电光调制实验.doc
- 格式:doc
- 大小:1.32 MB
- 文档页数:5
电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。
在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。
放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。
再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。
2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。
3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。
光强调到最大,此时晶体偏压为零。
这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。
如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。
如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。
如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。
如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。
这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。
二、依据晶体的透过率曲线(即T-V曲线),选择工作点。
电光调制电光调制四电光调制与光信模拟实验袁礼文10329073 光信02班C2组2013-03-13&20 一、实验目的通过实验操作以及数据进行分析,学习并掌握电光调制、声光调制、磁光调制的机制及运用,在此基础上进一步了解光通信系统的结构。
二、实验仪器晶体电光调制电源,铌酸锂(LiNbO3),He-Ne 激光器及可调电源,可旋转偏振片,格兰棱镜,光接收器,有源音响图三、实验原理1、电光调制的物理机制电光调制的物理基础是电光效应,目前已发现有两种电光效应,一种是泡克耳斯(Pockels)效应,即折射率的变化量与外加电场强度的二次方成正比。
另一种是克尔效应,即折射率的变化量与外加电场强度的二次方成比例。
利用克尔效应制成的调制器称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。
利用泡克耳斯制成的调制器称为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。
泡克耳斯盒又有纵向调制器和横向调制器两种。
现以实验中使用的电光晶体DKDP (磷酸二氘钾)横向调制为例阐述电光调制的简单机理。
图2 电光调制器原理图原理图如上图所示,晶体位于两个正交的偏振器之间,起偏器 P 1的偏振方向平行于电光晶体的 Y 轴,光没晶体入射光的 X 轴方向加上电场后,它们将旋转 45°变成感应轴X ’、Y ’。
现在对晶体内部的偏振光传播进行讨论。
DKDP 是负单轴晶体,它的折射率椭球方程为:2221o o ex y z I I I ++=(1)其中 x 为光轴方向,在平行于光轴的方向加上电压后,折射率椭球方程变为:2226321z o o ex y z E xy I I I γ+++=(2)对上式进行坐标系的变换,消除式中的交叉项:()()'cos 45'sin 45''/2'sin 45'sin 45''/2'x x y x y y x y x y z z ⎧=-=-⎪⎪=+=+⎨⎪=⎪⎩(3)可推导出加了电场后,折射率椭球方程为:2222221'''x y zx y z n n n ++=(4)介电主轴的折射率变为:(5)沿 Z 轴入射的光束经起偏器变为平行于 X 轴的线偏振光,进入晶体后(在 Z =0处),被分 解 成 沿 OX ’、OY ’方向的两个分量,其振幅和相伴都相等,用复数表示为E X’(0)=A, E Y’(0)=A,入射光强度为(6)当光通过长度为L 的晶体后,由于电光效应,E X’、E Y’之间就产生一个相位差δ,从而有:(7)光从晶体出射后,通过检偏器后的光是晶体中的光的两分量在Y 轴上的投影之和,即:(8)从而对应的输出光的强度为:(9)其中,, 从而可知调制器的透过率为:(10)当从晶体出射的光的两个分量的相位差为δπ=时,外电场所加的电压为半波电压,可求得此时的电压为:(11)从而可知透过率可表示为:(12)当加在晶体上的直流电压为U 0,同时加在晶体上的交流调制信号是sin mUtω其中Um 是其振幅,ω是调制频率。
