SUNLORDINC顺络电子NTC热敏电阻选型
- 格式:xlsx
- 大小:24.81 KB
- 文档页数:4
热敏电阻详细信息:用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.额定零功率电阻R25零功率电阻,是指在某一温度下测量PTC热敏电阻值时,加在PTC热敏电阻上的功耗极低,低到因其功耗引起的PTC热敏电阻的阻值变化可以忽略不计。
额定零功率电阻指环境温度25℃条件下测得的零功率电阻值。
居里温度Tc对于PTC热敏电阻的应用来说,电阻值开始陡峭地增高时的温度是重要的,我们将其定义为居里温度。
居里温度对应的PTC热敏电阻的电阻RTc = 2*Rmin。
温度系数αPTC热敏电阻的温度系数定义为温度变化导致的电阻的相对变化。
温度系数越大,PTC热敏电阻对温度变化的反应越灵敏。
α = (lgR2-lgR1)/lge(T2-T1)额定电压VN额定电压是在最大工作电压Vmax以下的供电电压。
通常Vmax = VN + 15%击穿电压VD击穿电压是指PTC热敏电阻最高的电压承受能力。
PTC热敏电阻在击穿电压以上时将会击穿失效。
表面温度Tsurf表面温度Tsurf是指当PTC热敏电阻在规定的电压下并且与周围环境间处于热平衡状态已达较长时间时,PTC热敏电阻表面的温度。
【Version change history】Rev. Effective Date Changed Contents Change reasons Approved By01 / New release / Hai GuoCautionAll products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.1.Aircraft equipment2.Aerospace equipment3.Undersea equipment4.nuclear control equipmentitary equipment6.Power plant equipment7.Medical equipment8.Transportation equipment (automobiles, trains, ships,etc.)9.Traffic signal equipment10.Disaster prevention / crime prevention equipment11.Data-processing equipment12. The application with a long term direct-current voltage difference, which is greater than 1.5V, between D+ and D- of differential lines13. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above1. ScopeThis specification applies to SDMM Series of multi-layer common mode filter. 2.Product Description and Identification (Part Number) 1) DescriptionSDMM Series of multi-layer common mode filter. 2)Product Identification (Part Number) SDMM 0806 U -2 -□□□T ① ② ③ ④ ⑤ ⑥3. Electrical CharacteristicsPlease refer to Appendix A . 1) Operating and storage temperature range (individual chip without packing): -40 ~ +85℃℃ 2) Storage temperature range (packaging conditions): -10~+40 and RH 70% (Max.)℃℃Appendix A: Electrical CharacteristicsPart NumberCommon modeImpedance @ 100MHz(Ω)DC Resistance (Ω) Max.Rated Current (mA) Max.Insulation Resistance (M Ω) Min.Cutoff Frequency(typ.) (GHz) SDMM0806U-2-120T 12±5 2.5 130 100 >8 SDMM0806U-2-350T 35±20% 3.5 100 100 >6SDMM0806U-2-470T 47±20% 4.0 100 100 6 SDMM0806U-2-900T 90±20% 4.51001003.5Note: Absolute maximum long term direct-current voltage between D+ and D- of differential lines: DC 1.5VPacking ⑥TTape Carrier Package① TypeSDMMmultilayer commonmode filter② External Dimensions (L x W) (mm)08060.85×0.65Number of Lines ④-2 2 linesCommon Mode Impedance ⑤ (Ω)Example Nominal Value350 35③Feature TypeUFor Ultra high speedDifferential SignalLinesTypical Electrical CharacteristicsSDMM0806U-2-120T SDMM0806U-2-350TImpedance vs. Frequency(SDMM0806U-2-120T) Impedance vs. Frequency(SDMM0806U-2-350T)Insertion loss vs. Frequency (SDMM0806U-2-120T) Insertion loss vs. Frequency (SDMM0806U-2-350T)Insertion loss vs. Frequency (SDMM0806U-2-120T) Insertion loss vs. Frequency (SDMM0806U-2-350T)SDMM0806U-2-470T SDMM0806U-2-900TImpedance vs. Frequency (SDMM0806U-2-470T) Impedance vs. Frequency (SDMM0806U-2-900T)Insertion loss vs. Frequency (SDMM0806U-2-470T) Insertion loss vs. Frequency (SDMM0806U-2-900T)Insertion loss vs. Frequency (SDMM0806U-2-470T) Insertion loss vs. Frequency (SDMM0806U-2-900T)4. Shape and Dimensions1) Dimensions: See Fig.4-1 and Table 4-1. 