圆锥曲线与直线(一)
- 格式:doc
- 大小:77.50 KB
- 文档页数:2
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
圆锥曲线解题技巧之直线与圆锥曲线的交点如何通过直线与圆锥曲线的交点解决问题在解决与圆锥曲线相关的问题时,直线与圆锥曲线的交点是一个关键因素。
本文将介绍一些圆锥曲线解题的技巧,重点探讨如何通过直线与圆锥曲线的交点来解决问题。
一、直线与圆锥曲线的交点在解决圆锥曲线问题时,我们经常需要求解直线与圆锥曲线的交点。
求解这些交点能够帮助我们确定曲线的形状、性质以及其他重要参数。
接下来,我们将介绍两种常见的直线与圆锥曲线交点求解方法。
1. 利用代数方法求解交点一种常见的方法是通过代数方程求解直线与圆锥曲线的交点。
假设我们有一个圆锥曲线方程和一个直线方程,求解这两个方程的交点即可得到交点的坐标。
具体步骤如下:(1)将直线方程代入圆锥曲线方程,列出方程组。
(2)解方程组,求解交点坐标。
这种方法适用于各种类型的圆锥曲线,例如椭圆、双曲线和抛物线等。
2. 利用几何方法求解交点除了代数方法,我们还可以利用几何方法快速求解直线与圆锥曲线的交点。
以下是一些常见的几何方法:(1)切线法:对于一条切线,它与圆锥曲线相切于一个交点。
通过构造一条切线,我们可以找到直线与圆锥曲线的一个交点。
这种方法适用于某些特定的圆锥曲线,例如抛物线。
(2)平行线法:对于一条平行于坐标轴的直线,它与圆锥曲线相交于两个交点。
通过确定直线与圆锥曲线的一个交点,并利用平行线性质,我们可以求解另外一个交点。
这些几何方法能够有效地求解直线与圆锥曲线的交点,帮助我们更好地理解曲线的特点和性质。
二、应用案例分析接下来,我们将通过一些应用案例来展示如何利用直线与圆锥曲线的交点解决问题。
案例一:求解椭圆的焦点坐标已知椭圆的方程为x^2/16+y^2/9=1,要求椭圆的焦点坐标。
解析:椭圆的焦点是直线与椭圆的交点。
我们可以选择一条经过椭圆顶点的切线,找到切点作为一个焦点。
具体步骤如下:(1)求解椭圆的顶点坐标:将x=0代入椭圆方程,得到y=±3。
所以椭圆的顶点坐标为(0,3)和(0,-3)。
直线与圆锥曲线的位置关系(1)从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
(2)从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax°+bx+c=0.①.若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。
2、圆锥曲线的最值、定值及过定点等难点问题。
直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B 的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.。
规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。
练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。
A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。
解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。
故选择D规律提示:含焦点的区域为圆锥曲线的内部。
(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。
直线与圆锥曲线的位置关系总结归纳-V1直线与圆锥曲线的位置关系总结归纳:在二维平面直角坐标系中,圆锥曲线包括圆、椭圆、双曲线、抛物线四种类型。
接下来,我们将会详细地讲述这些圆锥曲线与直线的位置关系。
圆与直线的位置关系:1. 直线与圆心重合。
此时直线为圆的切线。
2. 直线与圆相交于两个点。
