采区车场设计与线路连接计算共46页
- 格式:ppt
- 大小:4.70 MB
- 文档页数:46
7 采区车场设计采区上(下)山和区段平巷或阶段大巷连接处的一组巷道和硐室称为采区车场。
采区车场按地点分为上部车场、中部车场和下部车场。
采区车场施工设计,最主要的是车场内轨道线路设计。
轨道设计必须与采区运输方式和生产能力相适应;必须保证采区调车方便、可靠;操作简单、安全;作效率和尽可能减少车场的开掘及维护工作量。
采区车场线路是由甩车场(或平车场)线路、装车站和绕道线路所组成。
在设计线路时,首先进行线路总布置,绘出草图,然后计算各线段和各联接点的尺寸,最后计算线路布置的总尺寸,作出线路布置的平、剖面图。
7.1 采区车场设计依据与要求7.1.1 采区车场设计依据7.1.1.1 地质资料采区车场设计需要的地质资料依据有:(1)采区上(下)山附近的地质剖面图和钻孔柱状图。
(2)采区车场围岩及煤层地质资料。
(3)采区瓦斯、煤尘及水文地质资料。
(4)采区上部车场附近的煤层露头、风氧化带、防水煤岩柱及相邻煤矿巷道开采边界等资料。
7.1.1.2 设计资料进行采区车场设计需要的设计资料有:(1)采区巷道布置及机械配备图。
(2)采区生产能力及服务年限。
(3)采区上(下)山条数及其相互关系位置和巷道断面图。
(4)轨道上(下)山提升任务,提升设备型号、主要技术特征提升最大件外形尺寸,提升一钩最多串车数。
(5)大巷运输方式、矿车类型、轨距、列车组成。
(6)采区辅助运输方式及牵引设备选型。
(7)采区上(下)山人员运送方式从设备主要技术参数。
(8)井底车场布置图及卸载站调车方式。
7.1.2 采区车场设计要求采区车场设计的要求主要有以下内容:(1)采区车场设计必须符合国家现行的有关规程、规范的规定。
(2)采区车场应满足采区安全生产、通风、运输、排水、行人、供电及管线敷设等各方面要求。
(3)采区车场布置应紧凑合理,操作安全。
行车顺畅,效率高,工程量省,方便施工。
(4)采区车场装车设备和调车、摘钩应尽量采用机械和电气操作。
7.2 采区上部车场线路设计7.2.1 采区上部车场概述7.2.1.1 采区上部车场形式采区上部车场基本形式有平车场、甩车场和转盘车场三类。
采区车场:采区上(下)山与区段平巷或阶段大巷连接处的一组巷道及硐室。
作用:在采区内运输方式改变或过渡的地方完成转载工作。
采区车场巷道:甩车道、存车线、联络巷道及各种硐室。
第一节轨道线路布置的基本概念一、矿井轨道矿井轨道:巷道底板铺设的道床、轨枕、钢轨和联结件等。
(一)轨型1、钢轨的型号,以kg / m表示2、类别:>重轨 24kg /m的钢轨;24kg /m的钢轨;≤轻轨矿井常用轨型有:24、18、15、11等。
小矿或运输量小的巷道可选用8.5型。
3、轨型选用:轨型选用1)根据列车重量、行车速度、行车频繁情况选择轨型。
2)斜井用箕斗提升,选用重轨。
3)15万t /a的小矿,斜井及大巷选用18或24型钢轨。
采区宜选用8.5型钢轨。
(二)道岔道岔—使车辆由一线路转运到另一线路的装置(2)道岔参数:—αa、b —外形尺寸,辙叉角。
在线路图中,道岔以单线表示。
道岔主线与岔线用粗实线绘出2、道岔类别(国标)1)类别:单开道岔— DK对称道岔— DC渡线道岔— DX对称道岔渡线道岔2)系列:615、618、624、918、924每个系列中按辙每个系列中按辙叉号码和曲线半径不同,又有不同型号:DK615 — 4 — 12DC624 — 3 — 9DX918— 5 — 2016(1)符号含义: DK、DC、DX单开、对称、渡线。
(2)第一段数:6、9 —分别表600mm、900mm轨距。
15、18、24 —分别表示轨型。
第二段数字(4、3、5)为辙叉号码(M)(3)辙叉号(M):)的关系是:αM 与辙叉角(DK道岔DC道岔:615、618、624、各有2个(M):2、3。
918、924各有1个(M):3b值为岔线实长b1的水平投影。