2) Equivalent circuit: See Fig. 4-2.3)Recommended PCB pattern for reflow soldering: See Fig. 4-3.4) Structure: See Fig. 4-4 and Fig. 4-5.Material Information: See Table 4-2.[Table 4-2]Code Part NameMaterial Name ① Ceramic Body Ceramic Powder ② Ferrite Body Ferrite Powder ③ Inner Coils(Ag) Silver Paste ④ Pull-out Electrode (Ag) Silver PasteTypeL W T SL SW P 0806 0.85±0.05 0.65±0.05 0.40±0.05 0.20+0.05/-0.10 0.27±0.05 0.50±0.05[Table 4-1] Unit: mmSW(3) (1) (4)(2)(3) (1) (2)(4)For 0806Fig. 4-2Fig. 4-3Fig.4-1①③④⑤Fig. 4-4②①AgStructure of Electro-platingBodyNiSn⑤-1 ⑤-2Fig. 4-55.Test and Measurement Procedures 5.1 Test ConditionsUnless otherwise specified, the standard atmospheric conditions for measurement/test as:a. Ambient Temperature: 20±15℃b. Relative Humidity: 65±20%c.Air Pressure: 86 kPa to 106 kPaIf any doubt on the results, measurements/tests should be made within the following limits:a. Ambient Temperature: 20±2℃b. Relative Humidity: 65±5%c. Air Pressure: 86kPa to 106 kPa 5.2 Visual Examination a. Inspection Equipment: 20× magnifier5.3 Electrical TestItems Requirements Test Methods and Remarks5.3.1 Impedance (Common Mode)Refer to Appendix ATest equipment: High Accuracy RF LCR Meter Agilent4287A/E4991A or equivalent.Common Mode Impedance is tested according to the following circuit.5.3.2 Impedance (Differential Mode)Refer to Appendix ATest equipment: High Accuracy RF LCR Meter Agilent4287A/E4991A or equivalent. Differential Mode Impedance is tested according to the following circuit.5.3.3DC ResistanceRefer to Appendix ATest equipment: High Accuracy Milliohm meter Agilent4338B/34420 or equivalent. DC Resistance is tested according to the following circuit.5.3.4Rated CurrentRefer to Appendix ATest equipment: Electric Power, Electric current meter, Thermometer.Definition of Rated Current (Ir): Ir is direct electric current as chip surface temperature rise just20 against chip initial surface temperature.℃ Rated Current is tested according to the following circuit.5.3.5 Insulation ResistanceRefer to Appendix ATest equipment: High resistance meter Agilent4339B. Withstand Voltage:2.5 times rated voltage Application time:1~5 SecondsThe charging and discharging current::Less than 1mAInsulation Resistance is tested according to the following circuit.5.3.6Insertion LossRefer to Appendix ATest equipment: S-parameter Network Analyzer AgilentE5071C or equivalent. Insertion Loss is S21mag tested according to the following circuit.5.4.10 Loading under damp heat① No visible mechanical damage. ② Impedance change: within ±20%. ③ Insulation Resistance: 100M Ω Min.① Temperature: 60±2.℃ ② Humidity: 90% to 95% RH. ③ Duration: 1000+12hours.④ Applied current: Rated current.⑤ The chip shall be stabilized at normal condition for 1~2 hoursbefore measuring.5.4.11Loading at high temperature (Life test) ① No visible mechanical damage. ② Impedance change: within ±20%. ③ Insulation Resistance: 100M Ω Min.