当前位置:文档之家› 几何辅助线之角平分线专题

几何辅助线之角平分线专题

几何辅助线之角平分线专题
几何辅助线之角平分线专题

几何辅助线之角平分线专题1、角平分线辅助线四种基本模型

已知:AD是∠BOC的角平分线

(1)(2)

(3)(4)

2、补充性质:

如图,在△ABC中,AD平分∠BAC,则有AB:AC=BD:DC

典型例题

例1、已知:如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB.求证:AC+CD=AB

例2、已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合,当∠A满足什么条件时,点D恰为AB中点?写出一个你认为适当的条件,并利用此条件证明D为AB中点.

例3、如图,AB=2AC,∠BAD=∠DAC,DA=DB ,求证:DC⊥AC。

D

E

H

A B

C

例4、如图所示,已知AD 是△ABC 的角平分线,DE AB ⊥,DF AC ⊥,

垂足分别是E ,

F .求证:AD 垂直平分EF .

例5、 如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH

例6、如图,已知等腰直角三角形ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥

BD ,垂足为E ,求证: BD =2CE 。

例7、如图,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

变式练习

请你参考上图构造全等三角形的方法,解答下列问题:

⑴如图,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断写出FE与FD之间的数量关系;

⑵如图,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请问,你在⑴中所

得结论是否依然成立?若成立请证明;若不成立,请说明理由。

课后练习

1、已知:如图所示,∠C=2∠B,∠BAD=∠CAD,求证:AB=AC+CD。

2、已知,如图,BN 平分∠ABC,P为BN上一点,

且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°。

3、如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠CAD=2

∠ADC,求∠B的度数。

4、如图,D是△ABC一个外角的平分线上一点。求证:AB+AC<DB+DC。

5、如图所示,AB∥CD,∠B=90°,E是BC的中点。DE平分∠ADC,求证:AE平分∠DAB。

6、如图所示、在△ABC中,AB=7,BC=24,AC=25。求心到边的距离。

7、如图所示,已知在△ABC中,分别以AC、BC为边向外作正△BCE、正△ACD,BD与AE交于M,求证:(1)AE=BD。(2)MC平分∠DME。

8、如图所示,AB=CD,△PCD的面积等于△PAB的面积,求证:OP平分∠BOD。

9、如图所示,在△ABC中,∠B=60°,△ABC的角平分线AD、CE交于点O,求证:AE+CD =AC。

10、如图所示,已知在四边形ABCD中,BD>AB,AD=DC,BD平分∠ABC,

求证:∠A+∠C=180°。

11、如图所示,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上的点,且∠EDF+

∠BAF=180°,求证:DE=DF。

初中几何常用辅助线专题.doc

初中几何常见辅助线做法 一、三角形常见辅助线做法 方法 1:有关三角形中线的题目,常将 中线加倍 ; 含有中点的题目,常常做 三角形的中位线 ,把结论恰当的转移 例 1、如图 5-1:AD 为△ ABC 的中线,求证: AB +AC > 2AD 。 【分析】:要证 AB + AC > 2AD ,由图想到: AB +BD >AD,AC + CD >AD ,所以有 AB +AC + BD +CD >AD + AD = 2AD ,左边比要证结论多 BD +CD ,故不能直接证出此题,而由 2AD 想到要构造 2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去。 证明:延长 AD 至 E ,使 DE=AD ,连接 BE ,则 AE =2AD A ∵AD 为△ ABC 的中线 (已知) ∴BD = CD (中线定义) 在△ ACD 和△ EBD 中 BD CD (已证 ) B D C ADC EDB ( 对顶角相等 ) AD ED (辅助线的作法 ) E 图5 1 ∴△ ACD ≌△ EBD (SAS ) ∴BE =CA (全等三角形对应边相等) ∵在△ ABE 中有: AB + BE >AE (三角形两边之和大于第三边) ∴AB + AC >2AD 。 例 2、如图 4-1:AD 为△ ABC 的中线,且∠ 1=∠ 2,∠ 3=∠ 4,求证: BE +CF > EF 证明:延长 ED 至 M ,使 DM=DE ,连接 CM , MF 。在△ BDE 和△ CDM 中, BD 中点的定义 ) A CD( ∵ 1CDM (对顶角相等 ) ED MD ( 辅助线的作法 ) E F ∴△ BDE ≌△ CDM (SAS ) 2 3 4 C 1 又∵∠ 1=∠ 2,∠ 3=∠ 4 (已知) B D ∠1+∠ 2+∠ 3+∠ 4= 180°(平角的定义) ∴∠ 3+∠ 2=90°,即:∠ EDF =90° 图 4 1 M

