大数据培训材料
- 格式:pptx
- 大小:7.61 MB
- 文档页数:9
⼤数据管理培训复习材料第⼀篇⼤数据概论1.传感器采集的数据主要包括温度、压⼒、转速、声⾳、光线、位置、⽓味、磁场等物理量2.埋点技术的⽬的埋点技术通过在代码的关键部位植⼊统计代码,追踪⽤户的点击⾏为3.Hadoop是处理⼤数据有效技术有效技术4.第三次信息化浪潮的标志是“⼤云物移”5.⼤数据发展的萌芽期是上世纪90年代6.数据的产⽣⽅式经历了从“被动”、“主动”、到“⾃动”的转变7.麦肯锡对⼤数据定义是⼀种规模⼤到在获取、存储、管理、分析⽅⾯⼤⼤超出了传统数据库软件⼯具能⼒范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四⼤特征8.⼤数据的4V特征是体量⼤、多样性、价值密度低、速度快9.1PB=1024*1024GB10.互联⽹的数据以⾮结构化数据为主11.办公⽂档、⽂本、图⽚、⾳频这些都是⾮结构化的数据第⼆篇数据采集1.传感器数据处理的第⼀步是将电压信号转化为对应的物理量2.企业⾃⾝的APP产品可以通过埋点技术采集⽤户⾏为的数据3.数据采集与业务功能的开发会产⽣冲突4.互联⽹数据的采集依赖爬⾍技术5.互联⽹数据采集后可以应⽤于舆情管理、客户分析、⾏业分析、对⼿分析6.企业采集互联⽹数据不⼀定⾃⼰开发爬⾍程序,可以利⽤第三⽅采集⼯具第三篇数据仓库1.数据仓库的ETL过程包括数据抽取、转换、装载2.数据仓库是⾯向管理的系统,⽽普通数据库是⾯向业务的系统3.数据仓库对数据的访问时只读式的访问4.数据仓库是⾯向主题设计的,⽽普通数据库是⾯向应⽤设计的5.数据仓库的四个特征是⾯向主题的、集成的、随时间变化的、⾮易失的6.数据仓库虽然会⽐普通数据库保留更多的历史数据,但是它也需要根据时间变化删去旧的数据内容7.下⾯两个图中,图2是多维数据库的表现⽅式,更适合于数据仓库的OLAP操作图1 图2产品名称地区销售量冰箱东北 50冰箱西北 60彩电东北 70彩电西北 80空调东北 90空调西北 100 东北西北冰箱 50 60 彩电 70 80 空调 90 1008. 数据仓库的OLAP 操作包括上卷、下钻、切⽚、旋转等操作9. 数据仓库常⽤的模型包括雪花型和星型10. 下图表现的是雪花型的模型设计11. 数据仓库的表会引⼊冗余,也会对源表进⾏物理分割12. 数据仓库元数据的作⽤是描述了数据的结构、内容、键、索引等项内容13. 静态元数据包含名称、描述、格式、数据类型、关系、⽣成时间、来源、索引、类别、域、业务规则等14.动态元数据包含⼊库时间、更新周期、数据质量、统计信息、状态、处理、存储位置、存储⼤⼩、引⽤处等15.数据仓库的运维包含以下⼏部分数据安全管理、数据质量管理、数据备份和恢复16.数据仓库的数据量不断增长,针对增长数据的管理有哪些⽅法利⽤概括技术、对细剖数据的控制、对历史数据的限制、对数据使⽤范围的进⾏限制、将睡眠数据移出。
大数据培训资料大数据培训资料=====================一、背景介绍---------------------在当今数字时代,海量的数据被、处理和分析。
大数据技术正成为企业和组织获得关键业务洞见和决策支持的重要工具。
本章将介绍大数据的背景和概念,以及其在不同行业中的应用。
1.1 大数据的定义和特点大数据是指规模庞大、复杂多样、处理速度快的数据集合。
它具有以下特点:- 规模庞大:大数据主要是针对海量数据而言,通常以TB(1TB = 1024GB)或PB(1PB = 1024TB)为单位。
- 复杂多样:大数据包含结构化数据(如关系型数据库、Excel 表格等)和非结构化数据(如文本、图像、声音等)。
- 处理速度快:大数据需要使用高性能的计算机系统和并行处理技术来实时或准实时地处理和分析数据。
1.2 大数据的应用场景大数据技术在各个行业都有广泛的应用,包括但不限于以下领域:- 金融:大数据可以分析客户行为、风险评估和金融市场变化,辅助决策和高频交易。
- 零售:大数据可以帮助零售商了解顾客购买行为和偏好,进行精准营销和库存管理。
- 制造业:大数据可以优化供应链管理、设备维护和质量控制,提高生产效率和产品质量。
