细胞膜与物质的穿膜运输
- 格式:ppt
- 大小:8.44 MB
- 文档页数:133
第四章细胞膜与物质穿膜运输一、学习要求掌握:细胞膜的化学组成、分子组成及其特性和生物学意义。
小分子物质穿膜运输方式及特点;载体蛋白和通道蛋白特性和异同;大分子和颗粒物质的膜泡运输;受体介导的胞吞作用特点及过程。
流动镶嵌模型基本要点。
了解:生物膜的分子结构模型认识的演变、研究方法。
细胞表面及特化结构;细胞膜异常与疾病,胞吞与胞吐作用。
二、自测题(一)单项选择题1. 胆固醇对膜脂的影响是()。
A. 增加膜的流动性B. 增加膜的稳定性C. 增加膜的无序性D. 增加膜的通透性E. 增加膜的选择性2. 易化扩散和主动运输的共同特点是()。
A. 顺浓度梯度B. 逆浓度梯度C. 需要消耗能量D. 不需要消耗能量E. 需要载体蛋白3. 葡萄糖经糖载体蛋白的介导,进入细胞内的方式是()。
A. 简单扩散B. 易化扩散C. 离子泵D. 被动运输E. 通道运输4. 胞吞过程中,提供牵动质膜的“有被”装配机械动力的是()。
A. 微管蛋白B. 肌动蛋白C. 肌球蛋白D. 网格蛋白E.中间纤维蛋白5. 消化酶的出胞方式是()。
A. 固有分泌B. 受调分泌C. 简单扩散D. 易化扩散E. 通道运输6. 关于膜受体的说法正确的是()。
A.配体闸门通道属于载体蛋白B.G蛋白偶联受体通常由几个亚基组成C.酶偶联受体具有7个跨膜螺旋区域D.酶偶联受体被激活后可形成一个或数个SH2结合域E.ACH受体属于G蛋白偶联受体7. 生物膜的流动性主要取决于()。
A. 水B. 蛋白质C. 脂类D. 核酸E. 糖类8. 膜功能的特异性主要取决于()。
A. 膜中脂类的种类B. 膜中脂类的含量C. 膜中蛋白质的种类和数量D. 膜中糖的种类E. 膜中糖类含量9. 细胞膜中的脂锚定蛋白与脂类相结合的化学键是()。
A. 氢键B. 肽键C. 共价键D. 疏水键E. 磷酸二脂键;10. 细胞膜上Na+-K+泵驱动的是()。
A. 简单扩散B. 易化扩散C. 胞吐作用D. 共运输E. 对运输11. 生物膜上的糖蛋白只分布在()。
穿膜运输名词解释
穿膜运输是指通过细胞膜将物质跨越细胞膜向细胞内或细胞外转运的过程。
它可以通过主动转运、被动扩散和细胞吞噬等方式进行。
1. 主动转运:需要耗费能量的转运方式,可以是化学能、电能或光能等形式的能量。
包括单向的主动转运和双向的反向转运。
2. 被动扩散:不需要能量的转运方式,物质由高浓度区域向低浓度区域自由扩散,直到达到动态平衡。
3. 细胞吞噬:细胞通过将外部物质包裹在细胞膜中形成囊泡,然后将这些囊泡带入细胞内部,以实现物质转运。
穿膜运输是维持细胞内外环境的平衡以及完成物质代谢和信号传递的重要过程。
它在生物体内发挥着关键的调节作用,如维持细胞内物质浓度平衡、维持细胞膜的稳定等。
第四章细胞膜及其表面一 A型题1.液态镶嵌模型最主要的特点是A. 膜中的脂质及蛋白质都能横向运动B. 膜中只有脂质能横向运动C. 膜中只有蛋白质能横向运动D. 膜的流动性和其化学组成的高度不对称性E. 连续的脂双层构成生物膜的骨架2. 组成细胞膜的脂质主要是A. 磷脂B. 脑磷脂C. 脂肪D. 糖脂E. 胆固醇3. 细胞膜的主要化学成分是A. 蛋白质和核酸B. 蛋白质和脂类C. 蛋白质和脂肪D. 蛋白质和糖类E. 脂类和核酸4. 细胞膜的脂质双分子层是A. 细胞内容物和细胞环境间的屏障B. 细胞接受外界和其他细胞影响的门户C. 离子进出细胞的通道D. 受体的主要成分E. 抗原物质5. 下面关于细胞膜结构和功能的叙述,哪项是错误的?A. 细胞膜的厚度约为8nm左右B. 细胞膜是具有特殊结构和功能的半透膜C.•细胞膜是细胞接受外界或其他细胞影响的门户D. 细胞膜的结构是以膜脂双分子层为基架,镶嵌着具有不同生理功能的蛋白质E.•水溶性物质一般能自由通过细胞膜,而脂溶性物质则不能6. 肠上皮细胞由肠腔吸收葡萄糖,是属于A. 单纯扩散B. 易化扩散C. 主动运输D. 入胞作用E. 吞噬7. 受体介导式入胞过程不包括A. 某种配体为细胞膜上的相应受体所“辨认”形成配体-受体复合物B. 配体-受体复合物向有被小凹集中C. 其他种类的配体-受体复合物相继在同一有被小凹集中D. 吞食泡的形成E. 吞食泡融入胞内体,实现受体与膜的再循环8. 在一般生理情况下,每分解一分子ATP,钠泵转运可使A. 2个Na+移出膜外B. 2个K+移入膜内C. 2个Na+移出膜外,同时有2个K+移入膜内D. 3个Na+移出膜外,同时有2个K+移入膜内E. 2个Na+移出膜外,同时有3个K+移入膜内9. 细胞膜内外正常的Na+和K+浓度差的形成和维持是由于A. 膜在安静时对K+通透性大B. 膜在兴奋时对Na+通透性增加C. Na+、K+易化扩散的结果D. 膜上钠钾泵的作用E. 膜上ATP的作用10. 生物膜是指A. 单位膜B. 蛋白质和脂质二维排列构成的液晶态膜C. 包围在细胞外面的一层薄膜D. 细胞内各种膜的总称E. 细胞膜及内膜系统的总称11. 内膜系统的主要作用是A. 区域化B. 合成酶C. 合成脂类D. 运输E. 提供能量12. 细胞膜中内在蛋白与脂类的结合主要通过A. 共价键B. 离子键C. 氢键D. 疏水键E. 非共价键13. 细胞膜中的糖与脂或蛋白质的结合是通过A. 共价键B. 离子键C. 氢键D. 疏水健E. 非共价键14. 细胞膜上的三类主要脂质是A. 脂肪、磷脂和胆固醇B. 脂肪、磷脂和糖脂C. 脂肪、胆固醇和糖脂 •D. 磷脂、胆固醇和糖脂E. 以上都不是15. 关于磷脂,不正确的描述是A. 膜脂以磷脂为主B. 膜上的磷脂主要是磷酸甘油脂C. 不同类的磷脂性质不同D. 磷脂为两性分子, 每一个分子都由疏水的极性头和亲水的脂肪酸链所组成E. 磷脂分子的不同结构与膜的流动性有关16. 