第1章 智能控制概论1
- 格式:ppt
- 大小:1.66 MB
- 文档页数:46
《人工智能概论》课程笔记第一章人工智能概述1.1 人工智能的概念人工智能(Artificial Intelligence,简称AI)是指使计算机具有智能行为的技术。
智能行为包括视觉、听觉、语言、学习、推理等多种能力。
人工智能的研究目标是让计算机能够模拟人类智能的某些方面,从而实现自主感知、自主决策和自主行动。
人工智能的研究领域非常广泛,包括机器学习、计算机视觉、自然语言处理、知识表示与推理等。
1.2 人工智能的产生与发展人工智能的概念最早可以追溯到上世纪50 年代。
1950 年,Alan Turing 发表了著名的论文《计算机器与智能》,提出了“图灵测试”来衡量计算机是否具有智能。
1956 年,在达特茅斯会议上,John McCarthy 等人首次提出了“人工智能”这个术语,并确立了人工智能作为一个独立的研究领域。
人工智能的发展可以分为几个阶段:(1)推理期(1956-1969):主要研究基于逻辑的符号操作和自动推理。
代表性成果包括逻辑推理、专家系统等。
(2)知识期(1970-1980):研究重点转向知识表示和知识工程,出现了专家系统。
代表性成果包括产生式系统、框架等。
(3)机器学习期(1980-1990):机器学习成为人工智能的重要分支,研究如何让计算机从数据中学习。
代表性成果包括决策树、神经网络等。
(4)深度学习期(2006-至今):深度学习技术的出现,推动了计算机视觉、自然语言处理等领域的发展。
代表性成果包括卷积神经网络、循环神经网络等。
1.3 人工智能的三大学派人工智能的研究可以分为三大学派:(1)符号主义学派:认为智能行为的基础是符号操作和逻辑推理。
符号主义学派的研究方法包括逻辑推理、知识表示、专家系统等。
(2)连接主义学派:认为智能行为的基础是神经网络和机器学习。
连接主义学派的研究方法包括人工神经网络、深度学习、强化学习等。
(3)行为主义学派:认为智能行为的基础是感知和行动。
行为主义学派的研究方法包括遗传算法、蚁群算法、粒子群算法等。
《自动控制原理》课程教学大纲Principles of Automatic Control System课程编号:2000081适用专业:电气工程与自动化学时数:40 学分数:2.5执笔者:邱瑞昌王艳编写日期:2002.5一、课程的性质与目的概要:随着生产和科学技术的发展,自动控制技术在国民经济和国防建设中所起的作用越来越大。
自动控制技术的应用不仅使生产过程实现了自动化,极大的提高了劳动生产率和产品质量,改善了劳动条件,并且在人类探索新能源,发展空间技术和改善人民物质生活都起着极为重要的作用课程性质:自动控制原理是电气工程与自动化专业的技术基础课(专业基础平台课),是必修课,是以原理为主的理论性课程;主要讲述自动控制原理与控制系统设计、实验等内容。
根据自动控制技术发展的不同阶段,自动控制原来可分为古典控制理论和现代控制理论两大部分。
古典控制理论的主要内容是以传递函数为基础,研究单输入单输出一类自动控制系统的分析和设计问题。
这些理论研究较早,现在已经比较成熟。
并且在工程实践中得到了广泛的应用。
现代控制论是60年代在古典控制论的基础上,随着科学技术的发展和工程实践的需要而迅速发展起来的。
其内容主要以状态空间法为基础,研究多输入多输出、变参数、非线性、高精度、高效能等控制系统的分析与设计问题。
最优控制、最佳滤波、系统辩识、自适应控制等理论都是这一领域研究的主要课题。
特别是近年来由于电子计算机技术和现代应用数学研究的迅速发展,使现代控制理论又在研究庞大的系统工程的大系统理论和模仿人类智能活动的智能控制、生物控制、模糊控制等方面有了重大进展。
主要目的:培养学生1.掌握经典控制论中,线性定常连续、单输入单输出闭环控制系统的工作原理、分析和综合,掌握反馈控制原理的应用以及分析和设计的一般规律,使其具有分析和设计自动控制系统的初步能力,使学生对系统的认识上升到更高的层次。
2.了解控制系统中常用的检测装置,常用执行机构的工作原理,数学模型的建立过程,以及自控原理、经典控制论在当今的发展状况。
Data, Information, Knowledge, IntelligenceIntelligence Knowledge Information Data房间温度高 解决温度 高的办法温度高原因通风量不足增大通风量房间温度 32℃理想温度 23℃Data, Information, Knowledge, IntelligenceIntelligence KnowledgeInformation Data传统控制面临的挑战 实际系统由于存在复杂性、非线性、时变 性、不确定性和不完全性等,一般无法获得精 确的数学模型。
应用传统控制理论进行控制必须提出并遵循 一些比较苛刻的线性化假设,而这些假设在应 用中往往与实际情况不相吻合。
传统控制面临的挑战 传统控制方法在解决大范围变工况、异常 工况等问题方面往往不尽人意。
环境和被控对象的未知和不确定性,导致无 法建立模型。
9 传统控制往往不能满足某些系统的性能要 求。
控制科学发展过程进展方向最优控制 确定性反馈控制 开环控制 智能控制 自学习控制自组织控制 自适应控制 鲁棒控制 随机控制对象的复杂性智能控制的发展¾ 1985 年 8月,IEEE在纽约召开第一届智能控制学术 研讨会,主题:智能控制原理和智能控制系统。
会议 决定在 IEEE CSS 下设 IEEE 智能控制专业委员会。
这 标志着智能控制这一新兴学科研究领域的正式诞生。
¾ 1987 年 1 月 , 美 国 费 城 , 第 一 次 智 能 控 制 国 际 会 议,IEEE CSS与CS两学会主办; ¾ 1987 年以来,一些国际学术组织,如 IEEE 、 IFAC 等定期或不定期举办各类有关智能控制的国际学术会 议或研讨会,一定程度上反映了智能控制发展的好势 头。
智能控制的发展¾ 1991年7月,中国人工智能学会成立。
¾ 1993年7月,成都,中国人工智能学会智能机器人专 业委员会成立大会暨首届学术会议。