- 物流:大数据可以优化物流路线规划、车辆调度和配送时间,提高运输效率和降低成本。
- 医疗保健:大数据可以分析病患数据和疾病模式,提供个性化医学诊断和治疗方案。
二、大数据技术概述---------------------本章将介绍大数据技术的主要组成部分和相关技术,以及它们的作用和应用。
2.1 大数据存储和处理技术- 分布式存储:Hadoop分布式文件系统(HDFS)、Amazon S3等。
- 分布式计算:Hadoop MapReduce、Apache Spark等。
- 列式存储:Apache HBase、Apache Cassandra等。
- 内存计算:Apache Ignite、Redis等。
大数据培训资料大数据培训资料一、介绍大数据1.1 什么是大数据1.2 大数据的应用领域1.3 大数据的重要性和挑战二、大数据基础知识2.1 数据的类型2.2 数据存储与处理2.2.1 数据存储技术2.2.2 数据处理技术2.3 数据分析与挖掘2.3.1 数据可视化2.3.2 数据挖掘算法2.3.3 机器学习和深度学习三、大数据技术以及工具3.1 Hadoop3.1.1 Hadoop的架构3.1.2 Hadoop的核心组件3.1.3 HDFS的原理和工作机制3.2 Spark3.2.1 Spark的概述3.2.2 Spark的应用场景3.2.3 Spark的核心概念和组件3.3 NoSQL数据库3.3.1 NoSQL的概念和分类3.3.2 NoSQL数据库的应用3.3.3 NoSQL数据库的特点和优势3.4 数据可视化工具3.4.1 Tableau3.4.2 Power BI3.4.3 QlikView四、大数据的应用案例4.1 金融行业4.1.1 风险控制与欺诈检测4.1.2 客户行为分析4.1.3 营销策略优化4.2 零售行业4.2.1 供应链管理4.2.2 忠诚度和客户细分4.2.3 销售预测和库存管理4.3 健康医疗领域4.3.1 个性化医疗和基因分析4.3.2 医疗资源优化4.3.3 病症预测和监测五、大数据的安全与隐私保护5.1 大数据安全的挑战5.2 大数据隐私保护的方法5.3 大数据安全和隐私保护的法律法规六、附件本文档涉及的附件包括但不限于:1.示例代码2.数据集样例3.相关文献法律名词及注释1.GDPR(General Data Protection Regulation,通用数据保护条例):欧盟于2018年5月25日实施的一项数据保护法律法规,旨在加强对个人数据的保护和隐私权。
2.HIPAA(Health Insurance Portability andAccountability Act,医疗保险便携性和责任法案):针对美国医疗保健行业的法律法规,旨在保护个人的医疗信息隐私。
大数据应用与技术培训手册第一章大数据概述 (3)1.1 大数据概念与特征 (3)1.1.1 数据量大(Volume):大数据涉及的数据量通常非常庞大,远远超出了传统数据库的处理范围,需要采用新型技术来应对。
(3)1.1.2 数据类型繁多(Variety):大数据包括结构化数据、非结构化数据和半结构化数据,数据类型丰富多样,如文本、图片、音频、视频等。
(3)1.1.3 处理速度快(Velocity):大数据的处理速度要求高,需要在短时间内完成数据的采集、存储、处理和分析,以满足实时性需求。
(3)1.1.4 价值密度低(Value):在大数据中,有价值的信息往往隐藏在海量数据之中,需要通过数据挖掘和分析技术提取出有价值的信息。
(3)1.2 大数据发展历程 (3)1.2.1 数据积累阶段:互联网、物联网和社交媒体的快速发展,人类产生和积累的数据量呈指数级增长。
(3)1.2.2 技术创新阶段:为了应对大数据的挑战,分布式计算、云计算、数据挖掘和可视化等技术应运而生,为大数据处理和分析提供了技术支持。
(3)1.2.3 应用拓展阶段:大数据技术的成熟,各行业纷纷将其应用于实际业务中,推动了大数据在各领域的应用和发展。
(3)1.3 大数据应用领域 (3)1.3.1 金融领域:大数据技术在金融领域中的应用包括风险管理、欺诈检测、客户画像等。
(4)1.3.2 医疗健康领域:大数据技术可以用于疾病预测、药物研发、医疗资源优化等。