关于细胞膜上糖类的不正确的叙述是A. 质膜中糖类的含量约占质膜重量的2%~10%B. 主要以糖蛋白和糖脂的形式存在C. 糖蛋白和糖脂上的低聚糖侧链从生物膜的胞质面伸出D. 糖蛋白中的糖类部分对蛋白质及膜的性质影响很大E. 与细胞免疫、细胞识别及细胞癌变有密切关系17. 单位膜模型的基本要点不包括A. 连续的脂质双分子层组成生物膜的主体B. 磷脂的非极性端向膜内侧,•极性端向膜外侧C. 蛋白质以单层肽链的厚度覆盖在脂双层的两侧D. 膜两侧的蛋白质不对称E. 外周蛋白质以β折叠的形式通过静电作用与磷脂极性端结合18. 关于膜蛋白不正确的描述是A. 膜蛋白可分为周围蛋白和镶嵌蛋白B. 周围蛋白与膜脂的极性头结合而不伸入脂双层C. 镶嵌蛋白有的插入脂双层,有的贯穿整个脂双层D. 膜蛋白都是水溶性的E. 膜蛋白分布的不对称是绝对的19. 一般来说,生物膜两层脂质分子的流动性是基本一致的。
第四章细胞膜与物质的穿膜运输一、名词解释1.脂质体( liposome)2.囊泡运输( vesicular transport)3.流动镶嵌模型( fluid mosaic model)4.脂筏(lipid rafts)5.主动运输 (active transport)6.易化扩散( facilitated diffusion)7.协同运输( cotransport)8.受体介导的胞吞作用( receptor-mediated endocytosis)9.简单扩散( simple diffusion)10.被动运输(passive transport)11.单位膜( unit membrane)12.连续性分泌( continuous secretion)13.受调分泌( regulated secretion)二、单项选择题1.生物膜的主要化学成分是A.蛋白质与核酸B.蛋白质与脂类C.蛋白质与糖类D.糖脂E.糖蛋白2.乙酰胆碱的出胞方式是A.受调分泌B.固有分泌C.被动运输D.易化扩散E.离子通道扩散3.蛋白聚糖的出胞方式是A.固有分泌B.受调分泌C.协同运输D.易化扩散E.离子通道扩散4.膜脂分子最主要的运动方式是A.侧向扩散B.翻转运动C.旋转运动D.弯曲运动E.伸缩振荡运动5.细胞吞噬过程中参与伪足形成与伸出的蛋白质主要是A.网格蛋白B.微管蛋白C.肌球蛋白D.中间纤维E.肌动蛋白6.胞吞过程中,提供牵动质膜内陷的包被蛋白是A.COPI蛋白B.肌动蛋白C.OPI蛋白D.网格蛋白E.肌球蛋白7.在生理条件下,胆固醇对膜脂流动性的影响在于A.增加膜的流动性B.增加膜的稳定性C.增加膜的无序性D.增加膜的通透性E.增加膜的选择性8.葡萄糖穿红细胞膜的运输过程中载体蛋白发生A.在脂双层中来回移动B.可逆的构象改变C.形成通道D.在脂双层中翻转E.在脂双层中扩散9.不能自由扩散进出脂双层的物质是A.尿素B.乙醇C. O2D. CO2E.Na+10.构成动物细胞细胞外被的是细胞膜表面的A.细胞壁B.糖蛋白C.离子D.糖蛋白与糖脂外伸的糖链E.水11.细胞膜的流动镶嵌模型认为A.两层蛋白质分子中间夹着一层类脂B.脂双分子层两侧附着蛋白质C.脂双分子层中间夹着一层蛋白质D.脂分子与蛋白质间隔排列E.脂双分子层镶嵌着蛋白质12.物质不需要膜蛋白帮助,不消耗能量,顺浓度梯度通过膜的自由扩散称为共A.简单扩散B.易化扩散C.主动运输D.胞吞作用E.胞吐作用13.以简单扩散方式快速通过细胞膜的物质有A. NaB. CO2C.氨基酸D.葡萄糖E.甘油14.由载体蛋白参与而不消耗代谢能,顺浓度梯度进行的穿膜运输方式是A.简单扩散B.主动运输C.易化扩散D.胞吞作用E.胞吐作用15.易化扩散与主动运输的共同点是A.顺浓度梯度转运B.逆浓度梯度转运C.需要消耗能量D.不需要消耗能量E.需要有载体蛋16.与生物膜流动性呈正相关的是A.鞘磷脂B.膜蛋白C.胆固醇D.卵磷脂E.糖蛋白17.膜功能的特异性主要取决于A.膜脂的种类B.膜脂的含量C.膜蛋白的种类和数量D.膜糖的种类E.膜糖的含量18.细胞中的膜糖分布于A.细胞核膜表面B.膜的非胞质面C.内质网表面D.高尔基复合体表面E.线粒体表面19.电子显微镜下单位膜的结构是A.二层深色带,中间夹一层浅色带B.一层深色带和一层浅色带C.二层浅色带,中间夹一层深色带D.一层深色带E.二层浅色带和二层深色带20.单位膜的总厚度约为A. 5nmB.6nmC. 7.5nmD. 8nmE. 9nm21.载体蛋白顺浓度梯度转运Na入胞的同时,将葡萄糖逆浓度梯度一起带入胞内,此种穿膜运输方式为A.被动运输B.单运输C.同向协同运输D.胞吞作用E.对向协同运输22.葡萄糖经载体蛋白的介导,进入大多数动物细胞内的方式是A.简单扩散B.易化扩散C.离子泵D.协同运输E.通道运输23.细胞膜中的脂锚定蛋白与膜脂类相结合的化学键是A.氢键B.肽键C.共价键D.疏水键E.磷酸二酯键24.细胞膜上的钠钾泵可间接驱动A.简单扩散B.易化扩散C.胞吐作用D.共运输E.胞吞作用25.低密度脂蛋白(LDL)进入细胞的方式是A.协同运输B.易化扩散C.主动运输D.吞噬作用E.受体介导的胞吞作用26.小肠和肾小管上皮细胞膜吸取葡萄糖的转运方式是A.共运输B.对向运输C.被动运输D.易化扩散E.简单扩散27.维持细胞内Na浓度低于细胞外Na浓度10-20倍的是A.Na+-H+交换器B.Na-K+泵C.Na+-Ca2+交换载体D.电压门控Na通道E.Na驱动的葡萄糖转运体28.人体内O2、CO2、N2、水和甘油等进出细胞膜的穿膜运输方式是A.简单扩散B.易化扩散C.主动运输D.胞吞作用E.胞吐作用29.氨基酸通过小肠黏膜上皮细胞游离面进入细胞的方式通常为A.简单扩散B.离子通道扩散C.易化扩散D.协同运输E.胞吞作用30.在细胞膜的物质转运中,Na穿膜运输的方式有A.