运筹学习题参考答案
- 格式:pdf
- 大小:1.29 MB
- 文档页数:19
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。
(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。
Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。
(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X3,X4,X5为松驰变量。
问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X4,X5,X6为松驰变量。
习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。
6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。
运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
运筹学1至6章习题参考答案第1章 线性规划1.1 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。
已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。
1~6月份产品A 的单件成本与售价如表1-25所示。
(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。
最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。
2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。
3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。
4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。
5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。
二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。
2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。
3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。
4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。
5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。
三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。
A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。
运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。
1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。
1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。
答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。
答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。
答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。
答案:网络三、问答题:根据题目要求,回答问题。
1. 什么是线性规划?请简要解释线性规划的基本原理。
答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。
其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。
2. 动态规划在运筹学中的应用有哪些?请举例说明。
答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。
举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。
3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。
运筹学习题答案一、名词解释树:无圈连通图线性规划:解决在线性约束条件追求最大或最小的线性目标函数值的方法整数规划:决策变量至少有一个要求取整的线性规划0—1规划:决策变量只能取0或1的整数规划线性规划可行解:线性规划中满足所有约束条件的解最优解:使目标函数值最大(即利润最大)的可行解凸函数:函数图像上任意两点的连线上的点都在图像或图像上方的函数对偶价格:当约束条件的常数项增加一个单位时目标函数最优解改进的价格影子价格:当约束条件的常数项增加一个单位时目标函数最优解增加的价格灵敏度分析:在数学建模和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响逗留时间:顾客从进入系统到服务完毕离开系统的平均停留时间纳什均衡:对策的局中人都不能单方面改变自己的策略使自己处境更优最短路:在网络图中给定两点权数最小的通路最大流:在流量网络图中从发送点到接收点能承载的最大流割集:满足下列两个条件:(1)把网络分成两个相互不连接的部分,加上该边集的一个边则为连通(2)权数最小二、选择题1、目标线性规划中的约束条件()A、都有偏差变量B、绝对约束条件有偏差变量C、目标约束条件有偏差变量D、最低优先级的约束条件无偏差变量2、一般在应用线性规划建立模型时要经过四个步骤)()(1)明确问题,确定目标,列出约束因素(2)收集资料,确定模型(3)模型求解与检验(4)优化后分析以上图步的正确顺序是A、(1)(2)(3)(4)B、(2)(1)(3)(4)C、(1)(2)(4)(3)D、(2)(1)(4)(3)3、在运输问题的表上作业法确定初始基可行解时,如果采用Vogel法,则罚数的计算规则是()A、同行(列)的最大运价减去最小运价B、选取同行(列)的最大运价C、同行(列)的次小运价减去最小运价D、选取同行(列)的最小运价4、以下对层次分析法的认识中,不正确的是(C )A、对问题的准确界定及合理分层是层次分析法的前提和基础B、对各层次的各个判断矩阵的获取决定着决策的效果C、层次分析法必然涉及贝叶斯决策过程D、层次分析法涉及计算判断矩阵的特征值与特征向量5、线性规划问题中对人工变量的描述,不正确的是(B )A、在约束条件为“≥”时,为构造初始基可行解需要在该约束条件中添加人工变量B、在约束条件为“=”时,为构造初始基可行解需要在该约束条件中添加人工变量C、添加人工变量后,需要在目标函数中减去M乘以该人工变量(M为足够大的正数)D、人工变量本质上就是松弛变量6、循环存储策略是()A、有订货提前期的存贮策略B、每隔一个固定时间,采购固定数量货物的存贮策略C、每隔一个固定时间,采购最高库存减去现有存货量的存贮策略D、随机存贮策略7、线性规划灵敏度分析中,改变价值系数C,在原最终单纯形表中反映为()A、约束条件右端向量b的变化B、工艺系数矩阵A的变化C、基变量的改变D、检验数的变化8、库存管理的目的是()。
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。