① Temperature: 85±2.℃ ② Duration: 1000+12hours.③ Applied current: Rated current.④The chip shall be stabilized at normal condition for 1~2 hours before measuring.6. Packaging and Storage6.1 PackagingTape Carrier Packaging: Packaging code: T a. Tape carrier packaging are specified in attached figure Fig.6.1-1~4 b.Tape carrier packaging quantity please see the following table:Type 0806 Tape Paper Tape Quantity10Kc. Reel shall be packaged in vinyl bag.d. Maximum of 5 or 10 reels bags shall be packaged in an inner box.e.Maximum of 6 or 10 inner boxes shall be packaged in an outer case.(1)Remark: The sprocket holes are to the right as the tape is pulled toward the user.(2) Taping Dimensions (Unit: mm)Type A B P Tmax 08060.80±0.051.0±0.052.0±0.050.55Chip CavityTSunlord Business categories :Level 0(general confidential ) Specifications for Multi-layer Common Mode Filter Page 11 of 11(3) Reel Dimensions (Unit: mm)6.2 Storage a. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. Package must be stored at 40 or less and 70% RH or less.℃b. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H 2S).c. Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight.d.Solderability specified in Clause 5.4.6shall be guaranteed for 6 months from the date of delivery on condition that they are stored at the environment specified in Clause 3 .For those parts, which passed more than 6 months shall be checked solder-ability before use.7. Recommended Soldering Technologies7.1 Re-flowing Profile:△ Preheat condition: 150 ~200/60~120℃sec. △ Allowed time above 217: 60~90s ℃ec. △ Max temp: 260℃△ Max time at max temp: 10sec. △ Solder paste: Sn/3.0Ag/0.5Cu △ Allowed Reflow time: 2x max7.2 Iron Soldering Profile.△ Iron soldering power: Max.30W. △ Pre-heating: 150 / 60 sec. ℃ △ Soldering Tip temperature: 350Max.℃ △ Soldering time: 3 sec Max. △ Solder paste: Sn/3.0Ag/0.5Cu. △ Max.1 times for iron soldering. [Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]CFig.6.1.34.3±0.2mm4.0±0.1mm5.0±0.1mm3.0±0.1mmmax <14.4mm[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]26015020021725℃ Tc ℃350℃。
NTC热敏电阻及温度传感器正确选型正确选型NTC热敏电阻/温度传感器需要考虑以下方面:一、首先明确产品应用功能:1. 温度测量2. 温度补偿3. 浪涌电流抑制点击了解更多:温度测量、控制用NTC热敏电阻器/温度传感器――工作原理和应用电路温度补偿NTC热敏电阻器/温度传感器――工作原理和应用电路浪涌电流抑制NTC热敏电阻器/温度传感器――工作原理和应用电路二.按产品应用场合分类:1. 汽车:VT系列——汽车温度传感器用热敏电阻DTV系列——汽车温度传感器用NTC热敏芯片VTS系列——交通工具温度传感器/温度开关2. 医疗:MT系列——医疗设备温度传感器用NTC热敏电阻DTM系列——医疗温度传感器用NTC热敏芯片IT系列——电子温度计NTC温度传感器3. 家电:TS系列——NTC温度传感器BT系列——绝缘引线型NTC温度传感器4. 通讯:CT系列——片式负温度系数热敏电阻AT系列——非绝缘引线插件 NTC热敏电阻5. 计算机及办公自动化设备:OT系列——办公自动化NTC热敏电阻/温度传感器GT系列——玻璃封装NTC热敏电阻FT系列——薄膜NTC热敏电阻6. 消费类电子:PT系列——功率型(浪涌抑制)NTC热敏电阻AT系列——非绝缘引线插件 NTC热敏电阻BT系列——绝缘引线型NTC温度传感器7. 集成电路/模块:DT系列——高精度芯片NTC热敏电阻三.明确产品工作温度范围――对应选择相应材料和封装形式:(一)热敏头封装形式:1. 环氧树脂封装:耐潮湿、绝缘强度高、工作温度-40℃~+125℃2. 硅树脂封装:绝缘强度高、工作温度-40℃~+200℃,耐潮湿性能一般。
3. 玻璃封装封装:耐潮湿、绝缘强度高、耐高温、工作温度-40℃~+350℃。
(二)引线类型:1.金属裸线:因无外绝缘皮,所以工作温度取决于封装物质的承受温度。
2.PVC电子线:工作温度-40℃~+(90-110)℃。
3.铁氟龙电子线:工作温度-40℃~+220℃。
开关电源中NTC的选取————————————————————————————————作者:————————————————————————————————日期:NTC负温度系数热敏电阻专业术语零功率电阻值RT(Ω)RT指在规定温度T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