《智能控制技术概论》教学案例一、教学目标1.让学生了解智能控制的基本概念和原理。
2.掌握常见的智能控制算法和实际应用。
3.培养学生的创新思维和实践能力。
二、教学内容1.智能控制的基本概念和原理。
2.模糊控制、神经网络控制、深度学习等常见的智能控制算法。
3.智能控制在各个领域的应用案例。
三、教学方法1.理论讲解:通过课堂讲解、PPT演示等方式,让学生了解智能控制的基本概念和原理,常见的智能控制算法等。
2.案例分析:通过分析实际案例,让学生了解智能控制在各个领域的应用,加深对智能控制的理解。
3.实践操作:通过实验、编程等方式,让学生亲自实践智能控制算法的实现,培养其创新思维和实践能力。
四、教学流程1.导入新课:通过实例或问题导入,激发学生对智能控制的兴趣。
2.理论讲解:讲解智能控制的基本概念和原理,常见的智能控制算法等。
3.案例分析:分析智能控制在各个领域的应用案例,如机器人控制、智能家居等。
4.实践操作:进行实验或编程,让学生实践智能控制算法的实现。
5.课堂讨论:让学生分组讨论,分享对智能控制的理解和应用经验。
6.小结与布置作业:总结本节课的重点和难点,布置作业,让学生进一步巩固所学知识。
五、评价与反馈1.课堂表现:观察学生在课堂上的表现,包括听讲、参与讨论、实验操作等情况。
2.作业评价:根据学生的作业情况,评价学生对智能控制的理解和应用能力。
3.期末考试:通过期末考试,检查学生对智能控制理论和实践的掌握情况。
4.学生反馈:听取学生对教学的反馈和建议,不断改进教学方法和内容。
中南大学Central South University (CSU)Intelligent Control智能控制蔡自兴肖晓明余伶俐中南大学Central South University (CSU)智能控制和AI学习网址Webs for Intelligent Control and AI智能科学与技术系网站国家精品课程《智能控制》网站The American Association for Artificial Intelligence(AAAI)AI Lab, MIT /index.php European Coordinating Committee for Artificial Intelligence (ECCAI)Journal of Artificial Intelligence Research中南大学Central South University (CSU)Textbooks教材2007版Central South University (CSU)智能控制原理与应用中南大学Central South University (CSU)中南大学Central South University (CSU)中南大学Central South University (CSU)智能控制中南大学Central South University (CSU)国际首部智 能控制系统 英文专著World Scientific (SingaporeNew Jersey)中南大学 Central South University (CSU)1997第 一 章 概论 Ch.1 Introduction教学重点 1.介绍智能控制的产生和发展过程; 2.对智能控制及其相关概念进行定义; 3.简介智能控制的特点与分类; 4.讨论智能控制的学科结构理论。
教学难点 1.如何理解智能控制的定义; 2.了解智能控制与传统自动控制间的关系; 3.深入掌握智能控制的学科结构理论,特别是智能控 制四元交集结构理论的内涵。
自动化概论作业—智能控制智能控制基本概念智能控制的定义一: 智能控制是由智能机器自主地实现其目标的过程.而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器.定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制.他还认为自调节控制,自适应控制就是智能控制的低级体现.定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域.定义四: 智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。
智能控制的特点同时具有以知识表示的非数学广义模型和以数学模型表示的混合过程,也往往是那些含有复杂性,不完全性,模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理,以启发引导求解过程;智能控制的核心在高层控制,即组织级;智能控制器具有非线性特性;智能控制具有变结构特点;智能控制器具有总体自寻优特性;智能控制系统应能满足多样性目标的高性能要求;智能控制是一门边缘交叉学科;智能控制是一个新兴的研究领域。
智能控制的主要技术方法智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。
专家系统专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。
智能控制知识点范文
1、空调智能控制的基本原理
空调智能控制是一种自动控制空调的技术。
它使用温度传感器和湿度传感器监测室内环境的变化,根据这些信息进行调节,以确保室内环境温度与湿度水平达到设定值。
空调智能控制系统可以在室内温度及湿度超出设定范围时自动启动,以达到舒适状态。
2、空调智能控制系统的优点
(1)减少能耗:空调智能控制系统可以控制室内的温度和湿度,从而减少能耗。
(2)节约用电:当室内温度和湿度超出设定范围时,空调智能控制系统可以自动启动,从而节约用电。
(3)降低噪音:空调智能控制系统可以安静地监测室内环境,减少噪音,为人们提供舒适的环境。
(4)安全性:空调智能控制系统能够满足安防的要求,在室内温度和湿度异常时,可以及时发出警报,确保安全。
3、空调智能控制系统的应用
空调智能控制系统可以用于家庭、公司、医院、学校等各种场所的空调控制。
它可以在有效地节能、降低噪音的同时保证室内的温度和湿度。