此时直线为圆的切线。
3. 直线穿过圆。
此时直线为圆的割线,并且圆被割成两个部分。
4. 直线在圆内部。
此时直线与圆没有任何交点。
5. 直线在圆外部。
此时直线与圆没有任何交点。
椭圆与直线的位置关系:1. 直线经过两焦点之间。
此时直线与椭圆有两个交点。
2. 直线经过其中一个焦点。
此时直线与椭圆只有一个交点。
3. 直线经过两焦点之外。
此时直线与椭圆没有交点。
4. 直线在椭圆内部。
此时直线与椭圆没有任何交点。
5. 直线在椭圆外部。
此时直线与椭圆没有任何交点。
双曲线与直线的位置关系:1. 直线经过双曲线的两焦点之间。
此时直线与双曲线有两个交点。
2. 直线贯穿双曲线。
此时直线为双曲线的一条渐近线。
3. 直线经过双曲线的其中一个焦点。
此时直线与双曲线有一条公共切线。
4. 直线经过双曲线两焦点之外。
此时直线与双曲线没有交点。
5. 直线在双曲线内部。
此时直线与双曲线没有任何交点。
6. 直线在双曲线外部。
此时直线与双曲线没有任何交点。
抛物线与直线的位置关系:1. 直线经过抛物线的焦点。
此时直线与抛物线有一条公共切线。
2. 直线在抛物线的焦点与顶点之间穿过。
此时直线与抛物线有两个交点。
3. 直线在抛物线的顶点之上。
此时直线与抛物线有两个交点。
4. 直线在抛物线的顶点之下。
此时直线与抛物线没有任何交点。
5. 直线在抛物线的开口处之上。
此时直线与抛物线有两个交点。
6. 直线在抛物线的开口处之下。
此时直线与抛物线没有任何交点。
通过以上的总结归纳,我们可以看出不同类型的圆锥曲线与直线的位置关系会有所不同。
我们可以利用这些位置关系来解决一些几何问题,深化我们对圆锥曲线的认识。
《圆锥曲线与直线》学案(一)学习目标:1.能够把研究直线与圆锥曲线位置关系的问题转化为方程组解的问题;2.能够使用数形结合的方法,迅速判断某些直线与圆锥曲线的公共点个数.1.回忆在直线和圆的位置关系中,怎样判断有几个公共点.2.你能否用作图的方法粗略地探究直线与椭圆、双曲线有几种位置关系,分别有几个公共点,3.怎样能准确地判断我们的探究结果是否准确?4.你能同样画出直线与双曲线的各种位置关系吗?分别有几个公共点?并试着举出实例证明自己的观点。
问题探究:以上各种情况中的公共点能否说成是交点,为什么?课堂训练:1.判断直线01=+-y x 与椭圆1162522=+y x 、双曲线122=-y x 、抛物线x y 42=公共点的个数,并说出位置关系。
2.过点P(1,1)与双曲线116922=-y x 只有一个交点的直线共有几条?<变式>:若将点P(1,1)改为(1)A(3,4) (2)B(3,0) (3)C(4,0) (4)D(0,0). 3.3.(04全国)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是4.(04全国)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 条5.过点)2,0(M 与抛物线x y 82=只有一个公共点的直线的方程是6.直线1-=kx y 与双曲线122=-y x 只有一个公共点,则k 的取值是7.直线1+=kx y 与椭圆13422=+y x 的交点个数是 ><变式:若直线1+=kx y 与椭圆12522=+my x 恒有公共点,则m 的范围是8.直线3-=x y 与曲线1492=-x x y 的交点个数为 ><变式:若方程24x -=2+kx 恰好有两个实数根,则实数k 的取值范围是9.已知双曲线以两条坐标轴为对称轴,且与x 2+y 2=17圆相交于A(4,-1),若圆在点A 的切线与双曲线的一条渐近线平行,求双曲线的方程.10.已知抛物线)0(22>=p px y ,过动点)0,(a M ,且斜率为1的直线l 与该抛物线交于不同的两点,p AB 2≤,(1) 求a 的取值范围。
直线与圆锥曲线的位置关系总结归纳(1)直线与圆锥曲线的位置关系总结归纳直线和圆锥曲线是几何学中常见的两种基本图形,它们的位置关系十分复杂。