电阻值和温度变化的关系式为:RT = RN expB(1/T – 1/TN)RT :在温度T (K )时的NTC 热敏电阻阻值。
RN :在额定温度TN (K )时的NTC 热敏电阻阻值。
T :规定温度(K )。
B :NTC 热敏电阻的材料常数,又叫热敏指数。
exp :以自然数e 为底的指数(e = 2.71828 …)。
该关系式是经验公式,只在额定温度TN 或额定电阻阻值RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度T 的函数。
额定零功率电阻值R25 (Ω)根据国标规定,额定零功率电阻值是NTC 热敏电阻在基准温度25 ℃时测得的电阻值R25,这个电阻值就是NTC 热敏电阻的标称电阻值。
通常所说NTC 热敏电阻多少阻值,亦指该值。
材料常数(热敏指数)B 值(K )B 值被定义为:RT1 :温度T1 (K )时的零功率电阻值。
RT2 :温度T2 (K )时的零功率电阻值。
T1,T2 :两个被指定的温度(K )。
对于常用的NTC 热敏电阻,B 值范围一般在2000K ~6000K 之间。
零功率电阻温度系数(αT )在规定温度下,NTC 热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。
αT :温度T (K )时的零功率电阻温度系数。
RT :温度T (K )时的零功率电阻值。
T :温度(T )。
B :材料常数。
耗散系数(δ)在规定环境温度下,NTC 热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。
δ:NTC 热敏电阻耗散系数,(mW/ K )。
怎么选择NTC热敏电阻怎么选择NTC热敏电阻负温度系数NTC热敏电阻由烧结金属氧化物制成。
它们与温度的小幅增加成比例地显示出大的电阻降低。
通过将一个小的测量直流电流(DC)通过热敏电阻并测量产生的电压降来计算它们的电阻。
选择NTC热敏电阻探针族特征图像应用· 温度测量· 温度补偿· 温度控制NTC热敏电阻选择时的5个基本注意事项· 温度范围1. 选择温度传感器时,首先要考虑的是应用的温度范围。
2.由于NTC热敏电阻在-50°C至250°C的工作温度范围内表现良好,因此非常适合许多不同行业的广泛应用。
· 准确性1.在基本传感器类型中,NTC热敏电阻实现最高精度的能力在-50°C至150°C范围内,对于玻璃封装热敏电阻最高可达250°C。
2.精度范围为0.05°C至1.00°C。
· 稳定性1.在长期运行是目标的应用中,稳定性非常重要。
温度传感器会随着时间的推移而漂移,具体取决于材料,结构和包装。
2.涂有环氧树脂的NTC热敏电阻每年可以改变0.2°C,而气密密封的NTC热敏电阻每年仅改变0.02°C。
· NTC热敏电阻封装1.包装要求取决于传感器将使用的环境。
2.NTC热敏电阻可根据应用要求定制并封装在各种外壳中。
它们也可以是环氧树脂涂层或玻璃封装,以进一步保护。
· 抗噪声1.NTC热敏电阻具有出色的抗电噪声和抗铅电阻性能。
选择NTC热敏电阻NTC热敏电阻更多考虑因素· NTC热敏电阻具有特定的电气特性:1. 当前时间特征2. 电压 - 电流特性3. 电阻 - 温度特性· 产品类型和尺寸1. 热敏电阻用户通常会知道在尺寸,热响应,时间响应以及热敏电阻配置中的其他物理特性方面需要什么。
即使缺少数据,也应该很容易缩小NTC热敏电阻的选择范围,但必须仔细分析热敏电阻的预期应用。
热敏电阻选型注意事项-概述说明以及解释1.引言1.1 概述热敏电阻是一种温度感知器件,其电阻值会随着环境温度的变化而发生相应的变化。
热敏电阻主要由绝缘材料和导电材料组成,当受到热能刺激时,导电材料的电阻发生变化,从而通过测量电阻值的变化来判断环境温度的高低。
在实际的应用中,选择合适的热敏电阻成为了一个关键的问题。
首先,我们需要了解所需测量的温度范围,不同类型的热敏电阻适用于不同的温度范围。
通常,热敏电阻被分为正温度系数(PTC)和负温度系数(NTC)两种类型,前者在温度升高时,电阻值增加,而后者在温度升高时,电阻值减小。
其次,我们需要考虑热敏电阻的精度和响应时间。
精度是指热敏电阻测量温度值与实际温度值之间的偏差,一般以百分比或者温度单位来表示。
响应时间则是指热敏电阻从受到温度变化刺激到电阻发生变化所需的时间,对于一些需要实时性的应用来说,响应时间是非常重要的。
此外,还应考虑热敏电阻的尺寸和包装形式。
尺寸的选择要考虑到实际的安装环境和需要测量的对象,包装形式的选择则需要根据实际应用的要求来确定。
综上所述,选择适合的热敏电阻应该考虑到温度范围、精度、响应时间、尺寸和包装形式等方面的因素。
只有在充分了解这些注意事项的基础上,我们才能选择到最合适的热敏电阻,以满足实际应用的需求。
1.2 文章结构文章结构部分的内容可以参考以下写法:在本文中,将按照以下结构进行讨论。
首先,在引言部分,我们将概述热敏电阻的基本概念和作用。
接下来,我们将介绍文章的整体结构和每个部分的内容。
然后,在正文部分,我们将着重介绍热敏电阻选型的三个主要要点。
这些要点包括(可根据实际写作内容进行具体介绍)。
最后,在结论部分,我们将总结这些要点,并给出相关的结论和建议。
通过这样的结构,读者将能够清晰地了解本文的内容和组织方式。
同时,文章的结构也有助于读者更好地理解每个部分的论述,并能够更好地掌握热敏电阻选型的相关注意事项。
接下来,让我们深入探讨每个部分的具体内容。
防浪涌功率型NTC的选型原则为了避免电子电路中在开机瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC 热敏电阻,能有效的抑制开机时的浪涌电流,并在完成浪涌电流抑制作用后,由于通过其电流的持续作用,功率型热敏电阻的阻值将下降的一个非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以在电源回路中使用功率型NTC热敏电阻,是抑制开机浪涌电流保护电子设备免遭破坏的最为简便而有效的措施。
功率型NTC热敏电阻器的选用原则1.电阻器的最大工作电流〉实际电源回路的工作电流2.功率型电阻器的标称电阻值R≥1.414*E/Im式中E为线路电压Im为浪涌电流对于转换电源,逆变电源,开关电源,UPS电源,Im=100倍工作电流对于灯丝,加热器等回路Im=30倍工作电流3.B值越大,残余电阻越小,工作时温升越小4.一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。
功率型NTC热敏电阻,主要应用于开关电源,UPS,大功率电子产品的开机防浪涌SCK MF72功率型NTC热敏电阻SCD大功率型NTC热敏电阻MF74超大功率型NTC热敏电阻0.1A~11A 2A~32A 10A~36A下图为使用MF72热敏电阻前后浪涌电流得比较曲线图,虚线为使用热敏电阻前,实线为使用热敏电阻后。