简单扩散和易化扩散B.简单扩散和主动运输C.易化扩散和主动运输D.易化扩散和离子通道扩散E.离子通道扩散和主动运输31.影响细胞膜流动性的主要因素不包括A.膜蛋白B.胆固醇C.卵磷脂D.脂肪酸的饱和程度E.离子强度32.膜脂分子分布的不对称性是指A.脂分子在膜上亲水头部与疏水尾部不对称B.在两层膜脂中脂分子的种类和数量不同C.在两层膜脂中膜蛋白不同D.细胞膜外表面是亲水的,内表面是疏水的E.脂双层中糖蛋白只分布在胞外层33.膜脂分子最不易发生的运动方式是A.旋转运动B.侧向扩散C.翻转运动D.弯曲运动E.伸缩振荡运动34.Na+-K*泵水解1分子ATP可转运A.3个Na+、2个K+B.3个K+、2个Na+C.2个Na+、2个K+D.3个Na+、3个K+E.3个Na+、1个K+35.处于持续开放状态的膜通道蛋白是A.乙酰胆碱受体B.K+通道C.Ca2+通道D.应力激活阳离子通道E.水通道36.细胞吞入固体颗粒物质的过程为A.胞吞作用B.吞噬作用C.吞饮作用D.受体介导的内吞作用E.胞吐作用37.有被小窝的作用是A.聚集特定受B.吞入大分子物质C.防止大分子泄漏D.使细胞膜牢固E.吸引胞外物质38.下列过程中,不属于小分子和离子穿膜运输的是A.胞吞作用B.简单扩散C.易化扩散D.主动运输E.离子通道扩散39.细胞膜中膜外在蛋白与脂类的结合主要通过A.共价键B.磷酸二酯键C.糖苷键D.肽键E.非共价键40.主动运输与胞吞作用的共同点是A.转运大分子物质B.逆浓度梯度运输C.需载体的帮助D.有细胞膜形态和结构的改变E.需消耗代谢能41.关于细胞膜上糖类的错误描述是A.膜脂中糖的含量约占膜脂重量的2%~10%B.主要以糖蛋白和糖脂的形式存在C.糖蛋白和糖脂上的低聚糖侧链从生物膜的胞质面伸出D.糖蛋白中的糖链对蛋白质在膜中的分布影响很大E.与细胞免疫、细胞识别及细胞癌变有密切关系42.膜蛋白不具有的功能是A.转运分子进出细胞B.接受环境信号并传递到胞内C.连接相邻细胞或细胞外基质成分D.结合于膜上的酶可催化细胞的某些化学反应E.使膜发生相变和相分离43.关于细胞膜的错误叙述是A.高度选择性的半通透性膜B.动态的流体结构C.膜载体蛋白只参与主动运输D.接受化学信号的感受器E.膜中的胆固醇是两亲性分子44.受体介导的胞吞作用不具有的特点是A.在细胞膜的特定区域进行B.形成有被小窝和有被小泡C.吸入大量的细胞外液D.其物质转运速度很快E.吸取特定大分子的有效途径45.通过连续性分泌途径排出细胞的物质是A.胶原蛋白B.肾上腺素C.消化酶D.神经递质E.多糖46.下列不属于甘油磷脂的是A.卵磷脂B.鞘磷脂C.磷脂酰肌醇D.脑磷脂E.磷脂酰丝氨酸47.目前被普遍接受的细胞膜分子结构模型是A.单位膜模型B.流动镶嵌模型C.片层结构模型D.脂筏模型E.捕鱼笼模型48.下列关于Ca2+泵的错误叙述是A.可维持细胞内外的Ca2+浓度梯度B.是ATP酶C.通过对向运输方式转运Ca2+D.分布于质膜、内质网膜上E.每次能逆浓度梯度转运2个Ca2+进入肌浆网49.下列属于非离子型去污剂的是A.十二烷基磺酸钠B.十六烷基三甲基C. Triton X-100D.硬脂酸E.甘油三酯50.与家族性高胆固醇血症A.LDL受体不能与LDL结合B.LDL受体的基因突变C.LDL进入细胞后不能被降解D.LDL受体缺乏E.LDL受体结构异常51.下列关于水通道的错误叙述是A.AQP1是红细胞膜上的主要水通道B.经典的选择性水通道只能通透水分子C.水-甘油通道对水分子、甘油、尿素具有通透性D.属于内在膜蛋白E.属于配体门控通道52.下列不属于两亲性分子的是A.卵磷脂B.胆固醇C. SDSD.糖脂E.甘油三酯53.下列关于脂锚定蛋白的正确叙述是A.可位于细胞膜的外侧B.以共价键与脂双层内的脂分子结合C.可位于细胞膜的胞质侧D.可通过与磷脂酰肌醇分子相连的寡糖链共价键结合而锚定到质膜上E.以上都正确54.测定膜蛋白的侧向扩散可使用的技术是A.冰冻蚀刻技术B.荧光漂白恢复技术C.细胞周期同步化D.冷冻电镜技术E. Western印迹分析55.下列不属于内在膜蛋白的是A.孔蛋白B.钙泵C.水通道D.Sre激酶E.钙黏着蛋白多项选择题1.关于细胞膜上的钠钾泵,下列叙述正确的是A.具有ATP酶的活性B.由大小两种亚基组成C.钠离子的结合位点位于胞膜外侧D.乌本苷为其抑制剂E.介导逆浓度梯度运输2.外在膜蛋白的主要特点有A.可与内在膜蛋白相互作用,间接与膜结合B.均分布在膜的外表面C.在膜蛋白中含量少,占20%-30%D.可通过离子键、氢键与膜脂分子的极性头部相结合E.改变溶液离子浓度即可从膜上分离出来3.穿膜蛋白的主要特点有A.在膜蛋白中含量多,占70%~80%B.穿膜蛋白是双亲性分子C.嵌入脂双层分子中D.多以α螺旋方式穿越脂双层E.与膜结合紧密4.膜糖类分布在A.脂类双层分子层中B.细胞膜非胞质侧C.细胞膜胞质侧D.内膜系统中糖残基面向膜腔内E.内膜系统中糖残基面向膜外表面5.在人的红细胞膜中,下列脂类主要分布于脂双层外层的是A.鞘磷脂B.磷脂酰胆碱C.磷脂酰丝氨酸D.磷脂酰乙醇胺E.胆固醇6.穿膜转运方式中的简单扩散和易化扩散的共同点是A.从高浓度向低浓度方向转运B.从低浓度向高浓度方向转运C.需要消耗能量D.不需消耗能量E.需要膜转运蛋白7.影响膜脂流动性的因素有A.环境温度B. phC.膜蛋白的含量D.胆固醇含量E.细胞体积8.在调节细胞内pH方面,起作用的跨膜载体蛋白是A.Na-K泵B.Ca2+泵C.Na2-H交换器D.Cl-HCO3交换器E.离子闸门通道9.Na+-K+泵的生理作用是A.产生和维持膜电位B.维持细胞内外特殊的钠钾离子环境C.调节渗透压保持细胞容积恒定D.为细胞主动运输葡萄糖等物质提供条件E.调节细胞的pH10.在人的红细胞膜中,主要分布于脂双层胞质面的脂类分子是A.