DX道岔:615、618、624各有2个(M):4、5。
918、924各有2个(M):4、5。
大,行车速度→小,R →α道岔的↑(4)道岔半径DK 和DC名称尾数表示道岔曲轨的曲线半径,单位为:m。
本采区为下山采区,且轨道上山为主要运输,车辆来往频繁,其通过能力较大,结合该采区位置,采区上部车场采用顺向平车场。
水平运输大巷的道岔型号为DK618-4-12和DX-618-4-1216两种型号,轨道上山采用道岔型号是DK618-4-12,一钩车牵引2-3个矿车。
一、上部车场车场线路设计:由于采区下山作主提升,没有设立运输上山。
故用采用双道变坡的线路布置方式,单开道岔选用DK618-4-12,道岔参数为:a1=3496mm,b=3404mm,α=14°15/,采用用中间人行道线路中心距S取为1800mm。
轨道上山起坡角β=30°有关计算参数如下图所示:斜面曲线半径R S 取12000mm平面曲线半径Rp 取12000对称道岔平行线路连接点长度2tancot k ααR S a L ++= =3496+1800×////30077tan 120001514tan 1︒⨯+︒ =12084mm竖曲线切线长T D =T G=R S tan 2β=12000×tan15°=3215mm 变坡点到阻车器挡面距离d ′为1.5m ~2.0m 取2.0m一钩车牵引2-3个矿车 一钩串车长B=3×2=6m=6000mm过卷距离A=5m平曲线起点到绞车房外壁距离A ′=15000mm平曲线半径R P =15000mm变坡点到绞车房的距离L AK=d ′+L K +B+A+A ′=2000+12084+6000+5000+15000=40084mmK 为边坡点。
K PD =K PG =Rs 296.57β=12000×296.5730︒=6283mm L G =L D =Rsin β=12000×sin30°=6000mmh D =h G =T D sin β=3215×sin30°=1608mm高道为重车,取坡度i G =9‰,低道为空车,取坡度i D =7‰,高低道最大高低差计算。
第十四章采区车场一、学习目的通过本章的学习,要求学生掌握采区上下山与区段平巷,轨道线路布置,采区硐室,辅助运输方式以及绞车房的位置、尺寸、布置方式等。
了解采区硐室有关参数的确定方法,能够根据具体条件选择采区上、中、下部车场的类型与路线布置方式。
二、教学主要内容(1)巷道线路布置的特点(2)轨道线路连接的计算(3)采区上部、中部、下部车场形式的选择(4)采区硐室的的设置及特点(5)其他辅助运输方式的车场及轨道线路连接特点三、教学重点、难点(一)重点轨道线路布置、采区车场布置(二)难点轨道、采区、硐室的线路布置以及相关的线路计算。
四、教学方法(1)教学方法:板书,最好有多媒体教学相结合。
(2)辅助教具:采矿模型实验室模型。
(3)重点和难点分析方法:采用理论分析与辅助教具相结合,以利于学生直观掌握。
五、课程详细内容与知识点1、基本概念:采区车场:采区上(下)山与区段平巷或阶段大巷连接处的一组巷道及硐室。
作用:在采区内运输方式改变或过渡的地方完成转载工作。
采区车场巷道:甩车道、存车线、联络巷道及各种硐室。
2、车场分类按地点分:采区上、中、下部车场按服务对象分:主提升甩(平)车场;辅助提升甩(平)车场。
按线路布置分:单道起坡甩(平)车场;双道起坡甩(平)车场。
3、采区车场施工设计线路设计:线路总体布置,绘草图;计算各线段和联接点尺寸;计算线路总尺寸;作线路布置的平、剖面图。
硐室设计:按线路设计,定巷道或硐室断面大小;确定硐室位置第一节轨道线路布置的基本概念一、矿井轨道矿井轨道:巷道底板铺设的道床、轨枕、钢轨和联结件等。
(一)轨型1、钢轨的型号,以kg / m表示2、类别:重轨24 kg /m的钢轨;轻轨24 kg /m的钢轨;矿井常用轨型有:24、18、15、11等。
小矿或运输量小的巷道可选用8.5型。
3轨型选用1)根据列车重量、行车速度、行车频繁情况选择轨型。