41.3.3 零售领域:通过分析消费者行为数据,企业可以优化商品推荐、库存管理等。
41.3.4 智能制造领域:大数据技术可以应用于工厂生产优化、产品故障预测等。
(4)1.3.5 社会治理领域:大数据技术在公共安全、交通管理、城市规划等方面具有重要作用。
(4)1.3.6 教育领域:大数据技术可以用于教育资源的优化配置、个性化教学等。
(4)1.3.7 文体娱乐领域:大数据技术在电影、音乐、游戏等产业中的应用,可以提升用户体验,推动产业发展。
大数据培训课件pptx $number{01}目录•大数据概述•大数据技术基础•大数据平台与工具•大数据挖掘与分析方法•大数据在各行各业应用实践•大数据挑战与未来发展趋势01大数据概述大数据定义与特点定义大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
特点大数据具有Volume(数据体量巨大)、Velocity(处理速度快)、Variety(数据类型繁多)、Value(价值密度低)的4V特点。
123大数据发展历程成熟期2013年至今,大数据技术逐渐成熟,应用领域不断拓展,成为推动社会进步和发展的重要力量。
萌芽期20世纪90年代至2008年,大数据概念开始萌芽,主要关注于数据存储和计算能力的提升。
发展期2009年至2012年,大数据逐渐受到关注,Hadoop 等开源技术不断涌现,数据处理和分析能力得到进一步提升。
金融大数据在金融领域的应用包括风险管理、客户分析、精准营销等方面。
医疗大数据在医疗领域的应用包括疾病预测、个性化治疗、医疗资源优化等方面。
教育大数据在教育领域的应用包括个性化教学、教育资源共享、教育评估等方面。
政府大数据在政府领域的应用包括智慧城市、公共安全、政策制定等方面。
大数据应用领域02大数据技术基础分布式计算架构Master/Slave 架构、MapReduce 架构等分布式计算概述定义、特点、优势等分布式计算编程模型MapReduce 编程模型、BSP 编程模型等分布式计算框架Hadoop 、Spark 等分布式计算原理存储技术02030104HBase 、Cassandra 等MySQL Cluster 、Oracle RAC 等HDFS 、GFS 等Amazon S3、Google Cloud Storage 等分布式文件系统NoSQL 数据库云存储技术分布式数据库大数据分析技术数据挖掘技术数据预处理数据处理与分析技术数据清洗、数据转换、数据规约等统计分析、机器学习、深度学习等分类、聚类、关联规则挖掘等03大数据平台与工具Hadoop生态系统介绍Hadoop概述Hadoop的起源、发展历程、核心组件及架构Spark 的起源、发展历程、核心组件及架构Spark 生态系统介绍Spark 概述弹性分布式数据集,实现容错和高效计算RDD处理结构化数据的模块,提供SQL查询功能Spark SQL处理实时数据流的模块,支持实时分析和处理Spark Streaming机器学习库,提供常见的机器学习算法和工具MLlib图计算库,支持图形处理和并行计算GraphXFlinkKafkaStormCassandraRedis其他大数据平台与工具流处理框架,支持实时数据流处理和批处理分布式流处理平台,实现实时数据流传输和处理实时计算系统,支持分布式实时计算和处理分布式NoSQL 数据库,支持高可用性和可扩展性内存数据库,支持高速读写和持久化存储04大数据挖掘与分析方法数据挖掘基本概念及过程数据挖掘定义从大量数据中提取出有用的信息和知识的过程。
大数据分析与运用培训教材第1章大数据基础概念 (3)1.1 数据与大数据 (3)1.1.1 数据的概念 (3)1.1.2 大数据的定义 (4)1.2 大数据的特征与价值 (4)1.2.1 大数据的特征 (4)1.2.2 大数据的价值 (4)1.3 大数据应用领域 (4)1.3.1 金融领域 (4)1.3.2 电商领域 (5)1.3.3 医疗领域 (5)1.3.4 智能交通领域 (5)1.3.5 智能制造领域 (5)1.3.6 社交媒体领域 (5)1.3.7 治理领域 (5)第2章大数据技术架构 (5)2.1 分布式计算与存储 (5)2.1.1 分布式计算 (5)2.1.2 分布式存储 (6)2.2 数据采集与预处理 (6)2.2.1 数据采集 (6)2.2.2 数据预处理 (6)2.3 大数据生态系统 (7)第3章数据挖掘与机器学习 (7)3.1 数据挖掘基本概念 (7)3.2 机器学习算法及应用 (8)3.3 深度学习简介 (8)第4章数据可视化与展现 (9)4.1 数据可视化基本原理 (9)4.1.1 数据预处理 (9)4.1.2 选择合适的图表类型 (9)4.1.3 色彩与布局设计 (9)4.1.4 交互性设计 (9)4.2 常用数据可视化工具 (9)4.2.1 Tableau (10)4.2.2 Power BI (10)4.2.3 ECharts (10)4.2.4 Highcharts (10)4.3 数据可视化案例分析 (10)4.3.1 案例一:某电商平台销售数据分析 (10)4.3.2 案例二:某城市交通流量分析 (10)4.3.3 案例三:某企业人力资源分析 (10)4.3.4 案例四:某网站用户行为分析 (10)第5章数据仓库与OLAP (10)5.1 数据仓库概述 (10)5.1.1 数据仓库的定义与特点 (11)5.1.2 数据仓库的发展历程 (11)5.1.3 数据仓库在大数据分析中的应用 (11)5.2 数据仓库的设计与实现 (11)5.2.1 数据仓库架构 (11)5.2.2 数据仓库设计原则 (11)5.2.3 数据仓库实现步骤 (11)5.3 联机分析处理(OLAP) (11)5.3.1 OLAP的定义与特点 (11)5.3.2 OLAP的分类 (12)5.3.3 OLAP的应用场景 (12)第6章大数据分析方法与模型 (12)6.1 描述性分析 (12)6.1.1 数据预处理 (12)6.1.2 统计分析 (12)6.1.3 可视化分析 (12)6.2 预测性分析 (12)6.2.1 机器学习算法 (13)6.2.2 时间序列分析 (13)6.2.3 深度学习模型 (13)6.3 指导性分析 (13)6.3.1 优化模型 (13)6.3.2 决策树分析 (13)6.3.3 关联规则挖掘 (13)第7章行业大数据应用案例 (14)7.1 金融行业大数据应用 (14)7.1.1 信贷风险评估 (14)7.1.2 反洗钱监测 (14)7.1.3 个性化理财推荐 (14)7.2 电商行业大数据应用 (14)7.2.1 用户画像分析 (14)7.2.2 库存管理优化 (14)7.2.3 供应链优化 (14)7.3 医疗行业大数据应用 (14)7.3.1 疾病预测与防控 (14)7.3.2 个性化治疗与健康管理 (15)7.3.3 医疗资源优化配置 (15)第8章大数据安全与隐私保护 (15)8.1 大数据安全挑战 (15)8.2 数据加密与安全存储 (15)8.3 隐私保护技术 (16)第9章大数据项目管理与实施 (16)9.1 项目管理基础 (16)9.1.1 项目管理概述 (16)9.1.2 项目管理生命周期 (16)9.1.3 项目管理知识领域 (17)9.2 大数据项目实施流程 (17)9.2.1 项目启动 (17)9.2.2 项目规划 (17)9.2.3 项目执行 (17)9.2.4 项目监控与控制 (17)9.2.5 项目收尾 (17)9.3 项目风险管理 (17)9.3.1 风险管理概述 (17)9.3.2 风险识别 (17)9.3.3 风险评估与量化 (18)9.3.4 风险应对与监控 (18)第10章大数据未来发展趋势与展望 (18)10.1 新一代大数据技术 (18)10.1.1 分布式存储技术 (18)10.1.2 计算引擎优化 (18)10.1.3 数据处理与分析方法创新 (18)10.1.4 数据安全与隐私保护技术 (18)10.2 人工智能与大数据 (19)10.2.1 人工智能在大数据处理中的应用 (19)10.2.2 大数据驱动的发展 (19)10.2.3 人工智能助力大数据应用创新 (19)10.3 数据驱动的社会变革 (19)10.3.1 治理与公共服务 (19)10.3.2 产业升级与转型 (19)10.3.3 社会科学研究与创新 (19)10.4 大数据产业发展趋势 (19)10.4.1 产业链完善与优化 (20)10.4.2 市场规模持续扩大 (20)10.4.3 产业政策支持力度加大 (20)10.4.4 国际竞争加剧 (20)第1章大数据基础概念1.1 数据与大数据1.1.1 数据的概念数据(Data)是对现实世界事物的抽象描述,是信息的载体。