磷脂酰肌醇B.磷脂酰胆碱C.磷脂酰丝氨酸D.磷脂酰乙醇胺E.鞘磷脂11.下列可以降低细胞膜流动性的是A.脂肪酸链的长度增加B.脂肪酸链的不饱和程度增加C.卵磷脂与鞘磷脂比例增加D.相变温度以上胆固醇含量增加E.相变温度以下胆固醇含量增加12.载体蛋白介导的穿膜运输的特点是A.均介导顺浓度梯度运输溶质B.通过构象改变介导物质运输C.扩散速率随溶质浓度的升高可无限增大D.有选择性地转运特异性分子E.对被转运物质不进行共价修饰13.通道蛋白介导的跨膜运输的特点是A.逆电化学梯度转运物质B.对被转运物质有高度选择性C.转运速度快D.通道蛋白形成贯穿膜脂双层的亲水孔道E.多数通道不持续开放14.关于细胞膜对离子和小分子物质的穿膜运输,下列说法正确的有A.钠泵对Na+和K的转运属于被动运输B.O2和CO2的穿膜运输方式为简单扩散C.小肠对葡萄糖和氨基酸的吸收属于协同运输D.钙通道可逆电化学梯度特异性的转运NaE.多数离子通道不持续开放15.细胞外被的功能包括A.细胞的迁移和黏附作用B.作为保护层C.细胞周围的水盐平衡D.与细胞通讯有关E.参与细胞识别参考答案名词解释1.脂质体( liposome):是根据磷脂分子可以在水相中自我装配成稳定的脂双层膜的球形结构的趋势而制备的人工球形脂质小囊。
第四章细胞膜与物质的穿膜运输第一节细胞膜的化学组成与生物特性一、细胞膜的化学组成细胞膜上的脂类=膜脂〔membrane lipid〕,约占膜成分的50%,主要有磷脂〔phospholipid〕、胆固醇〔cholesterol〕、和糖脂〔glycolipid〕(一)膜脂构成细胞膜的结构骨架1.磷脂是膜脂的主要成分➢甘油磷酸的共同特征:以甘油为骨架,甘油分子的1、2位羟基分别于脂肪酸形成酯键,3位羟基与磷酸基团形成酯键.磷酸基团结合胆碱/乙醇胺/丝氨酸/肌醇.脂肪酸链长短不一,通常14~24个碳原子,一条脂肪酸链不含双键,另一条含有一个或几个双键,形成30°弯曲.➢鞘磷脂以鞘氨醇代替甘油,鞘氨醇的氨基结合长链的不饱和脂肪酸,分子末端的一个羟基与胆碱磷酸结合,另一个游离羟基可与相邻分子的极性头部、水分子或膜蛋白形成氢键.鞘磷脂与其代谢产物神经酰胺、鞘氨醇、1-磷酸鞘氨醇参与各种细胞活动.神经酰胺是第二信使;1-磷酸鞘氨醇在细胞外通过G蛋白偶联受体起作用,在细胞内与靶蛋白作用2.胆固醇能够稳定细胞膜和调节膜的流动性✧胆固醇为两性极性分子.✧极性头部为连接于固醇环〔甾环〕上的羟基,靠近相邻的磷脂分子.✧固醇环疏水,富有刚性,固定在磷脂分子临近头部的烃链上,对林芝的脂肪酸尾部的运动具有干扰作用.✧尾部为疏水性烃链.埋在磷脂的疏水尾部中.✧胆固醇分子调节膜的流动性和加强膜的稳定性.没有胆固醇,细胞膜会解体.PS.不同生物膜有各自特殊的脂类组成.哺乳动物细胞膜上富含胆固醇和糖脂,线粒体膜内富含心磷脂;大肠杆菌质膜则不含胆固醇.3.糖脂主要位于质膜的非胞质面糖脂含量占膜脂总量5%以下,遍布原核、真核细胞表面细菌和植物的糖脂均是甘油磷脂衍生物,一般是磷脂酰胆碱PC 衍生来动物糖脂都是鞘氨醇衍生物,称为鞘糖脂,糖基取代磷脂酰胆碱,成为极性头部已发现40多种糖脂,区别在于极性头部不同,由1至几个糖残基构成✧最简单的糖脂是脑苷脂,极性头部只是一个半乳糖/葡萄糖残基✧最复杂的糖脂是神经节苷脂,极性头部有七个糖残基;在神经细胞膜中最丰富,占总膜脂5%~10%✧脂质体〔lipidsome〕可以作运载体(二)膜蛋白以多种方式与脂双分子层结合又称含量作用力特点膜内在蛋白穿膜蛋白70%~80% X德华力α-螺旋构象/β-筒孔蛋白1.内在膜蛋白✧又称跨膜蛋白,占膜蛋白总量70%~80%;分单次跨膜、多次跨膜、多亚基跨膜三种类型✧跨膜区域20~30个疏水氨基酸残基,通常N端在细胞外侧✧内在膜蛋白跨膜结构域与膜脂结合区域,作用方式:①疏水氨基酸形成α-螺旋,跨膜并与脂双层脂肪酸链通过X德华力相互作用②某些α-螺旋外侧非极性,内侧是极性链,形成特异性畸形分子的跨膜通道✧多数跨膜区域是α-螺旋,也有以β-折叠片多次穿膜形成筒状结构,称β-筒,如孔蛋白<porin>2.外在膜蛋白➢又称外周蛋白,占膜蛋白总量20%~30%;完全在脂双层之外,胞质侧或胞外侧,通过非共价键附着膜脂或膜蛋白➢胞质侧的外周蛋白形成纤维网络,为膜提供机械支持,也连接整合蛋白,如红细胞的血影蛋白和锚蛋白➢外周蛋白为水溶性蛋白,与膜结合较弱,改变溶液离子浓度或pH,可分离它们而不破坏膜结构3.脂锚定蛋白①一种位于膜的两侧,蛋白质直接以共价键结合于脂类分子;此种锚定方式与细胞恶变有关②还有糖基磷脂酰肌醇锚定蛋白<GPI>,通过蛋白质C端与磷脂酰肌醇连接的糖链共价结合脂锚定蛋白在膜上运动性增大〔侧向运动〕,有利于结合更多蛋白,有利于更快地与胞外蛋白结合、反应GPI-锚定蛋白分布极广,100种以上,如多种水解酶、免疫球蛋白、细胞黏附分子、膜受体等4.去垢剂〔detergent〕离子型去垢剂:SDS十二烷基磺酸钠引起蛋白质变性非离子型去垢剂:Triton X-100 对蛋白质比较温和(三)膜糖类覆盖细胞膜表面细胞膜的糖类,占质膜重量2%~10%;①大多以低聚糖或多聚糖共价结合膜蛋白,形成糖蛋白〔糖蛋白中的糖基化主要发生在天冬酰胺〔N-连接〕,其次是丝氨酸和苏氨酸〔O-连接〕残基上〕;②或以低聚糖共价结合膜脂,形成糖脂,所有糖链朝向细胞外表面形成低聚糖的单糖类型:甘露糖、岩藻糖、半乳糖、半乳糖胺、葡萄糖、葡萄糖胺、唾液酸等A.唾液酸残基在糖链末端,形成细胞外表面净负电荷B.寡糖链中的单糖的数量、种类、排列顺序、有无支链等不同,可以出现千变万化的组合形式.Eg.人类ABO血腥抗原的差别就是血型糖蛋白在红细胞质膜外表面寡糖链的组成结构决定.