专题16角平分线及中点问题

二轮复习之角平分线问题 【考点一:角平分线+平行→等腰三角形】 典例1. 已知:如图,在平行四边形ABCD 中,AB=4,AD=7,∠ABC 的平分线交AD 于点E ,则ED 的长为( ) A .4 B .3 C .72 D .2 关键点分析:关注题目中有无平行线环境,这个平行线环境包括题目给出来的平行线条件,也包括平行四边形中的隐性平行线环境,在这样的题目中我们要积极地寻找等腰三角形。 模型图总结: 【考点二:角平分线+垂直→等腰三角形】 典例2.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则CD 的长是( ) A .2 B .2.5 C .2 D . 关键点分析:关注题目中有无“双重身份”的线,即角平分线还有另外一重身份“垂线”,这样的题目中图形中也都隐藏着等腰三角形,需要我们作辅助线把这个等腰三角形找出来。 模型图总结:

【考点三:见角平分线→作双垂】 典例3. 如图,△ABC 中,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,∠BAC=84°,则∠BDC=_______度。 关键点分析:遇到角的平分线作双垂,应用角平分线的性质定理解题是基本的辅助线。 模型图总结: 【考点四:见角平分线→作对称】 典例4. 如图,在△ABC 中,AD 平分∠BAC ,∠C=2∠B ,若AC=3,CD=2,则AB=________。 关键点分析:轴对称性是角平分线的本质属性,所以遇到含有角平分线的题目经常需要将角平分线一侧的三角形作对称处理,利用角的轴对称性来解决问题。 模型图总结: 【模型应用】 1.已知OC 平分∠AOB ,点P 为OC 上一点,PD ⊥OA 于D ,且PD=3cm ,过点P 作PE ∥OA 交OB 于E ,∠AOB=30°,求PE 的长度为_________cm 。 2. 如图,在矩形ABCD 中,AB=5,AD=3,点M 在边CD 上,若AM 平分∠DMB ,则DM 的长是________. 3. M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则△ABC 的周长等于___________. 4.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC=3,AB=5,则CE 的长为( )。

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中平面几何辅助线专题复习

初中平面几何辅助线专题复习 目录 第01讲辅助线的初步认识 第02讲截长补短法 第03讲中点模型——倍长中线 第04讲三垂直模型 第05讲角平分线模型(一) 第06讲角平分线模型(二) 第07讲手拉手模型——全等 第08讲最短路径问题 第09讲平面直角坐标系中的几何问题

第01讲辅助线的初步认识 【知识提要】 初中辅助线的添加时几何部分学习的重要内容,同时也是学生学习的难点之所在。当 问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立 已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 辅助线的添加通常有两种情况: 1.按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线 段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往 往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫 做“补图”!这样可防止乱添线,添辅助线也有规律可循。 本节课我们就以启东作业中的问题为例,来介绍常见的辅助线的画法. 【典型例题】 例1:小春在做数学作业时,遇到一个这样的问题:如图,AB=CD,BC=AD,请说明 ∠A =∠C 的道理. BC=AD,所以只需连接BD,构造全等三角形即可. D