2)斜井用箕斗提升,选用重轨。
3)15万t /a的小矿,斜井及大巷选用18或24型钢轨。
采取下部车场路线设计已知,采区范围内煤层倾角16°,运输上山和轨道上山均开掘在煤层内,运输上山带式输送机中心与轨道中心线相距25m 。
运输大巷位于煤层底板岩石内,大巷中心线处轨面水平至煤层底板垂直距离20m,上山与大巷交角90°。
采区不在井田边界,大巷、轨道上山均采用900mm 轨距,井下主要运输采用5t 底卸式矿车运煤,20t 架线式电机车牵引,每列车由20辆矿车组成,上山辅助运输采用1t 固定式矿车,车场与大巷铺设30kg/m 钢轨,采用绕道式装车。
(未标单位为mm )1、装车站设计根据要求,装车站为绕道装车式,大巷中的渡线道岔选用ZDX630-4-12,α1=14°02′10″ a 1=3660b 1=3640L X =13720绕道和大巷线路连接、绕道内单开道岔均选用ZDK630-4-20,则α2=14°02′10″ a 2=3660b 2=3640则:L K =a +S cot α+T =3660+1900cot 14°02′10″+12000tan 14°02′10″2=12737 l 1=L e +0.5×L m =4500+0.5×3450=6225L H =L e +n ×L m +5m =4500+20×3450+5000=78500取L H =78500L D =2L H +2L K +l 1=2×78500+2×12737+9500=188699n 1=R cos ɑ+b sin ɑ=12000×cos 14°02′10′′+3640×sin 14°02′10′′=12525 m 1=a + b +R tan β sin β =3660+ 3640+12000tan 90°−14°02′10′′ ×sin 90°−14°02′10′′ =16281X 2=l 1+L K +L H +m 1+R 6−πR 6=106896 2、辅助提升车场设计⑴甩车线路设计辅助提升车场在竖曲线以后以25°坡度跨越大巷见煤。
采区车场设计一 、采区上部车场设计(一)平车场线路进入总回风道这种车场的特点是存车线设在总回风巷,已知变坡点C至总回风道中心线的距离为L, 采用这种布置的条件为 L ≥L1+Lg+La式中 L1--为一钩车长度及安全富裕距离。
Lg--为交岔点长度;La--为绞车房及其风道,绳道总长度Lk--为单开道岔平行线路连接点长度;Lh--存车线长度D--线路中直线段长度;(二)、平车场线路进入绕道二、竖曲线位置及坡度图竖曲线相对位置的确定:如上图,OA=存车线长度,如一吨矿车长2米,电机车长4.5米,取5米,一列车拉10个车斗,则存车线取1.5倍列车,则OA=1.5*10*2+5=35米。
OA为重车线,取坡度为8‰(27'30"),空车线坡度为10‰(34'24"),轨道下山坡度θ,重车线竖曲转角θ',θ'=θ+δ1,空车线竖曲线转角θ",θ"=θ-δ2,竖曲线半径R(9米),重车线弧长Kp '=πR'θ'/180˚,切线T'=R'*tg(θ'/2),空车线弧长Kp"=πR"θ"/180˚,切线T"=R"*tg(θ"/2)。
在△OEF中,1、OO'=OE/sinθ*sinθ',OE=OA+T'=OA+R'*tg(θ'/2),OO'=(OA+R'*tg(θ'/2))/sinθ*sinθ',2、O'E=OE/sinθ*sinδ1,O'E=(OA+R'*tg(θ'/2))/sinθ*sinδ1, 3、O'F=OO'/sinθ"*sinδ2,O'F=((OA+R'*tg(θ'/2))/sinθ*sinθ')/sinθ"*sinδ2,4、OF=OO'/sinθ"*sinθ,OF=(OA+R'*tg(θ'/2))/sinθ*sinθ'/sinθ"*sinθ, 5、OB=OF-T", 所以,两竖曲线起止点的间距为:6、 AB=OB*cosδ2-OA*cosδ1,因为,R、S、a 2,都是设计中选定的因此可以求出AB、AD值。