△细胞外被cell coat=糖萼glycocalyx=与质膜相连的糖类物质功能:①保护细胞抵御各种物理、化学性损伤②建立起水盐平衡③帮助蛋白质膜上定位、固定,防止翻转④参与细胞与外环境的作用,eg识别、粘附、迁移二、细胞膜的生物学特性(一)膜的不对称性决定膜功能的方向性膜结构上的不对称性保证了膜功能的方向性和生命活动的高度有序性1.膜脂的不对称性SM、PC在细胞外侧叫多,PE在细胞内侧较多.2.膜蛋白的不对称性➢各种膜蛋白在质膜中有特定位置,分布绝对不对称:酶和受体多分布于质膜的外侧面,而腺苷酸环化酶定位内侧面➢跨膜蛋白有一定方向性:多数N外C内,两端肽链长度、氨基酸种类、活性位点不同3.膜糖的不对称性都向着非胞质面(二)膜的流动性是膜功能活动的保证流动性fluidity主要是指膜脂的流动性+膜蛋白的运动性1.脂双层为液晶态二维流体✓液晶态〔lipid-crystal state〕脂双分子层已有固体分子排列的有序性,又有液体的流动性.细胞内外的水环境,使膜脂分子不能从脂双层逸出,只能在二维平面交互位置.✓相变〔phase transition〕正常体温下,膜呈液晶态;当温度下降到临界温度<膜的相变温度>,膜脂转为晶态✓膜的流动性是膜功能活动的保证.2.膜脂分子的运动方式①侧向扩散lateral diffusion =脂双层的单分子层内,脂分子沿膜平面侧向与相邻分子快速交换位置,每秒约107次.侧向扩散运动时膜脂分子主要的运动方式..②翻转运动flip-flop 从脂双层一层翻转到另一层,需要翻转酶,在内质网发生③旋转运动rotation 膜脂分子围绕与膜平面向垂直的轴的自旋运动④弯曲运动flexion 膜脂分子的烃链是有韧性、可弯曲的,分子尾部端弯曲、摆动幅度大,而靠近头部弯曲摆动幅度小.⑤此外,还有伸缩、震荡3.影响膜脂流动性的因素①脂肪酸链的饱和程度磷脂分子长的饱和脂肪酸链呈直线型,具有最大的聚集倾向而排列紧密成凝胶状态;不饱和脂肪酸链在双键出形成折曲而呈弯曲状,感染了脂分子间X德华力的相互作用,故排列疏松,从而增加了膜的流动性.∴脂双分子层中含有的不饱和脂肪酸越多,膜的相变温度越低,流动性越大.环境温度降低时,A.细胞通过去饱和酶〔desaturases〕催化将胆碱去饱和形成双键.B.通过磷脂酶&脂酰转移酶在不同的磷脂分子之间重组脂肪酸链以产生含两个不饱和脂肪酸链的磷脂分子.②脂肪酸链的长短脂肪酸链短的相变温度低,流动性大.短→尾端不易发生相互作用;长→不仅可以在同一分子称内相互作用,而且可以与另一分子层中的长链尾端相互作用③胆固醇的双重调节作用A.当温度在相变温度以上时,由于胆固醇分子的固醇环与磷脂分子靠近极性头部的烃链部分结合,限制了这几个CH2的运动,起到稳定质膜的作用.B.当温度在相变温度以下时,由于胆固醇位于磷脂分子之间隔开磷脂分子,可有效地防止脂肪酸链相互凝聚,干扰晶态的形成.④卵磷脂与鞘磷脂的比值哺乳动物细胞中,卵磷脂和鞘磷脂的含量约占膜脂的50%,卵磷脂的脂肪酸链不饱和程度高,相变温度较低;鞘磷脂则相反.在细胞衰老过程中,卵磷脂和鞘磷脂的比值下降,流动性也下降.⑤膜蛋白的影响膜蛋白嵌入膜脂疏水区后,是周围的脂类分子不能单独活动而形成界面脂;在含较多内在蛋白的膜中,存在有内在蛋白分割包围的富脂区〔lipid-rich region〕磷脂分子智能在一个富脂区内自有扩散,而不能扩散到邻近的富脂区此外,膜脂的极性基团、环境温度、pH值、离子强度等都对膜脂流动性产生一定影响.环境温度高,膜脂流动性大;相变温度内,每下降10℃,膜的粘性增加3倍,膜流动性降低4.膜蛋白的运动性①侧向扩散膜蛋白在膜脂中可以自有漂浮&在膜表面扩散.人鼠杂交细胞表面抗原分布变化可证明.目前测定膜蛋白的侧向扩散常采用光致漂白荧光恢复法〔fluorescence recovery after photobleaching,FRAP〕②旋转运动膜蛋白能围绕与膜平面相垂直的轴进行旋转运动.速度比侧向扩散慢;不同膜蛋白速度不同,有些膜蛋白无法运动;膜蛋白周围脂质的流动性影响膜蛋白的流动性膜蛋白的运动不需要消耗能量膜的流动性意义重大:物质运输、细胞识别、信息传导等;生物膜的各种功能都是在膜的流动状态下进行的,膜的流动过低,代谢终止三、细胞膜的分子结构模型(一)片层结构模型具有三层夹板式结构特点1935年,James Danielli 和Hugh Davson发现细胞膜的表面X力显著低于油-水界面表面X力,推测质膜中有蛋白质;提出"片层结构模型〞<蛋白-磷脂-蛋白三层夹板式结构> (二)单位膜模型体现膜形态结构的共同特点1959年,J.D.Robertson 电镜观察细胞膜"两暗夹一明〞——单位膜单位膜模型:膜蛋白是单层肽链以β折叠通过静电作用与磷脂极性端结合;能对膜的某些属性进行解释,被普遍采用,但是把膜作为静止的单一结构(三)流动镶嵌模型是被普遍接受的模型1972年,"流动镶嵌模型〞Fluid mosaic model:磷脂双层构成膜的连续主体,具有晶体的有序性和液体的流动性;球形蛋白质分子以不同形式结合脂双层分子;膜是一种动态的、不对称的具有流动性结构1975年,"晶格镶嵌模型〞:膜脂可逆地进行"有序<液态>〞和"无序<晶态>〞相变,膜蛋白对膜脂的运动具有限制作用,流动性是局部的1977年,"板块镶嵌模型〞:流动的脂双层中存在能独立移动脂类板块(四)脂筏模型深化了对膜结构和功能的认识✓脂双层中由特殊脂质和蛋白质组成的微区,富含胆固醇和鞘脂类,聚集特定种类膜蛋白;此膜区较厚〔鞘脂类脂肪酸链较长〕,称"脂筏〞Lipid rafts,其周围富含不饱和磷脂,流动性较高✓脂筏的两个特点:许多蛋白聚集在脂筏内,便于相互作用;脂筏提供有利于蛋白质变构的环境,形成有效构象✓脂筏功能:参与信号转导、受体介导内吞作用、胆固醇代谢运输等第二节小分子物质和离子的穿膜运输一、膜的选择性通透和简单扩散简单扩散<simple diffusion>: 