例2. 如图,O 是△ABC 内一点,连接OB 和OC. 你能说明OB +OC < AB + AC 的理由吗? 【思路点拨】要证明线段之间的不等关系,要将线段放在三角形中,利用三边关系来证明。△ABC 和△OBC 中无法解决,所以只需要将OB (OC )延长交AC (AB )于点D ,在△ABD (△ACD )和△OCD (△OBD )利用三边关系解决即可. 归纳:构造线段时辅助线的写法: 1. 连接**。例如:连接AB 2. 延长**。①例如:延长AB 交CD 于E 点;②延长AB 到E ,使BE = AB . 例题3:已知:如图AB ∥DE . 求证:∠B +∠C +∠D = 360° 【思路点拨】要证明这三个角的和是360°,可以 构造周角,2个180度或四边形的内角和来证明。 通过作平行线就可实现角的位置的转移,将角移动到 适当的位置。 归纳:构造平行线时辅助线的写法: 1. 过*作* ∥ *。例如:过点A 作AB ∥CD. 练习:叙述并证明三角形内角和定理。 例题4:已知:如图,△ABC 的∠B 的外角的平分线BD 和∠C 的外角平分线CE 相交于点P 求证:点P 也在∠BAC 的平分线上。 【思路点拨】已知CP 和BP 为外角平分心线,要证明P 角平分线上,只需要过P 向AM 、AN 、BC 归纳:构造垂线,中线,角平分心线时辅助线的写法: 1. 垂线:过*作*⊥*于点*。例如:过点A 作AB ⊥CD 于点B . C E A N B

角平分线定理专题

1.如图,2是/ DE = DG* △ ADG*U A AED 的而枳分别为 35,见I △ EDF 的而积为( ) 2 - A ?25 B ? 5.5 C ? 7.5 2?如图f 是ZAOB 平分线OC 上一点f D 丄OB,垂足为D, 若PD=2M 点P 到边OA 的距离是 3?如图,AABC 的三边AB,BC,CA 长分别是20,30,40,M 三条角平分线将Z\ABC 分为 三个三角形,则 S. .ABO : S A BCO : S/.CAO ,: .r \ ' _______________ ? 4. (2016?怀化)如图,OP 为Z AOB 的角平分线,PC 丄OA, PD 丄OB,垂足分别是C, D,则下 列结论错误的是() 4 PC=PD B ? ZCPD=Z DOP C ? ZCPO = Z DPO D ? OC = OD 5. (2016?淮安)如图,在PtAABC 中,ZC=90°,以顶点A 为圆心,适当长为半径画弧,分 别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于扌MN 的长为半径画弧,两弧交于 点P ,作射线AP 交边BC 于点D,若CD=4, AB = 15,则厶ABD 的面积是( 6. 如图,AABC 中,ZC=90°, AD 平分Z BAC 交BC 于点D ?已知BD : CD = 3 : 2,点D 到 AB 的距禽是6,则BC 的长是 _________ 7. 如图所示,已知AABC 的周长是20, OB, OC 分别平分Z ABC 和Z ACB, OD 丄BC 于点D, 且OD = 3,贝U ABC 的面积是. _______ 之定理专题(基础题) B.2 C. 4 1 5 B. 30 C ? 45 D ? 60 () 為DF 丄AB ,垂足为& A D. B D B O A D H

初中几何辅助线大全 最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与 ∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, 1 9-图D C B A E F 1 2 A B C D E 1 7-图O

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

作辅助线的常用方法

在利用三角形三边关系证明线段不等关系时,如直接证不出 来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D 、E 为△ABC 内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一) 将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN > MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ; (2) 在△CEN 中,CN+NE>CE ; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2) 延长BD 交 AC 于F ,廷长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)………………………………..(2) DG+GE>DE (同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。 一、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两 点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理: 例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC 。 因为∠BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于 在内角的位置; 证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, A B C D E N M 1 1-图A B C D E F G 2 1-图A B C D E F G 1 2-图

几何辅助线之角平分线专题

几何辅助线之角平分线专题1、角平分线辅助线四种基本模型 已知:AD是∠BOC的角平分线 (1)(2) (3)(4) 2、补充性质: 如图,在△ABC中,AD平分∠BAC,则有AB:AC=BD:DC

典型例题 例1、已知:如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB.求证:AC+CD=AB 例2、已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合,当∠A满足什么条件时,点D恰为AB中点?写出一个你认为适当的条件,并利用此条件证明D为AB中点. 例3、如图,AB=2AC,∠BAD=∠DAC,DA=DB ,求证:DC⊥AC。

D E H A B C 例4、如图所示,已知AD 是△ABC 的角平分线,DE AB ⊥,DF AC ⊥, 垂足分别是E , F .求证:AD 垂直平分EF . 例5、 如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH 例6、如图,已知等腰直角三角形ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥ BD ,垂足为E ,求证: BD =2CE 。

