下转动时,连杆2推动柱塞4在缸体3中作往复运动,同时连杆的侧面带动活塞连同缸体一同旋转。
配油盘5是固定不动的。
如果斜角度Y的大小和方向可以调节,就意味着可以改变泵的排量和吸、压油方向,此时的泵为双向变量轴向柱塞泵。
目录第1章绪论第2章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理2.2 斜盘式轴向柱塞泵主要性能参数第3章斜盘式轴向柱塞泵运动学及流量品质分析3.1 柱塞运动学分析3.1.1 柱塞行程s3.1.2 柱塞运动速度v3.1.3 柱塞运动加速度a3.2 滑靴运动分析3.3 瞬时流量及脉动品质分析3.3.1 脉动频率3.3.2 脉动率第4章柱塞受力分析与设计4.1 柱塞受力分析4.1.1 柱塞底部的液压力Pb4.1.2 柱塞惯性力Pg4.1.3 离心反力Pl4.1.4 斜盘反力N4.1.5 柱塞与柱塞腔壁之间的接触力P1和P24.1.6 摩擦力p1f和P2f4.2 柱塞设计4.2.1 柱塞结构型式4.2.2 柱塞结构尺寸设计4.2.3 柱塞摩擦副比压p、比功pv验算第5章滑靴受力分析与设计5.1 滑靴受力分析5.1.1 分离力Pf5.1.2 压紧力Py5.1.3 力平衡方程式5.2 滑靴设计5.2.1 剩余压紧力法5.2.2 最小功率损失法5.3 滑靴结构型式与结构尺寸设计5.3.1 滑靴结构型式5.3.2 结构尺寸设计第6章配油盘受力分析与设计6.1 配油盘受力分析6.1.1 压紧力Py6.1.2 分离力Pf6.1.3 力平横方程式6.2 配油盘设计6.2.1 过度区设计6.2.2 配油盘主要尺寸确定6.2.3 验算比压p、比功pv第7章缸体受力分析与设计7.1 缸体地稳定性7.1.1 压紧力矩My7.1.2 分离力矩Mf7.1.3 力矩平衡方程7.2 缸体径向力矩和径向支承7.2.1 径向力和径向力矩7.2.2 缸体径向力支承型式7.3 缸体主要结构尺寸的确定7.3.1 通油孔分布圆半径Rf ´和面积Fα7.3.2 缸体内、外直径D1、D2的确定7.3.3 缸体高度H结论摘要斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。