随着电子产品对可靠性要求的不断提高和能源资源的日益紧缩,高可靠性和高效节能的电子产品将是未来电子产品发展的一个方向,因此在产品的电源设计上,必须要充分考虑其可靠性能和电源使用效率。
本文首先分析电子产品为什么会有开机浪涌,然后以典型的电源电路为例分析如何使用热敏电阻抑制浪涌电流,最后介绍热敏电阻在实际应用中应如何选型。
开机浪涌电流产生的原因图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。
在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。
根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。
SDNT0603X103H3380HTF10±3%3380±3%0.31<3sec11000.6×0.30.3 SDNT0603X103J3380FTF10±5%3380±1%0.31<3sec11000.6×0.30.3 SDNT0603X103J3380HTF10±5%3380±3%0.31<3sec11000.6×0.30.3 SDNT0603X103K3380FTF10±10%3380±1%0.31<3sec11000.6×0.30.3 SDNT0603X103K3380HTF10±10%3380±3%0.31<3sec11000.6×0.30.3 SDNT0603X104F4150FTF100±1%4150±1%0.1<3sec11000.6×0.30.3 SDNT0603X104F4250FTF100±1%4250±1%0.1<3sec11000.6×0.30.3 SDNT0603X104H4150FTF100±3%4150±1%0.1<3sec11000.6×0.30.3 SDNT0603X104H4150HTF100±3%4150±3%0.1<3sec11000.6×0.30.3 SDNT0603X104H4250FTF100±3%4250±1%0.1<3sec11000.6×0.30.3 SDNT0603X104H4250HTF100±3%4250±3%0.1<3sec11000.6×0.30.3 SDNT0603X104J4150FTF100±5%4150±1%0.1<3sec11000.6×0.30.3 SDNT0603X104J4150HTF100±5%4150±3%0.1<3sec11000.6×0.30.3 SDNT0603X104J4250FTF100±5%4250±1%0.1<3sec11000.6×0.30.3 SDNT0603X104J4250HTF100±5%4250±3%0.1<3sec11000.6×0.30.3 SDNT0603X104K4150FTF100±10%4150±1%0.1<3sec11000.6×0.30.3 SDNT0603X104K4150HTF100±10%4150±3%0.1<3sec11000.6×0.30.3 SDNT0603X104K4250FTF100±10%4250±1%0.1<3sec11000.6×0.30.3 SDNT0603X104K4250HTF100±10%4250±3%0.1<3sec11000.6×0.30.3 SDNT0603X223F3380FTF22±1%3380±1%0.22<3sec11000.6×0.30.3 SDNT0603X223F3900FTF22±1%3900±1%0.22<3sec11000.6×0.30.3 SDNT0603X223H3380FTF22±3%3380±1%0.22<3sec11000.6×0.30.3 SDNT0603X223H3380HTF22±3%3380±3%0.22<3sec11000.6×0.30.3 SDNT0603X223H3900FTF22±3%3900±1%0.22<3sec11000.6×0.30.3 SDNT0603X223H3900HTF22±3%3900±3%0.22<3sec11000.6×0.30.3 SDNT0603X223J3380FTF22±5%3380±1%0.22<3sec11000.6×0.30.3 SDNT0603X223J3380HTF22±5%3380±3%0.22<3sec11000.6×0.30.3 SDNT0603X223J3900FTF22±5%3900±1%0.22<3sec11000.6×0.30.3 SDNT0603X223J3900HTF22±5%3900±3%0.22<3sec11000.6×0.30.3 SDNT0603X223K3380FTF22±10%3380±1%0.22<3sec11000.6×0.30.3 SDNT0603X223K3380HTF22±10%3380±3%0.22<3sec11000.6×0.30.3 SDNT0603X223K3900FTF22±10%3900±1%0.22<3sec11000.6×0.30.3 SDNT0603X223K3900HTF22±10%3900±3%0.22<3sec11000.6×0.30.3 SDNT0603X224F4250FTF220±1%4250±1%0.06<3sec11000.6×0.30.3 SDNT0603X224H4250FTF220±3%4250±1%0.06<3sec11000.6×0.30.3 SDNT0603X224H4250HTF220±3%4250±3%0.06<3sec11000.6×0.30.3 SDNT0603X224J4250FTF220±5%4250±1%0.06<3sec11000.6×0.30.3 SDNT0603X224J4250HTF220±5%4250±3%0.06<3sec11000.6×0.30.3 SDNT0603X224K4250FTF220±10%4250±1%0.06<3sec11000.6×0.30.3 SDNT0603X224K4250HTF220±10%4250±3%0.06<3sec11000.6×0.30.3 SDNT0603X473F3950FTF47±1%3950±1%0.12<3sec11000.6×0.30.3 SDNT0603X473F4100FTF47±1%4100±1%0.12<3sec11000.6×0.30.3 SDNT0603X473H3950FTF47±3%3950±1%0.12<3sec11000.6×0.30.3 SDNT0603X473H3950HTF47±3%3950±3%0.12<3sec11000.6×0.30.3 SDNT0603X473H4100FTF47±3%4100±1%0.12<3sec11000.6×0.30.3 SDNT0603X473H4100HTF47±3%4100±3%0.12<3sec11000.6×0.30.3 SDNT0603X473J3950FTF47±5%3950±1%0.12<3sec11000.6×0.30.3 