图像的平滑处理与锐化处理
- 格式:doc
- 大小:2.38 MB
- 文档页数:10
昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。
2、掌握图像滤波的基本定义及目的。
3、理解空间域滤波的基本原理及方法。
4、编程实现图像的平滑与锐化。
[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值的方法。
(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。
再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。
中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。
二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。
数字图像处理作业题目:图像的平滑处理与锐化处理姓名:***学号:************专业:计算机应用技术1.1理论背景现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。
一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。
图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。
空间域处理是在图像本身存在的二维空间里对其进行处理。
而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。
在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。
1.2介绍算法图像平滑算法:线性滤波(邻域平均法)对一些图像进行线性滤波可以去除图像中某些类型的噪声。
领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。
领域平均法是空间域平滑噪声技术。
对于给定的图像()j i f,中的每个像素点()nm,,取其领域S。
设S含有M个像素,取其平均值作为处理后所得图像像素点()nm,处的灰度。
用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。
领域S的形状和大小根据图像特点确定。
一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。
如S 为3×3领域,点(m,n)位于S 中心,则()()∑∑-=-=++=1111,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1,1,1, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =,即方差变小,说明噪声强度减弱了,抑制了噪声。
浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。
能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。
也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。
滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。
⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。
1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。
特征:压缩像素值变化较⼤的图像的动态范围。
举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。
1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。
⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。
1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。
优点:形式可以是任意复杂的。
1.4.1.对⽐度拉伸:扩展图像的动态范围。
1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。
1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。
1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。
作为⾃适应对⽐度增强⼯具,功能强⼤。
1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。
在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。
1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。
目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
图像平滑和锐化变换处理一、实验容和要求1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
2、空域平滑:box、gauss模板卷积。
3、频域平滑:低通滤波器平滑。
4、空域锐化:锐化模板锐化。
5、频域锐化:高通滤波器锐化。
二、实验软硬件环境PC机一台、MATLAB软件三实验编程及调试1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。