小分子的热运动使分子以自由扩散的方式由膜一侧扩散到另一侧,条件:溶质在膜两侧有一定浓度差,溶质必须能透过膜脂溶性物质如醇、苯、甾类激素、O2、CO2、NO、H2O 通过简单扩散跨膜简单扩散不需要运输蛋白协助,顺浓度梯度由高浓度向低浓度方向扩散,不消耗能量;也称"被动扩散〞passive diffusion二、膜运输蛋白介导的穿膜运输除了水和非极性小分子,绝大多数溶质如各种离子、葡萄糖、氨基酸、核苷酸等都不能简单扩散穿膜转运特定膜蛋白——膜运输蛋白<跨膜蛋白,每种只转运一种特定类型溶质>膜运输蛋白分两类:①载体蛋白carrier protein:与特定溶质结合,改变构象使溶质穿越细胞膜②通道蛋白channel protein:形成水溶性通道,贯穿脂双层,通道开放时,特定溶质<无机离子>可穿越脂双层➢"被动运输" passive transport所有通道蛋白和许多载体蛋白,转运溶质分子不消耗能量,消耗顺电化学浓度梯度的势能➢"主动运输〞active transport逆电化学浓度梯度转运溶质,需要载体蛋白参与,还需要消耗能量ATP;这种利用代谢产生能量的进行逆浓度梯度的转运称为主动运输.能量来源:ATP水解、光吸收、电子传递、顺浓度梯度的离子运动etc(一)易化扩散是载体蛋白介导的被动运输∆"易化扩散" facilitated diffusion=帮助扩散=非脂溶性或亲水性小分子,不能简单扩散通过细胞膜,需载体蛋白介导不消耗代谢能量,顺物质浓度梯度或电化学梯度进行转运∆特点:特定易化转运蛋白介导特定物质在两个方向的穿膜运输,取决于该物质在膜两侧的相对浓度——转运特异性强,速率快∆作用机制:载体蛋白对所转溶质具有高度专一性,其分子上的结合位点与某一溶质进行短暂的可逆的结合,引起载体蛋白构象变化,转运溶质分子从膜一侧到另一侧;载体与溶质亲和力下降,释放溶质,构象恢复∆例子:多数细胞<低浓度葡萄糖>从血流和组织液中<高浓度葡萄糖>,通过易化扩散获取葡萄糖.人类基因组编码14种葡萄糖转运载体蛋白glucose transporter, GLUT,构成GLUT家族.它们具有高度同源氨基酸序列,均含有12次跨膜的α-螺旋,α-螺旋含有丝氨酸Ser、苏氨酸Thr、天冬氨酸Asp和谷氨酸残基Glu,其侧链与葡萄糖羟基形成氢键,是葡萄糖结合位点.GLUT的异常或缺陷是2型糖尿病的病因之一.红细胞膜上存在5万个葡萄糖载体蛋白,占膜总蛋白5% 最大转运速率每秒180个葡萄糖分子.(二)主动运输时载体蛋白逆浓度梯度的耗能运输1.ATP驱动泵在胞质侧有一个或多个ATP结合位点,水解A TP从低浓度向高浓度转运协同运输〔co-transport〕是一类由Na+-K+泵〔或H+泵〕与载体蛋白协同作用,间接消耗ATP 所完成的主动运输方式.物质穿膜运动的直接动力来自膜两侧离子的电化学梯度中的能量,而维持这种离子电化学梯度是通过Na+-K+泵〔或H+泵〕消耗ATP来实现的.动物利用Na+-K+泵,植物利用H+泵①共运输:两种溶质分子同一方向穿膜运输.Eg肠腔细胞膜的"Na+/葡萄糖协同运输蛋白〞Na+/glucose cotransporter在质膜外表面结合2个Na+和一个葡萄糖.进入细胞的Na+之后再被Na+-K+泵排出,维持Na+膜内外浓度差.葡萄糖一旦进入小肠细胞,再以易化扩散方式进入血流.主动运输特点:①逆浓度或电化学梯度跨膜转运②消耗能量,直接水解A TP或离子电化学梯度提供能量③膜上特异性载体蛋白介导,载体特异结合转运溶质,载体构象可变(三)离子通道高效转运各种离子1.离子通道的特点〔顺梯度,高选择,高效率,受调控.〕①只介导被动运输,溶质从膜的高浓度一侧自由扩散到低浓度一侧②离子通道对被转运离子的大小所带电荷有高度选择性③转运效率高,通道允许106~108个特定离子/秒通过,比最快效率的载体蛋白高1000倍④离子通道不是持续开放,有开和关两种构象,受信号调控2.离子通道的类型①配体门控通道ligand-gated channel.实际为离子通道型受体,它们与细胞外的特定配体ligand结合后,发生构象改变,结果吧"门〞打开,允许某种离子快速穿膜扩散.Eg.烟碱型乙酰胆碱受体nAChR是典型的配体门控阳离子通道,大量存在与骨骼肌神经接头处.4种不同亚基单组成的五聚体穿膜蛋白〔α2βγδ〕→梅花状通道与结构.①神经冲动→神经末梢→细胞去极化→电压门控Ca2+通道开放→细胞外Ca2+涌入细胞→胞内突触小泡释放乙酰胆碱至突触间隙②释放的乙酰胆碱→结合突触后膜的乙酰胆碱受体→通道开放,Na+流入肌细胞→肌细胞膜局部去极化③肌细胞去极化→诱发膜上Na+通道开放→大量Na+涌入肌细胞,使整个肌细胞膜进一步去极化④肌细胞膜的去极化→使肌浆网上Ca2+通道开放→Ca2+大量释放如胞质→肌原纤维收缩②电压门控通道voltage-gated channel膜电位的改变是控制电压门通道开放与关闭的直接因素.反应快.主要存在与神经元、肌细胞与腺上皮细胞等兴奋细胞,包括钾通道、钙通道、氯通道③应力门控通道stress-activated channel应力激活通道是通道蛋白感受应力而改变构象,通道开放,离子跨膜,膜电位变化Eg.A.内耳听觉毛细胞顶部的听毛具有应力激活通道,受到声波振动而弯曲,应力门控通道开放,离子跨膜进入毛细胞改变膜电位,将声波信号传递给听觉神经元B.细菌与古细菌的应力激活通道均为跨膜蛋白五聚体,通透阳离子(四)水通道介导水的快速转运1.水通道的分类哺乳类水通道蛋白家族已有11个,根据功能特性的差异,分为两个家族:AQP1、2、4、5、6和AQP0 基因结构类似,氨基酸序列同源30%~50%,只能通透水,经典的选择性水通道;AQP3、7、9、10 除通透水,对甘油、尿素等中性小分子也具有通透性,第二家族——水-甘油通道;AQP8位于水选择型与甘油渗透型之间2.