大数据技术及应用培训(带附件)大数据技术及应用培训一、引言随着信息技术的飞速发展,大数据作为一种新兴的数据处理方式,正逐渐改变着我们的生活和工作。
大数据技术以其独特的优势,如海量数据存储、快速数据处理和分析等,被广泛应用于金融、医疗、教育、零售等领域。
为了更好地应对大数据时代的挑战,提升我国大数据技术及应用水平,开展大数据技术及应用培训显得尤为重要。
二、培训目标1.提升大数据技术理论水平:使学员掌握大数据的基本概念、特点、发展历程及应用领域,了解大数据技术体系及关键技术。
2.增强大数据技术应用能力:使学员熟练掌握大数据处理、存储、分析和可视化等技能,具备实际操作能力。
3.培养大数据思维和创新意识:使学员具备大数据思维,能够运用大数据技术解决实际问题,推动创新发展。
4.促进跨领域交流与合作:搭建大数据技术交流平台,加强各行业间的合作与交流,推动大数据产业发展。
三、培训内容1.大数据概述:介绍大数据的基本概念、特点、发展历程及应用领域,使学员对大数据有一个全面的认识。
2.大数据技术体系:讲解大数据技术体系结构,包括数据采集、存储、处理、分析和可视化等方面,使学员了解大数据技术全貌。
3.关键技术解析:深入剖析大数据关键技术,如分布式计算、数据挖掘、机器学习、自然语言处理等,使学员掌握核心技术。
4.大数据平台与应用:介绍主流大数据平台,如Hadoop、Spark、Flink等,以及在各行业中的应用案例,使学员了解实际应用场景。
5.大数据安全与隐私保护:讲解大数据安全与隐私保护的重要性,分析相关法律法规和技术手段,提高学员的安全意识。
6.大数据产业发展趋势:分析大数据产业的发展现状及未来趋势,探讨我国大数据产业发展策略。
7.实践操作与案例分析:组织学员进行实际操作,结合典型案例进行分析,提高学员的实际应用能力。
四、培训对象1.企事业单位信息部门相关人员:提升大数据技术应用能力,为企事业单位提供技术支持。
2.从事大数据相关工作的专业人士:深化专业知识,提高实际操作能力。
大数据培训总结材料大数据培训总结材料1.引言在现今数字化时代,大数据的应用越来越广泛。
为了适应市场需求,我们组织了一次大数据培训,旨在提升员工的数据分析和处理能力。
本文档将总结这次培训的内容和成果。
2.培训目标2.1 学习大数据基础知识和技术2.2 掌握大数据采集与存储的方法2.3 理解大数据分析的流程和工具2.4 学会运用大数据进行业务决策3.培训内容3.1 大数据基础知识3.1.1 什么是大数据3.1.2 大数据的特点和挑战3.1.3 大数据的应用领域3.2 大数据采集与存储3.2.1 数据采集方法3.2.2 大数据存储技术3.2.3 分布式文件系统的使用3.3 大数据处理和分析3.3.1 大数据处理框架的介绍3.3.2 Hadoop和Spark的使用3.3.3 数据清洗和转换3.4 数据可视化和报告3.4.1 数据可视化工具的选择3.4.2 制作数据报表的方法和技巧3.4.3 数据报告的分析和展示4.培训成果参与培训的员工通过系统学习和实践操作,成功掌握了大数据的基础知识和技能,能够独立完成以下任务:4.1 数据采集和清洗4.2 大数据存储和处理4.3 数据分析和可视化4.4 数据报告和决策支持5.学员反馈5.1 培训过程中的问题和困惑5.2 培训师的教学方法和能力评价5.3 培训内容的实用性和适应性评价5.4 培训对个人职业发展的帮助和影响6.附件6.1 培训课程表6.2 培训资料PPT6.3 培训案例和练习题6.4 学员作业和答案法律名词及注释:- 数据采集:指从各种来源获取数据的过程。
- 分布式文件系统:一种用来存储大规模数据并保证高可靠性和高可扩展性的系统。
- Hadoop:一个用于处理大规模数据集的分布式计算框架。
其核心思想是将大规模数据分成多个小任务分发到集群上进行并行处理。
- Spark:一个通用的分布式计算引擎,可以在大规模数据集上进行高速计算。
相比Hadoop更加快速和灵活。