①灰度拉伸程序如下:I=imread('kids.tif');J=imadjust(I,[0.2,0.4],[]);subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);subplot(2,2,3),imhist(I);subplot(2,2,4),imhist(J);②直方图均衡程序如下:I=imread('kids.tif');J=histeq(I);Imshow(I);Title('原图像');Subplot(2,2,2);Imshow(J);Title('直方图均衡化后的图像') ;Subplot(2,2,3) ;Imhist(I,64);Title('原图像直方图') ;Subplot(2,2,4);Imhist(J,64) ; Title('均衡变换后的直方图') ;③伽马校正程序如下:A=imread('kids.tif');x=0:255;a=80,b=1.8,c=0.009;B=b.^(c.*(double(A)-a))-1;y=b.^(c.*(x-a))-1;subplot(3,2,1);imshow(A);subplot(3,2,2);imhist(A);imshow(B);subplot(3,2,4);imhist(B);subplot(3,2,6);plot(x,y);④log变换程序如下:Image=imread('kids.tif');subplot(1,2,1);imshow(Image);Image=log(1+double(Image)); subplot(1,2,2);imshow(Image,[]);2、空域平滑:box、gauss模板卷积。
图像平滑与锐化处理1 图像平滑处理打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1图1-1 打开Layer Stack对话框在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。
忽略零值,单击OK(如图1-2所示)。
图1-2 Layer Stack对话框设置打开Interpreter>Spatial Enhancement>Convolution对话框。
如图1-3图1-3 打开Convolution对话框在Input File中选择band1.img。
在Output File中选择输出的处理图像,命名为lowpass.img。
在Kernel中选择7*7Low Pass,忽略零值。
单击OK完成图像的增强处理(如图1-4所示)。
图1-4 卷积增强对话框(Convolution)平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。
而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。
图1-5 处理前后的对比为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。
当差小于阈值的时候取原值;差大于阈值的时候取平均值。
这里通过查询得T取4,其表达式为下:g(i,j),当| f(i,j)-g(i,j)|>4G(i,j)=f(i,j),当| f(i,j)-g(i,j)|<=4具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。
先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图1-6,1-7,1-8,1-9,1-10,1-11所示)。
图像锐化的目的和意义图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。
当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。
要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。
图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。
图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。
图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法.锐化的目标实质上是要增强原始图像的高频成分.常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声.为此,在对锐化原理进行深入研究的基础上,提出了先用边缘检测算法检出边缘,然后根据检出的边缘对图像进行高频增强的方法.实验结果表明,该方法有效地解决了图像锐化后的噪声问题图像的锐化可以在空间域中进行,也可以在频率域中实现。
一. 图像信号的锐化过程1.空间域中锐化图像的目的在空间域中进行图像的锐化也成为空间滤波处理,目的又(1)一是提取图像中用于认识和识别图像特征的参量,为图像识别准备数据(2)消除噪声。
图像数字化时产生的噪声主要是造成对图像内容的干扰,这用图像的平滑处理。
图像数字化时在信号高频区域产生的误差以及设备自身噪声对图像的高频(轮廓特征)干扰同样也是一种噪声,可以用空间滤波的方法去除。
(3)采用空间滤波的方法可以更鲜明地保持图像的边缘特征,这也是空间滤波的主要目的,即锐化图像。
处理效果锐化的目的在于使图像中对象轮廓上的像素灰度大的更大,小的更小,但对轮廓外的像素不起作用。
XXXXXXXX 大学(数字图形处理)实验报告 实验名称 图像的平滑与锐化 实验时间 年 月 日专 业 姓 名 学 号 预 习 操 作 座 位 号 教师签名 总 评一、实验目的:1.了解图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本思想;2.掌握图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本步骤;二、实验原理:1. 邻域平均法的思想是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。
