初中数学_相似三角形应用举例教学设计学情分析教材分析课后反思
- 格式:doc
- 大小:5.57 MB
- 文档页数:15
教学设计(1)课前进行了热身,利用好课前二分钟,采用组内督查,提问反馈的形式进行了等比性质和相似三角形的性质1的复习,做好知识准备,从而为本节课对相似三角形的性质2的研究做好准备.(2)通过一个实际生活中的例子:一块三角形木板,工人师傅手中只有一把刻度尺,要把它切割成:一块为三角形,另一块为梯形,且要使切割出的三角形与梯形的面积之比为4:5,那么该怎么切割呢?从而引起学生探究的热情和兴趣。
(3)为利用已有的等比性质,相似三角形的对应高之比等于相似比,以及三角形的面积公式,以小组合作探究的方式得出本节课的重点:相似三角形的周长比等于相似比,面积比等于相似比的平方。
课上我给了足够的时间,每个小组讨论的也非常热烈,我也积极的深入到各个小组,对他们的方法进行指导。
谈论结束,我请了两个小组代表,给出小组讨论的思路和结果。
说实话,有时学生的探究能力和语言表达能力真的是出乎我们的意料。
上来的两个小组展示了他们的讨论结果,他们的讲解,真的可以用“完美”来形容。
通过这个环节,让学生通过小组合作探究的方式完成了对本节课重点内容的探究,进一步的达成了我的教学目标。
(4)接下来进行了本节课的第二个探究活动。
两个相似四边形的周长比等于相似比吗?面积比等于相似比的平方吗?五边形,六边形,n边形呢?在我的提示下,学生也顺利的解决了这个问题。
(5)课堂达标,我除了两个小问题,也是对前面知识的一个考察,我首先给出答案,然后以同位互批互改的形式解决了达标题。
(6)为了一堂课让学习能力强的学生能有所提高,“吃饱,吃好”,我又进行了课堂提高部分。
如图,在△ABC中,点D,F 是AB的三等分点上,点E,G是AC的三等分点,则S△ADE∶S四边形DFGE:S。
四边形FBCG =我又让他们进行了小组合作探究。
一番讨论后,许多学生有了思路,但是我又不想直接将答案告诉他们。
于是,我请了一位学习能力较强的学生进行了讲解,说实在的,他的讲解思路清晰,口齿清楚,让人一听就明白。
教学设计(一)教学目标1、。
知识与能力:1)进一步巩固相似三角形的知识.2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.2.过程与方法:经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(二)教学重点、难点和关键重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教学过程】一、知识梳理1、判断两三角形相似有哪些方法?1)定义:2)定理(平行法):3)判定定理一(边边边):4)判定定理二(边角边):5)判定定理三(角角):2、相似三角形有什么性质?对应角相等,对应边的比相等(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。
)二、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。
塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。
据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。
古希腊,有一位伟大的科学家泰勒斯。
一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。
亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。
同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。
初中数学_相似三⾓形的性质教学设计学情分析教材分析课后反思相似三⾓形的性质(1)教学设计课题:相似三⾓形的性质(1)教学内容:相似三⾓形对应中线的⽐、对应⾓平分线的⽐、对应⾼的⽐都等于相似⽐;相似三⾓形对应线段的⽐等于相似⽐;相似三⾓形性质的应⽤。
教学⽬标:(⼀)知识技能:经历探索相似三⾓形中对应线段⽐值与相似⽐的关系的过程,理解相似三⾓形的性质。
利⽤相似三⾓形的性质解决⼀些实际问题.(⼆)能⼒⽬标:培养学⽣的探索精神和合作意识;通过运⽤相似三⾓形的性质,增强学⽣的应⽤意识.在探索过程中发展学⽣类⽐的数学思想及全⾯思考的思维品质.(三)情感、态度与价值观⽬标:在探索过程中发展学⽣积极的情感、态度、价值观,体现解决问题策略的多样性.重、难点:重点:相似三⾓形的性质定理难点:相似三⾓形性质定理的应⽤教学⽅法:引导、探究、合作、交流三、教学过程:⼀、知识回顾:1、相似三⾓形的定义是什么?2、相似多边形的对应边、对应⾓有什么关系吗?3、相似三⾓形的判别⽅法有哪些?⼆、情景引⼊,出⽰⽬标房梁⽴柱问题三、讲授新课:本环节我分两部分进⾏,第⼀部分是探究活动得出相似三⾓形的性质定理以及对应线段的⽐等于相似⽐等性质,第⼆部分是典例解析。