SDNT0603X473J3950HTF47±5%3950±3%0.12<3sec11000.6×0.30.3SDNT0603X473K3950FTF47±10%3950±1%0.12<3sec11000.6×0.30.3 SDNT0603X473K3950HTF47±10%3950±3%0.12<3sec11000.6×0.30.3 SDNT0603X473K4100FTF47±10%4100±1%0.12<3sec11000.6×0.30.3 SDNT0603X473K4100HTF47±10%4100±3%0.12<3sec11000.6×0.30.3 SDNT0603X683F4150FTF68±1%4150±1%0.11<3sec11000.6×0.30.3 SDNT0603X683F4250FTF68±1%4250±1%0.11<3sec11000.6×0.30.3 SDNT0603X683H4150FTF68±3%4150±1%0.11<3sec11000.6×0.30.3 SDNT0603X683H4150HTF68±3%4150±3%0.11<3sec11000.6×0.30.3 SDNT0603X683H4250FTF68±3%4250±1%0.11<3sec11000.6×0.30.3 SDNT0603X683H4250HTF68±3%4250±3%0.11<3sec11000.6×0.30.3 SDNT0603X683J4150FTF68±5%4150±1%0.11<3sec11000.6×0.30.3 SDNT0603X683J4150HTF68±5%4150±3%0.11<3sec11000.6×0.30.3 SDNT0603X683J4250FTF68±5%4250±1%0.11<3sec11000.6×0.30.3 SDNT0603X683J4250HTF68±5%4250±3%0.11<3sec11000.6×0.30.3 SDNT0603X683K4150FTF68±10%4150±1%0.11<3sec11000.6×0.30.3 SDNT0603X683K4150HTF68±10%4150±3%0.11<3sec11000.6×0.30.3 SDNT0603X683K4250FTF68±10%4250±1%0.11<3sec11000.6×0.30.3 SDNT0603X683K4250HTF68±10%4250±3%0.11<3sec11000.6×0.30.3 SDNT1005X102F3450FTF1±1%3450±1%1<3sec1100 1.0×0.50.5 SDNT1005X102H3450FTF1±3%3450±1%1<3sec1100 1.0×0.50.5 SDNT1005X102H3450HTF1±3%3450±3%1<3sec1100 1.0×0.50.5 SDNT1005X102J3450FTF1±5%3450±1%1<3sec1100 1.0×0.50.5 SDNT1005X102J3450HTF1±5%3450±3%1<3sec1100 1.0×0.50.5 SDNT1005X102K3450FTF1±10%3450±1%1<3sec1100 1.0×0.50.5 SDNT1005X102K3450HTF1±10%3450±3%1<3sec1100 1.0×0.50.5 SDNT1005X103F3380FTF10±1%3380±1%0.31<3sec1100 1.0×0.50.5 SDNT1005X103F3950FTF10±1%3950±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103F4050FTF10±1%4050±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103H3380FTF10±3%3380±1%0.31<3sec1100 1.0×0.50.5 SDNT1005X103H3380HTF10±3%3380±3%0.31<3sec1100 1.0×0.50.5 SDNT1005X103H3950FTF10±3%3950±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103H3950HTF10±3%3950±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X103H4050FTF10±3%4050±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103H4050HTF10±3%4050±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X103J3380FTF10±5%3380±1%0.31<3sec1100 1.0×0.50.5 SDNT1005X103J3380HTF10±5%3380±3%0.31<3sec1100 1.0×0.50.5 SDNT1005X103J3950FTF10±5%3950±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103J3950HTF10±5%3950±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X103J4050FTF10±5%4050±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103J4050HTF10±5%4050±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X103K3380FTF10±10%3380±1%0.31<3sec1100 1.0×0.50.5 SDNT1005X103K3380HTF10±10%3380±3%0.31<3sec1100 1.0×0.50.5 SDNT1005X103K3950FTF10±10%3950±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103K3950HTF10±10%3950±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X103K4050FTF10±10%4050±1%0.33<3sec1100 1.0×0.50.5 SDNT1005X103K4050HTF10±10%4050±3%0.33<3sec1100 1.0×0.50.5 SDNT1005X104F4150FTF100±1%4150±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104F4250FTF100±1%4250±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104F4360FTF100±1%4360±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104H4150FTF100±3%4150±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104H4150HTF100±3%4150±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104H4250FTF100±3%4250±1%0.1<3sec1100 