例7、如图,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。 变式练习 请你参考上图构造全等三角形的方法,解答下列问题: ⑴如图,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断写出FE与FD之间的数量关系; ⑵如图,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请问,你在⑴中所

八年级几何辅助线专题训练

常见的辅助线的作法 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形. 7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、等腰三角形“三线合一”法 1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E, 求证:CE=BD. 中考连接:

E D F C B A O E C B ABC ?(2014?扬州,第7题,3分)如图,已知∠AOB =60°,点P 在边OA 上, OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =( ) A . 3 B . 4 C . 5 D . 6 二、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 中考连接: (09崇文)以的两边AB 、AC 为腰分别向外作等腰Rt 和等腰Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的关系.(1) 如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转? θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 三、借助角平分线造全等 1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD 2、如图,已知点C 是∠MAN 的平分线上一点,CE ⊥AB 于E ,B 、D 分别在AM 、AN 上, AE=(AD+AB ).问:∠1和∠2有何关系? 且 中考连接: ()如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全

初中几何辅助线大全最全

初中几何辅助线大全-最全 三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1 :已知AC= BD, AD丄AC于A , BC丄BD于B, 求证:AD= BC 分析:欲证AD = BC,先证分别含有AD, BC的三角形全等,有几种方案:△KDC与ABCD , △XOD与△BOC’MBD与ABAC,但根据现有条件,均无法证全等,差角的相等,因此可 设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA CB它们的延长交于E点, ?/ AD丄AC BC丄BD (已知) ???/ CAE=Z DBE = 90 ° (垂直的定义) 在厶DBE与△ CAE中 E E(公共角) DBE CAE(已证) BD AC(已知) ? A DBE^A CAE (AAS ?ED= EC EB = EA (全等三角形对应边相等) ?ED- EA= EC— EB 即:AD= BC (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1 :在Rt△ ABC中,AB= AC, / BAC= 90°,/ 1 = Z 2, CEL BD的延长于E。求证:BD= 2CE

分析:要证BD = 2CE,想到要构造线段2CE,同时CE

与/ABC的平分线垂直,想到要将其延长。 证明:分别延长BA CE交于点F。 ?/ BEX CF (已知) ???/ BEF=/ BEC= 90°(垂直的定义) 在厶BEF与厶BEC中, 1 2(已知) BE BE(公共边) BEF BEC(已证) 1 ? △ BEF^A BEC(ASA ?- CE=FE」CF (全等三角形对应边相等) 2 ?// BAC=90 BE 丄CF (已知) ???/ BAC=/ CAF= 90°/ 1 + / BDA= 90°/ 1 + Z BFC= 90° ???/ BDA=/ BFC 在厶ABM A ACF中 BAC CAF (已证) BDA BFC (已证) AB = AC(已知) ? △ ABD^A ACF (AAS ? BD= CF (全等三角形对应边相等)? BD= 2CE 四、取线段中点构造全等三有形。 例如:如图11-1 : AB= DC / A=/ D 求证:/ ABC=/ DCB 分析:由AB = DC ,ZA =/D,想到如取AD的中点N,连接NB , NC,再由SAS公理有△ ABN也Q CN,故BN = CN , ZABN =ZDCN。下面只需证/ NBC =ZNCB,再取BC的中点 M,连接MN,则由SSS公理有△ NBM也A CM,所以/NBC = ZNCB。问题得证。 证明:取AD, BC的中点N、M连接NB NM NC贝U AN=DN BM=C皿在厶ABN和厶DCN

角平分线习题精选(专题)

第 1 页 共 2 页 角平分线习题精选 1、已知:如图1,中,∠C =2∠B ,∠1=∠2, 求证:AB =AC+CD 。 2、已知,如图2,∠1=∠2,P 为BN 上一点, 且PD ⊥BC 于D ,AB+BC =2BD , 求证:∠BAP+∠BCP =180°。 3、如图,△ABC 中,AC =BC ,∠BAC 的外角平分线交 BC 的延长线于点D ,若∠CAD =2∠ADC ,求∠B 的度数 5、如图5、A B ∥CD ,∠B =90°,E 是BC 的中点。DE 平分∠ADC , 求证:AE 平分∠DAB 。 6、如图6、在△ABC 中,AB =7, 求内心到边的距离。 7、如图7、已知在△ABC 中,分别以AC 、BC 为边向外作 正△BCE 、正△ACD ,BD 与AE 交于M , 求证:(1)AE =BD 。(2)MC 平分∠DME 。 D D C