(⼀)探究活动⼀相似三⾓形对应⾼的⽐与相似⽐的关系:在⽣活中,我们经常利⽤相似的知识解决建筑类问题.如图,⼩王依据图纸上的△ABC,以1:2的⽐例建造了模型房梁△A’B’C’,CD和C/D/分别是它们的⽴柱。
(1)试写出△ABC与△A’B’C’的对应边之间的关系,对应⾓之间的关系。
(2)△ACD与△A’B’C’相似吗?为什么?如果相似,指出它们的相似⽐。
(3)如果CD=1.5cm,那么模型房的房梁⽴柱有多⾼?(4)据此,你可以发现相似三⾓形怎样的性质?(⼆)探究活动⼆教师通过对三⾓形重要线段的提⽰,引导学⽣去尝试类⽐探究相似三⾓形对应中线的⽐、对应⾓平分线的⽐学⽣⾃主探究后,与组内其他成员交流:⽐较三个结论的证明过程有什么相同和不同之处.四、展⽰交流:1.抽⼩组汇报探究过程,引导评议纠错完善。
《相似三角形》教学设计及反思《《相似三角形》教学设计及反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、学情分析在七年级的学习中,学生通过观察、测量、画图、拼摆等数学活动,体会了全等三角形中“对应关系”的重要作用。
通过对“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展有条理地思考与表达,归纳,反思,交流等能力。
学生的学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。
二、教学任务分析(一)教材的地位和作用分析:《相似三角形》在本章中承上启下,体现了从一般到特殊的数学思想;是学生今后学习的基础;是解决生活中许多实际问题的常用数学模型。
即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件及与此有关的知识打下良好的基础。
(二)教学重点:相似三角形的定义及运用。
(三)教学难点:1.根据定义求线段长或角的度数,相似三角形的定义所揭示的本质属性的理解和应用;2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(四)教法与学法分析:本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
(五)教学目标分析:通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
1知识与技能:(1).掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2).能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2能力训练要求:(1).领会教学活动中的类比思想,提高学生学习数学的积极性。
图形的相似一、考点透视①了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。
②通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。
③了解两个三角形相似的概念,探索两个三角形相似的条件。
④了解图形的位似,能够利用位似将一个图形放大或缩小。
⑤通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。
二、莱芜热点三、知识梳理四、考点突破命题点一、比例线段1、(2016济宁)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.2、如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE ∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.第2题图命题点2 相似三角形的性质及判定3. (2015海南)如图,点P 是□ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( )A. 0对B. 1对C. 2对D. 3对第3题图4. (2013东营中考)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( ) A. 只有1个B. 可以有2个C. 可以有3个D.有无数个5、(2015南京)如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是( )A. AEAC=12B.DEBC=12 C.△ADE的周长△ABC的周长=13 D. △ADE的面积△ABC的面积=13第5题图6.(2015泰安本小题满分10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD = CP·BP(2)若AB = 10,BC = 12,当PD//AB时,求BP的长。