邻域平均法的数学含义可用下式表示:∑∑==⎪⎭⎫ ⎝⎛=mn i imn i i i w z w y x g 11),( (1) 上式中:i z 是以),(y x 为中心的邻域像素值;i w 是对每个邻域像素的加权系数或模板系数; m n 是加权系数的个数或称为模板大小。
邻域平均法中常用的模板是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡*=11111111191Box T (2) 为了解决邻域平均法造成的图像模糊问题,采用阈值法(又叫做超限邻域平均法,如果某个像素的灰度值大于其邻域像素的平均值,且达到一定水平,则判断该像素为噪声,继而用邻域像素的均值取代这一像素值;否则,认为该像素不是噪声点,不予取代),给定阈值0T :⎩⎨⎧≥-<-=00),(),(),(),(),(),(),(T y x g y x f y x g T y x g y x f y x f y x h (3) (3)式中,),(y x f 是原始含噪声图像,),(y x g 是由(1)式计算的平均值,),(y x h 滤波后的像素值。
2.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
锐化滤波和平滑滤波锐化滤波和平滑滤波是数字图像处理中常用的两种滤波方法。
它们可以用来提高图像质量、减少噪声或者改变图像外观。
本文将详细介绍这两种滤波方法的原理和应用。
一、锐化滤波锐化滤波是一种增强图像细节和边缘的方法。
它是通过加强图像的高频部分来实现的。
在数字图像中,高频部分指的是像素值变化幅度较大的区域,也就是图像中的边缘和细节。
我们可以使用一些特定的算子来实现锐化滤波。
这些算子一般被称为锐化滤波器或者边缘增强算子。
常见的锐化滤波器包括拉普拉斯算子、索贝尔算子、普瑞瓦特算子等。
这些算子可以通过卷积运算来实现。
卷积运算是指将一个算子和图像中的每一个像素做乘积,并将相邻像素的乘积相加。
具体来说,假设我们需要使用一个3x3的拉普拉斯算子:0 101 -4 10 10对一个灰度图像进行锐化滤波。
我们需要将该算子与图像中的每一个像素进行卷积运算。
运算公式为:f(x,y) = ∑g(i,j)h(x-i,y-j)其中,f(x,y)表示卷积运算后的像素值,g(i,j)表示图像中位置为(i,j)的像素值,h(i,j)表示拉普拉斯算子中位置为(i,j)的元素值。
在运用锐化滤波器时需要注意,过强的锐化可能会使图像出现噪点。
此外,图像中一些边缘和细节可能会被误认为噪声而被消除,从而使图像质量降低。
二、平滑滤波平滑滤波又称为模糊滤波,是一种减少图像噪声和平滑图像细节的方法。
它是通过对图像进行低频滤波来实现的。
低频部分指的是像素值变化比较缓慢或者连续性比较强的区域,也就是图像中的平滑区域或者背景。
我们可以使用一些特定的算子来实现平滑滤波。
这些算子一般被称为平滑滤波器或者模糊滤波器。
常见的平滑滤波器包括均值滤波器、中值滤波器、高斯滤波器等。
这些滤波器也可以通过卷积运算来实现。
均值滤波器就是最简单的平滑滤波器之一。
它是将像素周围的值取平均数,用平均值来代替该像素的值。
假设我们需要使用一个3x3的均值滤波器:1 1 11 1 11 1 1对一个灰度图像进行平滑滤波。
三种不同灰度图像增强算法对比一、摘要本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析 3 种方法在图像增强处理能力的优劣之处。
结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失;图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题;图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。
关键词: 图像增强 灰度图 直方图 平滑 锐化二、三种图像增强算法图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。
影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。
现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。
下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。
1、直方图均衡化直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。
为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。
实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。
二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。
统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。
另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。
假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。
1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。
设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。
除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。
这个假设大体上反映了许多图像的结构特征。
∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。
对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。