1.0×0.50.5SDNT1005X104J4150HTF100±5%4150±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104J4250FTF100±5%4250±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104J4250HTF100±5%4250±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104J4360FTF100±5%4360±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104J4360HTF100±5%4360±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4150FTF100±10%4150±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4150HTF100±10%4150±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4250FTF100±10%4250±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4250HTF100±10%4250±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4360FTF100±10%4360±1%0.1<3sec1100 1.0×0.50.5 SDNT1005X104K4360HTF100±10%4360±3%0.1<3sec1100 1.0×0.50.5 SDNT1005X153F3450FTF15±1%3450±1%0.25<3sec1100 1.0×0.50.5 SDNT1005X153H3450FTF15±3%3450±1%0.25<3sec1100 1.0×0.50.5 SDNT1005X153H3450HTF15±3%3450±3%0.25<3sec1100 1.0×0.50.5 SDNT1005X153J3450FTF15±5%3450±1%0.25<3sec1100 1.0×0.50.5 SDNT1005X153J3450HTF15±5%3450±3%0.25<3sec1100 1.0×0.50.5 SDNT1005X153K3450FTF15±10%3450±1%0.25<3sec1100 1.0×0.50.5 SDNT1005X153K3450HTF15±10%3450±3%0.25<3sec1100 1.0×0.50.5 SDNT1005X154F4150FTF150±1%4150±1%0.08<3sec1100 1.0×0.50.5 SDNT1005X154H4150FTF150±3%4150±1%0.08<3sec1100 1.0×0.50.5 SDNT1005X154H4150HTF150±3%4150±3%0.08<3sec1100 1.0×0.50.5 SDNT1005X154J4150FTF150±5%4150±1%0.08<3sec1100 1.0×0.50.5 SDNT1005X154J4150HTF150±5%4150±3%0.08<3sec1100 1.0×0.50.5 SDNT1005X154K4150FTF150±10%4150±1%0.08<3sec1100 1.0×0.50.5 SDNT1005X154K4150HTF150±10%4150±3%0.08<3sec1100 1.0×0.50.5 SDNT1005X222F3450FTF 2.2±1%3450±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222F3950FTF 2.2±1%3950±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222H3450FTF 2.2±3%3450±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222H3450HTF 2.2±3%3450±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X222H3950FTF 2.2±3%3950±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222H3950HTF 2.2±3%3950±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X222J3450FTF 2.2±5%3450±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222J3450HTF 2.2±5%3450±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X222J3950FTF 2.2±5%3950±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222J3950HTF 2.2±5%3950±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X222K3450FTF 2.2±10%3450±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222K3450HTF 2.2±10%3450±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X222K3950FTF 2.2±10%3950±1%0.67<3sec1100 1.0×0.50.5 SDNT1005X222K3950HTF 2.2±10%3950±3%0.67<3sec1100 1.0×0.50.5 SDNT1005X223F3950FTF22±1%3950±1%0.23<3sec1100 1.0×0.50.5 SDNT1005X223H3950FTF22±3%3950±1%0.23<3sec1100 1.0×0.50.5 SDNT1005X223H3950HTF22±3%3950±3%0.23<3sec1100 1.0×0.50.5 SDNT1005X223J3950FTF22±5%3950±1%0.23<3sec1100 