相似三角形复习课教案【教学目标】1.掌握一类基本相似图形的简单应用.2.培养学生分解基本图形的能力,体验用特殊形式研究问题.3.通过解题进一步巩固分类讨论、数形结合等数学思想.【重点难点】重点:基本图形的构造及应用.难点:分解基本图形寻找解题思路.【课型】复习课【教学过程】一、导入新课出示问题1:如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C. D.2方法一:构造直角三角形,利用勾股定理求解方法二:构造相似三角形,利用相似求解。
引导学生用两种方法求解,师生共同点评,引出课题。
二、讲授新课1、完成:做一做:在△ ABC中,AB>AC,过AB上一点D作直线DE交另一边于E,使所得三角形与原三角形相似,画出满足条件的图形.学生板演,师生补充点评。
总结相似的第一类基本图形:2、出示问题2:如图,在正方形ABCD中,E为BC上任意一点(与B、C不重合)∠AEF=90°.观察图形:(1)△ABE 与△ECF 是否相似?并证明你的结论。
(2)若E为BC的中点,连结AF,图中有哪些相似三角形?由问题2抽象出相似中“一线三直角”的基本图形3、探究等边三角形的等腰三角形中的相似,抽象出相似中“一线三等角”的基本图形4、总结归纳出相似三角形的第二类基本图形:三、变式训练,巩固提升变式1.已知:D为BC上一点,∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,则AF=_______变式2:如图,在Rt△CAB中,∠CAB = 90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE = 45°,DE交AC于点E。
设BD = x ,AE = y , 求关于的函数关系式。
DCBE变式3、梯形ABCD中,AD ∥ BC,AD<BC,P为AD上的一点(不与A、D重合),∠BPC= ∠ A= ∠ D,找出图中的相似三角形。
•••••••••••••••••《相似三角形的应用》教学反思《相似三角形的应用》教学反思3篇引导语:作为一位刚到岗的人民教师,我们的任务之一就是课堂教学,写教学反思能总结教学过程中的很多讲课技巧,那么应当如何写教学反思呢?下面是小编精心整理的《相似三角形的应用》教学反思,仅供参考,大家一起来看看吧。
《相似三角形的应用》教学反思篇1相似三角形的应用分两块内容,一块是相似三角形的周长比和面积比与相似比的关系,另一块是相似性质在实际生活中的应用。
第一个应用总的来说是比较简单的,没有太难,太偏的问题,但实际应用的难度就大大提高了,涉及到的实际问题,不仅题意难以理解,还有就是问题复杂,学生摸不找头脑,找不到解体思路,像我新课后完成后布置学生完成的课后作业题2、5、6题,有些成绩较好的学生跑到我办公室说:“老师,你布置的书本作业我一个都做不来。
”第一块内容虽然相对而言比较简单,但学生也有比较容易错的地方,比如说题目条件是两个相似三角形的面积比是多少,学生往往会直接将其开方得到两个相似三角形相似比是多少,这样做的原因就是学生还没真正理解“相似的性质”——先要有相似,才有比例。
另外,在相似性质的应用中有的时候还会用到相似比等于对应线段的比(比如说对应边上的高的比),用到这个性质的题目比较多,特别是在这样一个图形中:直角三角形里面放一个长方形或正方形。
学生刚开始的时候不容易找到。
相似性质的应用也常常与“比例尺”问题结合起来,学生在单位的换算上经常出错,关键是科学计数法还不熟练。
相似性质应用最多的地方就是求面积问题,还有类问题就是三角形与三角形之间虽然不相似,但它们等高,所以它们的面积比等于它们底边的比,也就等于它们底边所在的一组三角形的相似比。
在第二块内容的设计中,我主要以书本上的例题为主导,由于时间关系通过例题介绍了两种构造相似三角形求出树高的方法。
特别是第一种方法中,要用到科学中入射角等于反射角的原理,在以后学生的练习中,发现个别学生不知道这个原理,还发现部分学生将这个图形与“平行预备定理”的图形相混淆了,由平行预备定理直接得出这个图形中的两个三角形相似。