在学习和研究数学问题时,了解它们的位置关系具有重要意义。
下面将总结归纳直线和圆锥曲线的位置关系。
一、直线与椭圆的位置关系1. 直线不经过椭圆:直线与椭圆没有交点,此时直线和椭圆之间没有任何位置关系。
2. 直线与椭圆相切于一点:直线与椭圆相切于一点,此时直线与椭圆的位置关系为切线。
3. 直线与椭圆相交于两点:直线与椭圆相交于两个点,此时直线与椭圆的位置关系是两个交点的连线。
4. 直线穿过椭圆:直线与椭圆相交于四个点,此时直线与椭圆的位置关系是四个交点的连线。
二、直线与双曲线的位置关系1. 直线不经过双曲线:直线与双曲线没有交点,此时直线和双曲线之间没有任何位置关系。
2. 直线与双曲线相切于一点:直线与双曲线相切于一点,此时直线与双曲线的位置关系为切线。
3. 直线与双曲线相交于两点:直线与双曲线相交于两个点,此时直线与双曲线的位置关系是两个交点的连线。
4. 直线穿过双曲线:直线与双曲线相交于四个点,此时直线与双曲线的位置关系是四个交点的连线。
三、直线与抛物线的位置关系1. 直线不经过抛物线:直线与抛物线没有交点,此时直线和抛物线之间没有任何位置关系。
2. 直线与抛物线相切于一点:直线与抛物线相切于一点,此时直线与抛物线的位置关系为切线。
3. 直线与抛物线相交于一个点:直线与抛物线相交于一个点,此时直线与抛物线的位置关系为交点。
4. 直线穿过抛物线:直线与抛物线相交于两个点,此时直线与抛物线的位置关系是两个交点的连线。
通过以上总结,我们可以看出,直线和圆锥曲线的位置关系与它们之间的交点有关,交点的个数和位置决定了它们的位置关系。
这对于学习和研究圆锥曲线成立方程、性质等问题非常有帮助。
《圆锥曲线与直线》学案(一)
学习目标:1.能够把研究直线与圆锥曲线位置关系的问题转化为方程组解的问题;
2.能够运用数形结合的方法,迅速判断某些直线与圆锥曲线的公共点个数. 问题导学:
1.回忆在直线和圆的位置关系中,怎样判断有几个公共点.
2.你能否用作图的方法粗略地探究直线与椭圆、双曲线有几种位置关系,分别有几个公共点,
3.怎样能准确地判断我们的探究结果是否正确?
4.你能同样画出直线与双曲线的各种位置关系吗?分别有几个公共点?并试着举出实例证明自己的观点。
问题探究:
以上各种情况中的公共点能否说成是交点,为什么?
课堂训练:
1.判断直线01=+-y x 与椭圆116252
2=+y x 、双曲线122=-y x 、抛物线x y 42=公共点的个数,并说出位置关系。
2.过点P(1,1)与双曲线11692
2=-y x 只有一个交点的直线共有几条?
<变式>:若将点P(1,1)改为
(1)A(3,4) (2)B(3,0) (3)C(4,0) (4)D(0,0). 3.
3.(04全国)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是
4.(04全国)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 条
5.过点)2,0(M 与抛物线x y 82=只有一个公共点的直线的方程是
6.直线1-=kx y 与双曲线122=-y x 只有一个公共点,则k 的取值是
7.直线1+=kx y 与椭圆13
42
2=+y x 的交点个数是 ><变式:若直线1+=kx y 与椭圆1252
2=+m
y x 恒有公共点,则m 的范围是
8.直线3-=x y 与曲线14
92=-x x y 的交点个数为 ><变式:若方程24x -=2+kx 恰好有两个实数根,则实数k 的取值范围是
9.已知双曲线以两条坐标轴为对称轴,且与x 2+y 2=17圆相交于A(4,-1),若圆在点A 的切线与双曲线的一条渐近线平行,求双曲线的方程.
10.已知抛物线)0(22>=p px y ,过动点)0,(a M ,且斜率为1的直线l 与该抛物线交于不同的两点,p AB 2≤,
(1) 求a 的取值范围。
(2) 若线段AB 的中垂线交x 轴于点N ,求三角形ABC 面积的最大值。
自主小结:。