1.0×0.50.5 SDNT1005X223J3950HTF22±5%3950±3%0.23<3sec1100 1.0×0.50.5 SDNT1005X223K3950FTF22±10%3950±1%0.23<3sec1100 1.0×0.50.5 SDNT1005X223K3950HTF22±10%3950±3%0.23<3sec1100 1.0×0.50.5 SDNT1005X224F4250FTF220±1%4250±1%0.06<3sec1100 1.0×0.50.5 SDNT1005X224H4250FTF220±3%4250±1%0.06<3sec1100 1.0×0.50.5 SDNT1005X224H4250HTF220±3%4250±3%0.06<3sec1100 1.0×0.50.5 SDNT1005X224J4250FTF220±5%4250±1%0.06<3sec1100 1.0×0.50.5SDNT1005X332F3950FTF 3.3±1%3950±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332H3450FTF 3.3±3%3450±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332H3450HTF 3.3±3%3450±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X332H3950FTF 3.3±3%3950±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332H3950HTF 3.3±3%3950±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X332J3450FTF 3.3±5%3450±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332J3450HTF 3.3±5%3450±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X332J3950FTF 3.3±5%3950±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332J3950HTF 3.3±5%3950±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X332K3450FTF 3.3±10%3450±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332K3450HTF 3.3±10%3450±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X332K3950FTF 3.3±10%3950±1%0.55<3sec1100 1.0×0.50.5 SDNT1005X332K3950HTF 3.3±10%3950±3%0.55<3sec1100 1.0×0.50.5 SDNT1005X333F3950FTF33±1%3950±1%0.15<3sec1100 1.0×0.50.5 SDNT1005X333H3950FTF33±3%3950±1%0.15<3sec1100 1.0×0.50.5 SDNT1005X333H3950HTF33±3%3950±3%0.15<3sec1100 1.0×0.50.5 SDNT1005X333J3950FTF33±5%3950±1%0.15<3sec1100 1.0×0.50.5 SDNT1005X333J3950HTF33±5%3950±3%0.15<3sec1100 1.0×0.50.5 SDNT1005X333K3950FTF33±10%3950±1%0.15<3sec1100 1.0×0.50.5 SDNT1005X333K3950HTF33±10%3950±3%0.15<3sec1100 1.0×0.50.5 SDNT1005X334F3950FTF330±1%3950±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334F4300FTF330±1%4300±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334H3950FTF330±3%3950±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334H3950HTF330±3%3950±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X334H4300FTF330±3%4300±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334H4300HTF330±3%4300±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X334J3950FTF330±5%3950±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334J3950HTF330±5%3950±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X334J4300FTF330±5%4300±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334J4300HTF330±5%4300±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X334K3950FTF330±10%3950±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334K3950HTF330±10%3950±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X334K4300FTF330±10%4300±1%0.05<3sec1100 1.0×0.50.5 SDNT1005X334K4300HTF330±10%4300±3%0.05<3sec1100 1.0×0.50.5 SDNT1005X472F3500FTF 4.7±1%3500±1%0.46<3sec1100 1.0×0.50.5 SDNT1005X472F3950FTF 4.7±1%3950±1%0.46<3sec1100 1.0×0.50.5 SDNT1005X472H3500FTF 4.7±3%3500±1%0.46<3sec1100 1.0×0.50.5 SDNT1005X472H3500HTF 4.7±3%3500±3%0.46<3sec1100 1.0×0.50.5。