教学设计一、教学目标1.熟练掌握相似三角形的一些基本图形,能够快速从复杂的图形里面分解出基本图形;2.能运用相似三角形的判定和性质快速地进行有关计算和证明;3.通过对典型例题的探究,渗透转化的思想并能够提高观察、分析、解决问题的能力.二、教学重点与难点重点:利用相似三角形的判定定理及性质解决有关相似三角形的的问题;难点:从复杂图形中分解出基本图形,并学会运用转化的思想.三、教法学法教法:启发诱导、讲练结合学法:观察分析、动手练习、归纳总结四、教学过程1.基础知识梳理(1)什么是相似三角形?(2)相似三角形的判定定理(3)已知条件只涉及角,就用;已知条件只涉及边,就用;如果既有角又有边,则可考虑 .对以上问题,学生回答,学生补充。
(4)用课件出示中考出题方向:①证明两个三角形相似;②证明等积式或比例式【设计意图】通过对知识的回顾,学生能够将旧知提取并强化记忆,弥补了遗忘点;出示中考出题方向可以让学生明确中考出题形式。
考点一:相似三角形的判定2.例题讲解例1 已知:如图,∠1=∠2=∠B,则图中相似三角形共有()对A. 2对B. 3对C. 4对D. 5对归纳总结:从复杂图形中分解出基本图形(2)回顾基本图形(8类)课件出示这8类基本图形【设计意图】通过例1,让学生观察分析复杂图形,归纳总结出从复杂图形中分解出基本图2 AC D形,并回顾之前学过的基本图形,这样解决相似问题就事半功倍。
跟踪练习:1.(2014泰安)如图所示,在四边形ABCD 中,AB=AD ,AC 与BD 交于点E ,∠ADB=∠ACB. 求证:ADAC AEAB =让学生讲解思路,并让其他学生补充说明。
归纳总结:利用转化的思想,把AD 换成AB(2)求证:AB ²=AE ·AC让学生说思路,并让学生说一说这两个小题的解题过程的异同。
2.如图,△ABC 中,AB =AC ,AD ⊥BC 于D ,CF ∥AB 。
BP 的延长线交AC 于E 交CF 于F 。
九年级下学期中考复习《相似三角形复习》教学设计相似三角形复习课教学设计一、课标解读课标要求:1.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.了解相似三角形判定定理的证明.2.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.3.会利用图形的相似解决一些简单实际问题.数学学习是经历数学活动的过程,学生的数学学习活动是生动活泼的、主动的、富有个性的,动手实践、自主探索、合作交流是主要的学习方式.教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人.二、教材分析(一)地位与作用《相似三角形》是继图形的全等之后对图形形状内容的研究,是对图形全等知识的进一步拓广,是从特殊到一般的发展.《相似三角形》又是学习锐角三角函数、投影与视图,圆的知识的基础,例如锐角三角函数的定义、圆的有些性质的证明,都与相似三角形有密切联系.另外,在物理学、工程设计、测量、绘图等许多方面,都要用到相似三角形的知识.相似三角形有关知识的考查在中考中占有重要地位.因此学好相似三角形既是进一步学习的需要,也是工作实践的需要.本节课是九年级下学期中考复习课,学生已经在初三时学过相似三角形的有关知识,回顾相似三角形的定义、判定和性质,不仅可以帮助学生系统地构建知识体系,而且也可以进一步明确它们之间的联系与区别. 更重要的是为后面综合运用相似三角形,全等三角形等知识解决问题做好铺垫.学生在综合运用所学知识解决问题的过程中感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验,提高应用数学的意识和合作交流的能力.(二)教学目标1.回顾相似三角形的定义、判定和性质,进一步明确它们之间的联系与区别.2.在综合运用相似三角形的判定定理及性质定理解决问题的过程中,感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验.(三)教学重点、难点教学重点:熟悉相似三角形的基本构图.综合运用相似三角形的判定定理及性质定理解决问题.教学难点:灵活运用相似三角形、全等三角形、圆等知识解决问题.三、学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法.学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大胆创新的精神.四、评价设计通过基础演练,即时检测达成目标1,通过综合运用达成目标2.五、学习过程:(一)基础演练【教师活动】出示问题1.如图,(1)已知∠A =∠D ,要使△ABC∽△DEF ,还需添加一个条件,你添加的条件是(2)已知AB BC k DE EF ==,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是2.如图,已知△ABC ∽△DEF ,(1)你能得到哪些结论?(2)若AM ,DN 分别是BC ,EF 边上的中线,AB =6,AM =4,DE =5, DN =3.