电光调制实验报告电光调制实验报告引言电光调制是一种利用电场对光进行调制的技术,广泛应用于通信、光学传感和光学信息处理等领域。
本实验旨在通过搭建电光调制实验装置,探究电场对光的调制效果,并分析其应用前景。
实验装置本次实验所使用的电光调制实验装置包括:光源、偏振器、电光调制器、光电探测器和示波器。
其中,光源发出的光经过偏振器后,进入电光调制器,在电场的作用下发生相位差变化,最后通过光电探测器转化为电信号,再经示波器显示出来。
实验步骤1. 将光源、偏振器、电光调制器、光电探测器和示波器依次连接起来,确保电路连接正确。
2. 调整偏振器的角度,使得光通过电光调制器时,其电场与电光调制器的极化方向垂直。
3. 打开光源和示波器,调节示波器的参数,观察示波器上的波形变化。
4. 改变电光调制器的电压,观察示波器上的波形变化,并记录下来。
5. 重复步骤4,但同时改变偏振器的角度,观察示波器上的波形变化,并记录下来。
实验结果与讨论通过实验观察和记录,我们可以得到以下结论和讨论:1. 电场对光的调制效果:随着电光调制器电压的增加,示波器上的波形振幅逐渐增大,说明电场对光的幅度进行了调制。
这说明电光调制器能够通过改变电场的强度来调制光的强度。
2. 电场对光的相位调制效果:通过改变电光调制器的电压和偏振器的角度,我们可以观察到示波器上的波形发生相位差的变化。
这说明电光调制器能够通过改变电场的强度和方向来调制光的相位。
3. 电光调制器的应用前景:电光调制技术在通信领域有着广泛的应用前景。
通过调制光的幅度和相位,可以实现光信号的调制和解调,从而实现高速、大容量的光通信。
此外,电光调制器还可以用于光学传感和光学信息处理等领域,提高系统的灵敏度和可靠性。
结论通过电光调制实验,我们深入了解了电场对光的调制效果,并探讨了其应用前景。
电光调制技术在通信、光学传感和光学信息处理等领域具有重要的应用价值,为实现高速、大容量的光通信提供了有力支持。
一、實驗目的:1.了解熟悉電光效應(Electro-Optical Effect)。
2.接觸非線性光學(Nonlinear Optics)題材。
二、實驗內容:1.KDP光調製(EOM)組基本特性的測量。
2.EOM對頻率的響應。
三、實驗器材:1.He-Ne laser2.Polarizer (P1, P2)3.Pockels cell (內為KDP晶體)4.高壓電源供應器5.光度計6.光具座7.示波器8.波形產生器9.信號放大器 (OP amp)四、原理:1.電光晶體中的折射率分布可用橢球表示如下2.若外加電場,則會使折射率改變,方程式必須改變為3.外加電場與折射率的關係可用矩陣表示如r ij為電光係數4.利用晶體的對稱性可使多個電光係數為零,故矩陣成為5.若電場只加在Z軸上,則橢球方程式為:由此可知外加電場在Z軸上,會使橢球繞Z軸轉動一個角度θ,X軸及Y 軸轉到了X’及Y’6.其中座標轉換的關係式為7.代入橢球方程式若θ=45°8.與正橢球比較由近似可得------(*)9. 橫向效應用45°-Z 切割的晶體,在Z 軸加上電場使晶體成為電致雙晶軸晶體。
因晶體是45°切割,所以新建立的光軸X ’、Y ’就是立方體的邊。
將一平面偏極光垂直Y ’Z 平面入射,因偏振面與Z 軸夾了45°角且'Y Z n n ,因此光波會被分成E z 及E Y ’兩個分量。
在通過晶體之後,兩分量之間的相位差為將(*)代入式子的第一項是晶體的自然雙折射效應所造成的相位移,其對溫度極敏感,所以一般我們都是將此種晶體成對使用。
圖1 KDP 自然雙折射的利用裝置圖10.垂直偏極光與水平偏極光通過晶體之後所造成的相位延遲為其相位差為因此只要提高dl的值即可降低趨動電壓,且外加電場與入射光方向垂直,所以不需用到透明電極,可大幅降低成本。
五、 裝置圖:1. KDP 光調製(EOM)組,基本特性的測量:圖2電光調制實驗裝置圖2. 加補償器之裝置圖圖3 加補償器的裝置圖六、實驗步驟:1.KDP光調製(EMO)組,基本特性量測:(1)依照圖2.1的次序,將各光學元件與電路安裝完成,且完成光學路徑的準直工作。
晶体电光调制实验【实验目的】1. 掌握晶体电光调制的原理和实验方法。
2. 学会用简单的实验装置测量晶体半波电压、电光常数的实验方法。
3. 观察电光效应所引起的晶体光学特性的变化和会聚偏振光的干涉现象。
【实验仪器】晶体电光调制电源、铌酸锂(LiNbO 3)电光晶体、He-Ne 激光器及可调电源、可旋转偏振片、格兰棱镜、光电接收器、有源音响【实验原理】1.一次电光效应和晶体的折射率椭球当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。
电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz 的电场变化),可以在高速摄影中作快门或在光速测量中作光束斩波器等。
