1.2.2组合与组合数公式(二)
- 格式:ppt
- 大小:2.01 MB
- 文档页数:8
组合与排列的计算方法组合与排列是数学中常见的计算方法,用于解决不同的问题。
在实际生活中,我们经常需要计算某些元素的组合方式或排列方式。
本文将详细介绍组合与排列的计算方法,包括定义、公式及应用范围等。
一、组合的计算方法1.1 定义组合是从给定的元素集合中,选取若干个元素按照一定的规则组成子集的方式。
在组合中,元素的顺序不重要,即组合只关注元素的选择,而不关注元素的排列顺序。
1.2 组合的计算公式对于含有n个元素的集合,从中选取m个元素进行组合,计算方法如下:C(n, m) = n! / (m! * (n-m)!)其中,C(n, m)表示从n个元素中选取m个元素的组合数量,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
1.3 组合的应用范围组合的计算方法在概率统计、排列组合等领域有广泛的应用。
例如,在抽奖活动中,求解中奖组合、在竞赛中求解选手比赛成绩排名等都需要用到组合的计算方法。
二、排列的计算方法2.1 定义排列是从给定的元素集合中,选取若干个元素按照一定的规则排列的方式。
与组合不同,排列中元素的顺序是重要的,即排列依赖元素的排列顺序。
2.2 排列的计算公式对于含有n个元素的集合,从中选取m个元素进行排列,计算方法如下:P(n, m) = n! / (n-m)!其中,P(n, m)表示从n个元素中选取m个元素的排列数量。
2.3 排列的应用范围排列的计算方法在密码学、统计分析、问题求解等领域有广泛的应用。
例如,在密码学中,求解密码的破译方式、在统计学中分析数据的排列情况等都需要用到排列的计算方法。
三、组合与排列的比较3.1 区别组合与排列的最主要区别在于元素选择的顺序是否重要。
组合只关注元素的选择,顺序不重要;而排列则依赖于元素的排列顺序。
3.2 应用场景组合适用于计算元素的选择方式,常用于抽奖、竞赛成绩排名等场景;排列适用于计算元素的排列方式,常用于密码破译、统计分析等场景。
高中数学选修2-3学案1.2.2组合(2)一、学习目标:1.掌握带有较复杂限制条件的组合问题的处理方法;2.掌握分组分配问题的处理方法.学习重点:带有较复杂限制条件的组合问题的处理方法;分组分配问题的处理方法.二、基本知识:1、组合的定义:2、组合数公式:3、组合与排列的区别:4、组合数的两个计算性质:三、典型例题例1、在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.例2、(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?四、课堂练习1.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.2.从正方体ABCD-A′B′C′D′的8个顶点中选取4个作为四面体的顶点,可得到的不同的四面体的个数为________.3.(2013·课标全国卷)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.学习笔记高中数学选修2-3学案学习笔记4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有________.5.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?——★参考答案★——例1.解:(1)512C =792(种)不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有29C =36(种)不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有59C =126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有13C =3(种)选法,再从另外的9人中选4人有49C 种选法,共有1439C C =378(种)不同的选法. (5)方法一 (直接法)可分为三类:第一类:甲、乙、丙中有1人参加,共有1439C C 种; 第二类:甲、乙、丙中有2人参加,共有2339C C 种; 第三类:甲、乙、丙3人均参加,共有3239C C 种. 共有1439C C +2339C C +3239C C =666(种)不同的选法. 方法二 (间接法)12人中任意选5人共有512C 种,甲、乙、丙三人不能参加的有59C 种,所以,共有512C -59C =666(种)不同的选法.例2.解 (1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有C 210=10×91×2=45(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有A 210=10×9=90(条). 课堂练习1.[[解析]] 法一 分两类, ①一男一女,共有4×2=8种; ②两女,只有1种,共有8+1=9种.法二 间接法C 26-C 24=15-6=9种.[[答案]] 92.[[解析]] 从8个顶点中任取4个有C 48种方法,从中去掉6个面和6个对角面,所以有C 48-12=58个不同的四面体.[[答案]] 583.[[解析]] 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n =114,即n 2-n -56=0,解得n =-7(舍去)或n =8.[[答案]]84.[[解析]]先从12名同学选4个上第一个路口,再从剩下的8名同学选4个上第二个路口,那么剩下的4名同学上第三个路口,则不同的分配方案共有C412C48C44=34 650种.[[答案]]34 6505.解(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.方法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.方法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.。
1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断以下问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A、B、C、D四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列那么需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成以下两个练习: 练习1:求证:C m n =n m C m -1n -1.(本式也可变形为:mC m n =nC m -1n -1)练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511. 活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示.2.组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充. 活动成果:1.性质:(1)C mn =C n -mn ;(2)C mn +1=C mn +C m -1n .2.证明:(1)∵C n -mn =n !(n -m)![n -(n -m)]!=n !m !(n -m)!,又C mn =n !m !(n -m)!,∴C m n =C n -mn .(2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C mn +1,∴C mn +1=C mn +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质 1(1)计算:C 37+C 47+C 58+C 69; (2)求证:C nm +2=C nm +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C nm +C n -1m )+(C n -1m +C n -2m )=C nm +1+C n -1m +1=C nm +2=左边. [巩固练习]求证:C 1n +2C 2n +3C 3n +…+nC nn =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC nn =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C nn ,其中C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出假设干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),那么选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.[变练演编]求证:C 1n +22C 2n +32C 3n +…+n 2C nn =n(n +1)2n -2.证明:由于i 2C in =C 1i C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.假设组长和副组长是同一个人,那么有n2n -1种选法;假设组长和副组长不是同一个人,那么有n(n-1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 C 3100=100×99×981×2×3=161 700种.(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少〞“至多〞的问题,通常用分类法或间接法求解. [巩固练习]1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法. 解法二:(间接法)C 310-C 36=100.2.按以下条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378; (5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756, 方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666, 方法二:(间接法)C 512-C 03C 59=666. [变练演编]有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少X 不同的?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种; 第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种. 根据分类加法计数原理,共有5+60+120=185种不同的. [达标检测]1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求X 、王两人中至多有一个人参加,那么有不同的选法种数为________.3.从7人中选出3人参加活动,那么甲、乙两人不都入选的不同选法共有______种. 答案:课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题. 2.方法收获:化归的思想方法. 3.思维收获:化归的思想方法.补充练习[基础练习]1.求证:(1)C mn +1=C m -1n +C mn -1+C m -1n -1;(2)C m +1n +C m -1n +2C mn =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,那么一共有多少种不同的取法?38=56;3.解:(1)C490=2 555 190;(2)C4100-C490=C110C390+C210C290+C310C190+C410=1 366 035;(3)C4100-C410=C190C310+C290C210+C390C110+C490=3 921 015.4.解:分为三类:1奇4偶有C16C45;3奇2偶有C36C25;5奇有C56,所以一共有C16C45+C36C25+C56=236种不同的取法.[拓展练习]现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,那么有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C24C23;②让两项工作都能担任的青年从事德语翻译工作,有C34C13;③让两项工作都能担任的青年不从事任何工作,有C34C23.所以一共有C24C23+C34C13+C34C23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,那么每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,那么使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1〞所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),那么方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。