已知两个相似三角形的面积比等于4:9,则它们的周长比是【学生活动】独立思考并完成问题.【设计意图】以有代表性的习题为载体,引导学生在问题解决中查缺补漏,形成知识链,建构知识体系,使学生对所学知识进行整体把握.并且从理性上明晰:数学图形的研究通常是从定义、性质、判定、应用几个大方面着手,不但弄清了知识脉络,而且积累了数学研究的方法和经验,真正提高了学生的数学能力和数学素养.【问题应对】学生已经在初三时学过相似三角形的定义,性质,判定,但对于它们的联系和区别有些模糊,通过追问:还可以怎样做?你的依据是什么? 帮助学生形成完整的知识链.(二)即时检测【教师活动一】出示问题1. 如图,在△ABC 中,AB =9,AC =6,点D 在AB上,且AD =4,点E 在AC 上,连接DE ,使△ADE 与△ABC 相似,则AE = .2.如图,在△ABC 中,点D 在AB 上,下列条件能使△ACD 和△ABC 相似的有①∠ACD =∠B ②∠ADC =∠ACB③AC 2=AD •AB ④ 3. △ABC 中,若∠ACB =90°,于D ,(1)写出图中与∆ABC 相似的三角形 .(2)若AD =9,BD =4,则CD = .【学生活动】独立思考并完成问题.【设计意图】通过设置问题,既检测学生运用相似三角形的性质定理和判定定理解决问题,又帮助学生把有关相似的基本图形、基本策略、基本经验进行了简明扼要的整理,有效提高了课堂效率,促进了目标达成.【问题应对】第1题学生可能只想到平行相似一种情况,可以追问学生:还有不同的答案吗?若还有学生存在困难,可让学生分析“△ADE 与△ABC 相似”和“△ABC ∽△DEF ”两种表示三角形相似的方法有何不同?帮助学生得出正确答案.问题2中的④学生可能选错,通过问题让学生明确要证两三角形相似,已经具备了公共角相等,如AC CD AB BC =CD AB ⊥果添加两组边成比例的条件,要注意公共角必须成为夹角.第3题在学生回答准确的情况下再提出:图中还有哪些比例中项的数学式子?帮助学生熟悉常用的几种式子,公共边的平方等于共线边的乘积.【教师活动二】相似中的基本构图有哪些联系?插入微视频.【设计意图】微视频的加入,不但提高了学生的听课效果,而且更完整清晰地再现了各个基本图形及之间的联系.三、综合运用【教师活动一】出示问题1.已知点B ,E ,C 在同一条直线上,∠B =∠AED =∠C =90°,AE =ED ,AB =6,BC =8,求CD .变式训练一上题中,若AE 与ED 不相等,BE =3,其它条件不变,求CD .变式训练二等边∆ABC 的边长为3,点P 为AB 上一点,AP =1,点E 为CB 上一点,∠CPE =60°,求BE 长.【学生活动】独立思考,完成问题.【教师活动一】反思:通过上面的问题,有什么想法?一条直线上只要有三个等角,就能得到两个三角形相似.如何验证你的发现?我们把这种基本构图称为一线三等角,由一线三等角可以得到两三角形相似,从而求出线段的长度.变式训练三Array在∆ABC中,AB=6,AC=BC=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPE=∠A,设点P的运动时间为t秒,当以点C为圆心,CE为半径的圆与AB相切时,求t的值.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】设计习题组,让学生亲身经历发现问题、分析问题、解决问题的过程,提炼解决这类问题常用的基本思路,基本构图.通过变式训练,使学生多角度、多层次,灵活的运用所学知识解决问题,让学生体会变化中的不变,弄清条件改变,但解题的思路不变.这也是解决一题多变问题常用的方法.这一环节的题目设计由易到难,循序渐进,最终是为了促进目标2的达成.【问题应对】题目设计由易到难,学生可能没有意识到题目之间的联系,解决后面的问题有困难,可以适时追问,例如:全等和相似有什么联系?这道题和上一道题有什么联系?通过问题引导学生在变式训练中体会变与不变,“优化”解题策略,挖掘知识背后的思想、方法、规律.【教师活动二】出示问题2.链接中考(2015威海中考)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】链接中考题目,拉近了教学与中考的距离,让学生明确相似三角形的有关知识在中考中的常见命题思路,该题第一步考查全等,第二步考查相似.学生在综合运用所学知识解决问题的过程中,进一步体会两道题的条件改变,但解题思路不变.【问题应对】解决这样的综合题学生可能有困难,可以在学生独立思考的基础上进行小组合作,展示交流.四、盘点收获【教师活动】回顾本节课的学习,你有哪些新的收获?说说你的体会.