水通道蛋白的结构AQP1由4个对称排列的圆筒状亚基围成的四聚体,每个亚基中心的中央孔直径0.28nm,只允许水分子通过.每个AQP1亚基有6个长α螺旋构成基本骨架,两个短嵌入式α螺旋顶对顶排列,顶端均有保守的Asn-Pro-Ala基序,使得顶对顶稳定每个亚基的α螺旋朝向脂双层的一面是非极性氨基酸残基,朝向中央孔的一面是极性氨基酸残基3.水通道对水分子的筛选机制水孔蛋白对水分子高度特异性选择,因为:每个亚基中央孔的直径0.28nm,只比水分子大一点点,限制其它分子通过;每个亚基中央孔道内有特异溶质结合位点,每个水分子通过时,孔道内的3极性氨基酸残基的羰基氧与水分子形成氢键;离子与水分子的复合物比孔道大得多,不能通过水通道持续开放,每秒通过3×109个水分子,不耗能,水分子移动方向由膜两侧渗透压决定,低→高第三节大分子和颗粒物质的穿膜运输大分子物质不能通过膜转运蛋白进入细胞,由膜包围形成膜泡,然后通过膜泡形成和融合来完成转运——小泡运输细胞摄入大分子或颗粒物质的过程,称胞吞作用<endocytosis>细胞排出大分子或颗粒物质的过程,称胞吐作用<exocytosis>胞吞胞吐涉与膜泡的融合与断裂,需要消耗能量,属于主动运输以上膜泡运输转运量较大,也称批量运输;膜泡运输也发生于胞内各种膜性细胞器一、胞吞作用(一)吞噬作用是吞噬细胞摄入颗粒物质的过程免疫系统具有吞噬功能的中性粒细胞、单核细胞、巨噬细胞在摄取大固体颗粒或分子复合物<直径>250nm>时进行细胞膜凹陷或形成伪足,将大颗粒包裹摄入细胞,形成膜泡"吞噬体〞这些免疫细胞通过此方式吞噬入侵微生物、清除损伤和死亡细胞(二)胞饮作用是细胞吞入液体和可溶性物质的过程细胞非特异摄取细胞外液的过程;胞饮发生在质膜的特殊区域,质膜内陷形成小窝,包围液体物质,形成"胞饮体〞,直径小于150nm胞饮作用分为两种类型:①液相内吞:非特异固有内吞作用,摄入细胞外液与可溶性物质;②吸附内吞:细胞外大分子/小颗粒物质以某种方式吸附在细胞表面,具有一定特异性在能形成伪足和转运功能活跃的细胞中多见,如巨噬细胞、白细胞、毛细血管细胞、肾小管上皮细胞、小肠上皮细胞等(三)受体介导的胞吞提高摄入特定物质的效率受体介导的内吞作用receptor mediated endocytosis 是细胞通过受体的介导选择性高效摄取细胞外特定大分子物质的过程可特异性摄入胞外含量很低的成分,比胞饮作用内化效率高1000多倍1.有被小窝和有被小泡的形成◆细胞膜上有多种受体蛋白,往往同类受体蛋白集中在膜特定区域,称"有被小窝〞coatedpit;小窝内受体浓度是质膜其它处的10~20倍◆各种有被小窝约占质膜表面积2%,此处质膜向内凹陷,直径50~100 nm,此处质膜内表面覆盖网格蛋白和衔接蛋白◆网格蛋白,又称"笼蛋白〞,由3条重链和3条轻链组成;3个重链轻链的二聚体,形成三腿蛋白复合物→自我装配,自动形成篮网状结构网格蛋白作用:牵拉质膜向内凹陷,参与捕获特定膜受体使其汇聚有被小窝◆衔接蛋白参与有被小泡组成,处于网格蛋白与配体-受体复合物间◆不同类型的衔接蛋白结合不同类型膜受体,使细胞捕获不同配体网格蛋白没有特异性2.无被小泡形成并与内体融合✧配体结合膜上受体,通过衔接蛋白,网格蛋白聚集在膜的胞质侧,网格由6边形转变成5边形,促进网格蛋白外被弯曲变成笼形,牵动质膜凹陷✧发动蛋白<dynamin> ——GTP结合蛋白,自动组装成一个螺旋状领圈结构,水解GTP,构象改变,将有被小泡从质膜上切离下来,形成网格蛋白有被小泡✧有被小泡很快脱去包被<笼蛋白重新利用> →无被小泡→与早期内体融合✧内体:动物细胞中经胞吞作用形成的膜包围的细胞器,作用是运输由胞吞作用新摄入的物质到溶酶体被降解.内体膜上有A TP驱动的质子泵,将H+泵入内体腔,降低腔内pH 〔pH5~6〕✧低pH使受体与配体分离,内体出芽形成运载受体的小囊泡,返回质膜;受体重新利用,含配体的内体与溶酶体融合3.受体介导的LDL胞吞作用❖胆固醇是构成膜的成分,也是类固醇激素的前体;动物细胞通过受体介导的胞吞作用摄入所需大部分胆固醇.❖胆固醇在肝脏合成并包装成低密度脂蛋白<low density lipoprotein, LDL>,在血液中运输❖LDL为球状颗粒,分子量3106,直径22nm;中心是1500个酯化的胆固醇分子,外面包围800个磷脂分子和500个游离胆固醇分子❖载脂蛋白ApoB100是细胞膜上LDL受体的配体, 组装LDL成颗粒二、胞吐作用(一)连续性分泌是不受调节持续不断的细胞分泌分泌蛋白在粗面内质网合成后,转运到高尔基体进行修饰、浓缩、分选,形成分泌泡,被转运到细胞膜,与膜融合,外排蛋白的过程分泌蛋白:驻留蛋白、膜蛋白、细胞外基质组分等(二)受调分泌是细胞外信号调控的选择性分泌分泌蛋白合成后,包裹于分泌囊泡,储存于胞质中,受到细胞外信号刺激,引起细胞内Ca2+浓度瞬时升高,才启动胞吐作用此种分泌途径只存在于特化细胞,如分泌激素、酶、神经递质的细胞第四节细胞膜异常与疾病一、载体蛋白异常与疾病1.胱氨酸尿症是载体蛋白异常性疾病2.肾性糖尿是葡萄糖载体蛋白异常性遗传病二、离子通道蛋白异常与疾病1.囊性纤维病〔cystic fibrosis,CF〕细胞膜上一个受cAMP调节的氯离子通道异常.三、膜受体异常与疾病1.家族性高胆固醇血症〔familial hypercholesterolemia〕常染色体显性遗传病,患者编码LDL 受体的基因发生突变复习题1.构成细胞膜的脂类有哪三种?2.磷脂分为哪两种?3.哪一种磷脂在神经细胞含量多,其他细胞含量少?4.胆固醇分子对膜的流动性有何影响?5.动物细胞膜的糖脂由何磷脂衍生而来?6.膜功能的活跃与否跟什么成分的含量密切相关?7.根据与脂双层结合方式,膜蛋白可分为哪三类?8.内在膜蛋白的跨膜区,通常是哪类氨基酸残基构成的什么结构?9.外在膜蛋白通过什么键附着膜脂或膜蛋白?10.脂锚定蛋白在膜两侧以什么键结合于什么分子?11.膜糖链的唾液酸残基,在细胞外表面形成什么电荷?12.膜的不对称性主要体现在哪三点?13.膜脂分子能进行哪些运动?14.影响膜脂的流动性的因素有哪些?15.流动镶嵌模型主要内容是什么?16.脂筏模型的主要内容和特点各是什么?17.膜转运蛋白分为哪两类?18.哪些溶质能简单扩散到膜另一侧?19.被动扩散和主动运输主要区别是什么?20.离子通道的四个特点是什么?。