第 2 页 共 2 页 8、如图8、AB =CD ,△PCD 的面积等于△PAB 的面 积,求证:OP 平分∠BOD 。 9如图9、在△ABC 中,∠B =60°,△ABC 的角平分 线 AD 、CE 交于点O ,求证:AE+CD =AC 。 10、如图10、已知在四边形ABCD 中,B D >AB ,AD =DC , BD 平分∠ABC ,求证:∠A+∠C =180°。 11、如图11、△ABC 中,AD 是∠A 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF+∠BAF =180°,求证:DE =DF 。 12、如图12、△ABC 中,AD 是∠BAC 的平分线, AD 的垂直平分线交AD 于点E , 交BC 的延长线于点F 。 求证:FD 2=F B ×FC C F

中考数学专题初中几何辅助线几种常见添法培优试题.doc

2019-2020 年中考数学专题初中几何辅助线的几种常见添法培优试题 一、由角平分线想到的辅助线 1、截取构全等 例1:如图 1, AB∥ CD, BE 平分∠ ABC, CE平分∠ BCD,点 E 在 AD上。求证: BC=AB+CD。例2:已知,如图 2,AB=2AC,∠ BAD=∠ CAD, DA=DB。求证: DC⊥ AC。 例 3:如图 3,在△ ABC中,∠ C=2∠ B, AD平分∠ BAC。求证: AB-AC=CD。 2、角平分钱上的点向角两边作垂线构全等

例1:如图 4,已知 AB>AD,∠ BAC=∠ FAC, CD=BC。求证:∠ ADC+∠ B=180° 例 2:已知,如图5,△ ABC的角平分线BM、 CN相交于点P,求证:∠ BAC的平分线也经过点P。 3、作角平分线的垂线构造等腰三角形 例1:已知,如图 6,∠ BAD=∠ DAC, AB>AC, CD⊥ AD于 D,H 是 BC的中点。 1 求证: DH( AB AC) 例 2:如图 7, AB=AC,∠ BAC=90°, BD平分∠ ABC, CE⊥ BE。求证: BD=2CE。

例 3:已知,如图8,在△ ABC中, AD、 AE分别是△ BAC的内、外角平分线,过顶点B作 BF⊥ AD,交AD的延长线于 F,连结 FC 并延长交 AE于 M。 求证: AM=ME。 例 4:已知,如图9,在△ ABC中, AD平分∠ BAC,AD=AB,CM⊥ AD交 AD延长线于 M。 求证: AM 1 ( AB AC) 。 2 二、截长补短法 例 1:如图 10,正方形 ABCD中, E 为 BC上的一点, F 为 CD上的一点, BE+DF=EF。求∠ EAF的度数。

(完整版)中考复习2角平分线专题

角平分线专题 【类型一】角平分线倒角模型 例1、把一副学生用三角板)9060 30(???、、和)904545(???、、如图(1)放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F,斜边AB 交x 轴于G,O 是AC 中点,8=AC . (1)把图1中的AED Rt ?绕A 点顺时针旋转α度)900(?<≤α得图2,此时AGH ?的面积是10,AHF ?的面积是8,分别求F 、H 、B 三点的坐标; (2)如图3,设AHF ∠的平分线和AGH ∠的平分线交于点M,EFH ∠的平分线和FOC ∠的平分线交于点N,当改变α的大小时,M N ∠+∠的值是否会改变?若改变,请说明理由;若不改变,请求出其值. 检测1、如图,已知点A 是y 轴上一动点,B 是x 轴上一动点,点C 在线段OB 上,连接AC ,AC 正好是OAB ∠的角平分线,DBx ABD ∠=∠,问动点A ,B 在运动的过程中,AC 与BD 所在直线的夹角是否发生变化,请说明理由;若不变,请直接写出具体值。 x y