模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。
(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。
它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。
空域滤波技术根据功能主要分为平滑滤波与锐化滤波,平滑滤波能减弱或消除图像中的高频率分量而不影响低频分量。
因为高频分量对应图像中的区域边缘等灰度值具有较大变化的部分,平滑滤波可将这些分量滤去减少局部灰度起伏,是图像变得比较平滑。
实际应用中,平滑滤波还可用于消除噪声,或在提取较大目标前去除太小的细节或将目标的小间断连接起来。
锐化滤波正好相反,实际应用中锐化滤波常用于增强被模糊的细节或目标的边缘。
空域滤波是在图像空间通过邻域操作完成的,实现的方式基本都是利用模板(窗)进行卷积来进行,实现的基本步骤为:1、将模板中心与图中某个像素位置重合;2、将模板的各个系数与模板下各对应像素的灰度值相乘;3、将所有乘积相加,再除以模板的系数个数;4、将上述运算结果赋给图中对应模板中心位置的像素。
常见的空域滤波器:1、邻域平均:将一个像素邻域平均值作为滤波结果,此时滤波器模板的所有系数都取为1。
2、加权平均:对同一尺寸的模板,可对不同位置的系数采用不同的数值。
实际应用中,常取模板周边最小的系数为1,而取内部的系数成比例增加,中心系数最大。
加权平均模板示例:1 2 12 4 21 2 13、高斯分布:借助杨辉三角对高斯函数进行近似。
高斯模板系数:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 14、中值滤波:中值滤波是一种非线性滤波方式,可用如下步骤完成。
(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)读取模板下各对应像素的灰度值;(3)将这些灰度值从小到大进行排序;(4)找出中间值并赋给对应模板中心位置的像素。
一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。
5、最频值滤波:通过直方图统计中心像素点的灰度分布情况,将出现次数最多的灰度值(即直方图波峰位置)赋给中心位置的像素。
如果直方图是对称的且仅有一个峰,那么均值、中值和最频值相同。
图像处理基础(6):锐化空间滤波器前⾯介绍的⼏种滤波器都属于平滑滤波器(低通滤波器),⽤来平滑图像和抑制噪声的;⽽锐化空间滤波器恰恰相反,主要⽤来增强图像的突变信息,图像的细节和边缘信息。
平滑滤波器主要是使⽤邻域的均值(或者中值)来代替模板中⼼的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的⽬的;相反,锐化滤波器则使⽤邻域的微分作为算⼦,增⼤邻域间像素的差值,使图像的突变部分变的更加明显。
本位主要介绍了⼀下⼏点内容:图像的⼀阶微分和⼆阶微分的性质⼏种常见的⼀阶微分算⼦⼆阶微分算⼦ - Laplace 拉普拉斯算⼦⼀阶微分算⼦和⼆阶微分算⼦得到边缘的对⽐⼀阶微分和⼆阶微分的性质既然是基于⼀阶微分和⼆阶微分的锐化空间滤波器,那么⾸先就要了解下⼀阶和⼆阶微分的性质。
图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突变的开始点与结束点(台阶和斜坡突变)及沿着灰度斜坡处的微分的性质。
微分是对函数局部变化率的⼀种表⽰,那么对于⼀阶微分有以下⼏个性质:在恒定的灰度区域,图像的微分值为0.(灰度值没有发⽣变换,⾃然微分为0)在灰度台阶或斜坡起点处微分值不为0.(台阶是,灰度值的突变变化较⼤;斜坡则是灰度值变化较缓慢;灰度值发⽣了变化,微分值不为0)沿着斜坡的微分值不为0.⼆阶微分,是⼀阶微分的导数,和⼀阶微分相对应,也有以下⼏点性质:在恒定区域⼆阶微分值为0在灰度台阶或斜坡的起点处微分值不为0沿着斜坡的微分值为0.从以上图像灰度的⼀阶和⼆阶微分的性质可以看出,在灰度值变化的地⽅,⼀阶微分和⼆阶微分的值都不为0;在灰度恒定的地⽅,微分值都为0.也就是说,不论是使⽤⼀阶微分还是⼆阶微分都可以得到图像灰度的变化值。
图像可以看着是⼆维离散函数,对于图像的⼀阶微分其计算公式如下:在x⽅向,∂f∂x=f(x+1)−f(x).在y⽅向,∂f∂y=f(y+1)−f(y)对于⼆阶微分有:在x⽅向,∂2f∂x2=f(x+1)+f(x−1)−2f(x).在y⽅向,∂2f∂y2=f(y+1)+f(y−1)−2f(y)对于图像边缘处的灰度值来说,通常有两种突变形式:边缘两边图像灰度差异较⼤,这就形成了灰度台阶。
数字图像处理作业题目:图像的平滑处理与锐化处理
:张一凡
学号:4
专业:计算机应用技术
1.1理论背景
现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。
一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。
图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。
空间域处理是在图像本身存在的二维空间里对其进行处理。
而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。
在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。
1.2介绍算法
图像平滑算法:线性滤波(邻域平均法)
对一些图像进行线性滤波可以去除图像中某些类型的噪声。
领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。
领域平均法是空间域平滑噪声技术。
对于给定的图像()j i f,中的每个像素点()n
m,,取其领域S。
设S含有M个像素,取其平均值作为处理后所得图像像素点()n
m,处的灰度。
用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。
领域S 的形状和大小根据图像特点确定。