第四章细胞膜与物质的穿膜运输第二节、第三节A型题1.受体介导的胞吞作用不具有的特点是A.在细胞膜的特定区域进行B.形成有被小窝和有被小泡C.吸入大量的细胞外液D.胞吞速率比较快E.是吸收特定大分子的有效途径2.以简单扩散方式通过细胞膜的物质是A. Na+;B.氨基酸;C.核苷酸;D.葡萄糖;E.O23.将细胞内的分泌泡或其他膜泡中的物质通过细胞膜运出细胞的过程称为A.胞吐作用;B.内化作用;C.胞吞作用;D.吞噬作用;E.受体介导的胞吞作用4.一种不需要提供能量,只需通过载体蛋白介导,使小分子顺其浓度梯度穿膜运动的是A.易化扩散;B.简单扩散;C.主动运输;D.基团转移;E.内化运输5.易化扩散和主动运输的共同点是A.顺浓度梯度转运;B.逆浓度梯度转运;C.需要消耗能量; D.不消耗能量; E.需要转运蛋白协助6.下列哪种物质需要载体才能穿越细胞膜?A.乙醇;B.二氧化碳;C.固醇类激素;D.葡萄糖;E.尿素7.载体蛋白介导的穿膜运输的特点是A.顺浓度梯度转运;B.需要消耗能量;C.对被转运物质无选择性; D.对被转运物质不进行共价修饰; E. 以上都不对8.钠钾泵的直接效应是A.调节细胞pH值;B.维持细胞内低钾高钠的特殊离子梯度;C.维持细胞内低钠高钾的特殊离子梯度;D.膜电位的产生;E.调节细胞容积9.网格蛋白有三个外展的臂(或称三条腿),每一个臂均含A.一条重链和一条轻链;B.二条重链和一条轻链;C.一条重链和二条轻链; D.二条重链和二条轻链; E. 以上都不是10.发动蛋白(dynamin)是一种小分子A. ATP结合蛋白;B. GTP结合蛋白;C. CTP结合蛋白;D. UTP结合蛋白;E. 以上都不是11.小肠上皮吸收葡萄糖以及各种氨基酸时,通过()达到逆浓度梯度运输A. 与Na+相伴运输;B. 与K+相伴运输;C. 与Ca2+相伴运输; D. 与H+相伴运输; E. 载体蛋白利用ATP 能量12.关于载体蛋白,正确的是A.只介导顺浓度梯度转运;B.都需要消耗能量;C.为膜外在蛋白; D.对被转运物质进行共价修饰; E. 通过载体蛋白的构象改变转运物质13.由载体蛋白介导的运输方式有:A.只有易化扩散B.只有主动运输C.易化扩散和主动运输D. 易化扩散和简单扩散E.主动运输和简单扩散14.由通道蛋白介导的运输方式有:A.简单扩散B.离子通道扩散C.主动运输D.易化扩散和主动运输E.离子通道扩散和主动运输15.不需要消耗细胞代谢能的运输方式是A. 胞吐作用B.易化扩散C. 对向运输D.共运输E. 胞吞作用16.关于通道蛋白和载体蛋白,叙述错误的是A.二者都是穿膜蛋白B.通道蛋白在膜上形成穿膜的亲水通道,载体蛋白则通过构象改变进行物质穿膜转运 C.二者都具有选择性 D.二者都可介导主动运输和被动运输 E.载体的转运效率通常低于通道蛋白17.关于离子的穿膜转运,正确的是A.离子的穿膜转运可以由通道蛋白或载体蛋白介导B.离子的穿膜转运都不需要消耗细胞代谢能C.有些离子转运不需要膜转运蛋白的介导,可以以简单扩散方式进行D.离子只能进行被动运输E.以上都正确18.下列哪些物质可以通过简单扩散进行穿膜转运A.只有氧气、氮气和二氧化碳等气体分子B.只有乙醚、氯仿、苯等脂溶性物质C.甘油、乙醇、水等极性不带电荷的小分子及上述的A和B。
2.细胞膜及物质的跨膜运输细胞膜及物质的跨膜运输⼀、填空题1. 在原始⽣命物质进化过程中的形成是关键的⼀步。
因为没有它,细胞形式的⽣命就不存在。
2. 细胞膜的膜脂以和为主,有的膜还含有。
3. 根据物质进出细胞的⾏式,细胞膜的物质转运可分为和两种⽅式。
4. 细胞识别是细胞与细胞之间相互和。
5. 细胞胞吐作⽤的途径为和。
6. 通道扩散与易化扩散不同的是,它且扩散速度远⽐易化扩散要。
7.新⽣⼉呼吸窘迫症与膜的流动性有关,主要是⽐值过低,影响了的交换。
8.胆固醇是动物细胞质膜脂的重要成分,它对于调节膜的,增强膜的,以及降低⽔溶性物质的都有重要作⽤。
9.单位膜结构模型的主要特点是:①;②。
10.流动镶嵌模型的主要特点是:,不⾜之处是。
11.构成膜的脂肪酸的链越长,相变沮度,流动性。
12.农作物的耐寒性与膜的流动性有相当⼤的关系,主要原因是在零上低温时,由于膜的部分破裂会造成离⼦外泄以及膜的流动性降低,造成。
13.Na+进出细胞有三种⽅式:①;②;③。
14.动物细胞中葡萄糖、氨基酸的次级主动运输(协同运输)要借助于的浓度梯度的驱动;细菌、植物细胞中糖的次级主动运输要借助于的浓度梯度的驱动。
15.带3蛋⽩是红细胞质膜上阴离⼦载体蛋⽩,它在质膜中穿越12--14次。
16.胆固醇不仅是动物细胞质膜的构成成分,⽽且还可以调节膜的流动性,在相变温度以上,在相变温度以下。
17.决定红细胞ABO⾎型的物质是糖脂,它由脂肪酸和寡糖链组成。
A型⾎糖脂上的寡糖链较O型多—个,B型较O型仅多⼀个。
18.绝⼤多数跨膜蛋⽩在脂双层中的肽链部分都是形成。
19.根据通道蛋⽩的闸门打开⽅式的不同,分为、和通道。
20.证明细胞的流动性⽅法有:①;②;①。
21.组成⽣物膜的磷脂分⼦主要有三个特征:①;②;③。
22.膜脂的功能有三种:①;②;③。
23.影响物质通过质膜的主要因素有:①;②;③。
24.细胞对Ca2+的运输有四种⽅式:①。
②;③;④。