检测2、如图探究与发现: 探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢? 已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系. 探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢? 已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P 与∠A+∠B的数量关系. 探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢? 请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍 等腰三角形 1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法; 2. 作一腰上的高; 3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。梯形 1. 垂直于平行边 2. 垂直于下底,延长上底作一腰的平行线 3. 平行于两条斜边 4. 作两条垂直于下底的垂线 5. 延长两条斜边做成一个三角形 菱形 1. 连接两对角 2. 做高 平行四边形 1. 垂直于平行边 2. 作对角线——把一个平行四边形分成两个三角形 3. 做高——形内形外都要注意 矩形 1. 对角线 2. 作垂线

很简单。无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。还有一些关于平方的考虑勾股,A字形等。 三角形 图中有角平分线,可向两边作垂线(垂线段相等)。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 解几何题时如何画辅助线? ①见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 ②在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 ③对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线

初一角平分线的性质专题一

D C A E B 角平分线的性质及判定专题 填空题: 1. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 . 2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________. 3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF . 7.三角形的三条角平分线相交于一点,并且这一点到________________相等. 8.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________. 选择题: 9.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( ) A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定 10.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD 11.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) 第4题 第5题 第6题

角平分线辅助线专题练习

D A B C 角平分线专题 1、 轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图, 2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形 3、 定义:带来角相等。 4、 补充性质:如图,在△AB C中,AD 平分∠BAC ,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC ,∠BAD=∠DAC ,DA =DB 求证:DC ⊥AC

B 例题2:如图,在△AB C中,∠A等于60°,BE 平分∠ABC,C D平分∠ACB 求证:DH=E H 例题3:如图1,B C>A B,BD 平分∠A BC,且∠A+∠C=1800, 求证:AD=D C.: 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC 上取B E=AB,连结DE ,∵BD 平分 ∠A BC,∴∠A BD=∠D BE ,又BD=BD,∴△ABD ≌△EBD (S AS), ∴∠A =∠DB E,AD=D E,又∠A+∠C=1800,∠D EB+∠DE C=1800,∴∠C=∠D EC,D E=DC , 则AD =DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、B D于E 、F , 连结DE,由BD 平分∠ABC ,易得△ABF ≌△EBF,则AB=B E, BD 平分∠A BC,BD =BD ,∴△ABD ≌△E BD(SA S), ∴AD =ED ,∠BAD =∠DEB,又∠BA D+∠C=1800, ∠BED+∠CE D=1800 ,∴∠C=∠DEC ,则DE=DC,∴AD=DC . 说明:证法1,2,都可以看作将△AB D沿角平分线BD 折向B C而构成 全等三角形的. 证法3:如图3,延长BA 至E ,使BE=B C,连结D E, ∵BD 平分∠A BC,∴∠CBD =∠DBE ,又BD=BD ,∴△CB D≌△EBD (SAS), ∴∠C=∠E ,CD=DE,又∠BA D+∠C=1800,∠DA B+∠D AE=1800, ∴∠E=∠D AE,DE =DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线B D折向B A而构成全等三角形的. B A C D E 图1 B A C D E F 图2 B A C D E 图3

几何专题——辅助线

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆 假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解; 以上规律属一般,灵活应用才方便。

八年级数学上册几何添辅助线专题

全等三角形问题中常见的辅助线的作法(有答案)条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相 等。 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之 间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。角 平分线平行线,等腰三角形来添。线段 垂直平分线,常向两端把线连。三角形 中两中点,连接则成中位线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2?倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3. 角平分线在三种添辅助线 4. 垂直平分线联结线段两端 5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6. 图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7. 角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计 算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三 角形创造边、角之间的相等条件。 8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形? 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形? 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性 质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连 接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ ABC中, AB=5, AC=3则中线AD的取值范围是 解:延长AD至E使AE= 2AD,连BE,由三角形性质知 也可将图对折看,对称以后关系现。角平分线加垂线,三线合一试试看。要证线段倍与半,延长缩短可试验。三角形中有中线,延长中线等中线。

相关主题
文本预览
相关文档 最新文档