一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。
如S 为3×3领域,点(m,n)位于S 中心,则
()()∑∑-=-=++=1111
,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为
()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1
,1
,1
, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =
,即方差变小,说明噪声强度减弱了,抑制了噪声。
图像锐化算法:拉普拉斯算子
拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性,比较适用于改善因为光线的漫反射造成的图像模糊。
其原理是,在摄像记录图像的过程中,光点将光漫反射到其周围区域,这个过程满足扩散方程:
f kV t
f 2=∂∂ 经过推导,可以发现当图像的模糊是由光的漫反射造成时,不模糊图像等于模糊图像减去它的拉普拉斯变换的常数倍。
另外,人们还发现,即使模糊不是由于光的漫反射造成的,对图像进行拉普拉斯变换也可以使图像更清晰。
拉普拉斯锐化的一维处理表达式是:
()()()22dx x f d x f x g -=
在二维情况下,拉普拉斯算子使走向不同的轮廓能够在垂直的方向上具有类似于一维那样的锐化效应,其表达式为:
22222
y f x f f ∂∂+∂∂=∇ 对于离散函数()j i f ,,拉氏算子定义为
()()()j i f j i f j i f y x ,,,222∇+∇=∇
其中 ()j i f x ,∇
=()[]j i f x x ,∇∇
=()()[]j i f j i f x ,,1-+∇
=()()j i f j i f x x ,,1∇-+∇
=()()()()j i f j i f j i f j i f ,1,,,1-+--+
=()()()j i f j i f j i f ,2,1,1--++
同理 ()()()1,,,--=∇j i f j i f j i f y
类似的有 ()()()()j i f j i f j i f j i f y ,21,1,,2--++=∇
所以有 ()()()()()()j i f j i f j i f j i f j i f j i f ,41,1,,1,1,2--+++-++=∇ 则拉式算子的模板表示为:
01
01
71010⎛⎫ ⎪- ⎪ ⎪⎝⎭
1.3功能应用
图像平滑:图像平滑是指用突出图像的宽大区域、低频成分、主干部分或者抑制噪声和干扰高频成分,使图像亮度平缓渐变,减小突变梯度,改善图像质量的图像处理方法。
图像锐化:图像在传输过程中,通常质量都要降低,除了噪声因素外,图像一般都要变得模糊。
这主要是因为图像的传输或者转换系统的传递函数对高频成分的衰减作用,造成图像细节轮廓不清晰。
图像锐化就是补偿图像年的轮廓,使图像比较清晰。
2. maltba源代码
lena=imread('lena.jpg'); %载入图片,本程序使用lena标准图
figure(1);imshow(lena);title('原图像'); %显示原图像
rgb1=imnoise(lena,'gaussian'); %加入高斯噪声
figure(2);imshow(rgb1);title('加入噪声后');%显示加入噪声后的图像fR1=rgb1(:,:,1); %提取图像中的R层
fG1=rgb1(:,:,2); %提取图像中的G层
fB1=rgb1(:,:,3); %提取图像中的B层
w=fspecial('average');
fR_filtered=imfilter(fR1,w); %对R层做平滑处理
fG_filtered=imfilter(fG1,w); %对G层做平滑处理
fB_filtered=imfilter(fB1,w); %对B层做平滑处理
rgb_filter=cat(3,fR_filtered,fG_filtered,fB_filtered); %将处理后的3层合并在一起
figure(3);imshow(rgb_filter);title('模糊后的图像'); %显示模糊后的图像
rgb2=rgb_filter; %将模糊后的图像传递给rgb2 fR2=rgb2(:,:,1); %提取图像中的R层
fG2=rgb2(:,:,2); %提取图像中的G层
fB2=rgb2(:,:,3); %提取图像中的B层
lapMatrix=[-1 -1 -1;-1 9 -1;-1 -1 -1];
fR_tmp=imfilter(fR2,lapMatrix); %对R层做锐化处理
fG_tmp=imfilter(fG2,lapMatrix); %对R层做锐化处理
fB_tmp=imfilter(fB2,lapMatrix); %对R层做锐化处理
rgb_tmp=cat(3,fR_tmp,fG_tmp,fB_tmp); %合并3层图像
figure(4);imshow(rgb_tmp);title('锐化后的图像');%显示锐化后的图像
3.1 实验结果
4.实验分析与总结
经过多次的实践和理论上的推导不难发现图像平滑和图像锐化是两个完全对立的图像处理技术。
图像平滑让图像中的细节成分越来越少,而相对的,图像的锐化则是凸显图像的细节部分。
在图像平滑图像处理中,在很多噪声的情况下,图像平滑能够有效的减弱噪声对图像的影响,无论是高斯噪声、椒盐噪声还是乘性噪声,都能很好的在图像平滑中将这集中噪声很好的去除。
岁演不能完全复原如原图一样的情况,但是在图像平滑过后,噪声在图像中的存在确实少了许多,但是对于一些本身比较清晰的图像,效果就不那么明显了。
图像平滑的弊端在于会把图像本身一些很好的细节部分给模糊
掉,从而降低图像的质量,对一些分辨率很高鹗茄细节很唯美的图像来说,图像平滑来处理噪声反而效果不是很好。
图像锐化则是让图像变得更为清晰。
通过图像锐化可以是图像细节部分遍的清楚起来,但是如果图像有噪声,只会让图像变得更加模糊,图像锐化不能对有噪声的图像进行处理。