【学生活动】小组内畅谈收获【设计意图】通过这个环节的设计让学生及时盘点所学知识,所积累的经验和方法,便于今后更好的学习.【问题应对】学生在总结时如果有遗漏,要及时补充.五、达标检测【教师活动】1. 如图,已知AB∥EF∥CD,AC、BD相交于点E,AB=6cm,CD=12cm,求EF.F F EDCBA2. (选作)如图,路灯距地面8m ,身高1.6m 的小明从距离路灯的底部O 点20m 的点A 处,沿AO 所在直线行走14m 到达B 点时,影长如何变化?【学生活动】独立完成检测 【设计意图】通过这个环节的设计及时反馈本节课学生的学习情况,便于今后更好的改进教学.第二题供学有余力的学生选作,体现了分层教学.《相似三角形复习》学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法. 学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大MN O B A胆创新的精神.《相似三角形复习》效果分析知识体系,使学生对所学知识进行整体把握。
教学设计
教学目标:
1、了解常见的三角形相似模型。
2、会根据具体情景构建恰当的相似模型,解决不能直接测量的物体的测高、河的测宽等问题,培养学生建模能力。
3、会用数型结合的方法分析问题,多角度地思考问题,能有条理的表述解题过程。
教学重点、难点:
重点:将实际问题转化为数学问题,有条理的表述解题过程
难点:根据实际情境建立三角形相似模型
教学过程:
一、创设情境引入课题
一天中午小明和他爸爸在公园里散步,在阳光的照射下地面上留下了两人的影子,小明的身高150cm, 影子长120cm,他爸爸的影子长144cm,你能求出他爸爸的身高吗?
学法:教师提出问题,学生动手建模,展示学生成果,学生口答教师板书,共同归纳模型、步骤、注意点。
板书:1、利用“同一时刻物高与影长”构成相似三角形。
2、步骤:实际问题转化数学问题解数学问题还原实际问题
3、注意:几何计算题要先证后算
莒县浮来山天下银杏第一树
生2:有平行四边形性质得OH=GK/2,量得GK和
学法:师生共同分析,把数字标在图上,应用数形结合的方法分析题意。
设计意图:巩固模型1的应用,同时解决了测量
结合学习方法。
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
【评析】:根据已建立起来的数学模型,解决课始提出的实际问题,在分析中采取了数形结合的学习方法。
进一步培养学生解决实际问题的能力
设计意图:应用模型2解决问题,在学生设计测量方案的过程中,提炼相似模型2,培养解决实际问题的能力和建模能力。
世界上最宽的河
——亚马孙河
怎样测量河宽?
问题:估算河的宽度,你有什么好办法吗?
例2如图,为了估算河的宽度,
我们可以在河对岸选定一个目标P,
在近岸Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.
课堂小结
课堂小结
相似三角形的应用主要有两个方面:
达标检测达标检测
铁道口的栏杆短臂长1m,长臂长A
D B
C
E
┏┏0.8m 5m 10m
2.4m
atImgID_7
学情分析
本班学生基础较差,学困生较多学习习惯不好,大多数学生学习不够专心,精力不集中,自制力不强,易受干扰,课堂纪律不好,学习缺少主动性,学习没有兴趣。
教材分析
一、教学目标:
1.进一步巩固相似三角形的知识.
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.
3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.
二、重点、难点
1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.
2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).3.难点的突破方法
(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用.初三学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识.
(2)在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。
另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力.
(3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦.
(4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时.
课后反思。