在激光出现以后,电光效应的研究和应用得到迅速的发展,电光器件被广泛应用在激光通讯、激光测距、激光显示和光学数据处理等方面。
光在各向异性晶体中传播时,因光的传播方向不同或者是电矢量的振动方向不同,光的折射率也不同。
在主轴坐标中,折射率椭球及其方程为1232222212=++n z n y n x (1)式中n1、n2、n3为椭球三个主轴方向上的折射率,称为主折射率。
当晶体加上电场后,折射率椭球的形状、大小、方位都发生变化,椭球方程变成1222212213223233222222112=+++++n xy n xz n yz n z n y n x(2)晶体的一次电光效应分为纵向电光效应和横向电光效应两种。
纵向电光效应是加在晶体上的电场方向与光在晶体里传播的方向平行时产生的电光效应;横向电光效应是加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效应,本实验研究铌酸锂晶体的一次电光效应。
铌酸锂晶体属于三角晶系,3m 晶类,主轴z 方向有一个三次旋转轴,光轴与z 轴重合,是单轴晶体,折射率椭球是旋转椭球,其表达式为1222022=++e n z n y x (3)式中n0和ne 分别为晶体的寻常光和非常光的折射率。
电光调制实验实验⼆⼗⼆电光调制特性测试及分析报告⼈陆盛阳0 同组⼈张旭时间 2011/10/10 ⼀、实验⽬的1、了解铌酸锂晶体的⼀级电光效应。
2、观察单轴晶体、双轴晶体的偏振⼲涉图。
3、掌握电光调制器的⼯作原理。
4、测定直流输出特性曲线,即T-V 曲线。
5、⽤四分之⼀波⽚选择⼯作点。
⼆、实验仪器(仪器名称及仪器编号) 电光调制实验仪三、实验原理及内容(简略叙述)在外加电场的作⽤下,晶体的折射率或双折射性质发⽣改变的现象成为电光效应。
外电场作⽤下的光电晶体犹如⼀块波⽚,它的位相延迟随外加电场的⼤⼩⽽变,随之引起偏振态的变化,从⽽使得检偏器出射光的振幅或强度受到调制。
当外加电压使晶体产⽣的相位差δ达到Л时,晶体相当于⼀块半波⽚,此时透过光强为极⼤值,所加电压为晶体的半波电压。
半波电压与电光系数的关系公式如下:V π=(22302γλn )l dV π为半波电压、n0为O 光折射率、γ22为电光系数λ为半导体激光波长、 d 为铌酸锂晶体的厚度、l 为铌酸锂晶体的长度。
由于透射率与电压的⾮线性关系若不选择合适的⼯作点和调制电压的幅值会使输出的光信号相对于输⼊信号产⽣⾮线性失真。
四、实验步骤及现象1 晶体的安装:⽤棉花球蘸少许酒精擦净放晶体的电极,然后放置晶体和铝电极,⽤弹⽚固定在可调平台上,弹⽚接触到铝电极后,不能压的太紧,以免压断晶体,或给晶体施加压⼒。
调整晶体光轴与光源的光轴重合,不许触摸晶体两个⼩端⾯(⼀端是⼊射⾯、另⼀端是出射⾯),以免影响实验效果。
2 调整光路,观察锥光图:2-1 把导轨置于底座很稳的台⾯上,调整四个螺钉使导轨成⽔平将其锁紧。
2-2 在导轨⼀端放置⼀个滑座,将半导体激光器及可调⽀架固定在滑座上。
打开激光器电源盒上的开关,旋转镜头,调整光斑的⼤⼩。
以求得质量较好的光斑,尽量将光斑调⼩。
(旋转盒上的旋钮可调光斑强弱)。
2-3 可调平台放置在导轨上距光源200mm左右,调整激光器的⽀架使激光束与晶体等⾼,平台的四个螺钉可进⾏升降调整。
实验四 电光调制实验日期:2011.09.08 实验者:黄键彬(082232034)朱俊杰(082232035)一、实验目的1、 掌握晶体电光调制的原理和实验方法;2、 学会用简单的实验装置测量晶体半波电压;3、 实现模拟光通讯。
二、实验仪器和主要参数可调半导体激光器(λ=650nm )、DGT-I 型电光调制电源箱(0~350V 连续可调)、铌酸锂晶体(50mm ×6mm ×1.7mm )、二维调整架、接收器、起偏器、小孔光阑、检偏器及1/4波片等。
三、实验原理1、半波电压根据电光晶体上所加电场方向的不同,将电光调制分为横向电光调制和纵向电光调制。
由于横向电光调制系统具有半波电压低、工艺简单等优点,所以本实验采用的是横向电光调制系统方案。
横向电光调制是以电光调制晶体X 轴加电场,Z 轴通光工作的,图4-1为本实验所采用的横向电光调制方案示意图。
图4-1横向电光调制示意图图4-1中起偏器的偏振方向平行于电光晶体的X 轴,检偏器的偏振方向平行于Y 轴。
当在晶体X 方向加上电场时,折射率椭球绕Z 轴转了45角,其感应轴为x ',y '。
此时,入射光束经起偏器后,以与x 轴平行的线偏振光进入晶体,并分解成沿x ',y '轴的两个相位和振幅均分别相等的分量,即)2c o s (45cos )(z n A z E x X ''⋅'=λπ)2c o s (45s i n )(y z n z y ''⋅A '=E λπ入射光在晶体表面(Z=0)处的光波表示为:AA y x =E =E '')0()0(设入射光强为0I ,则输入光强为:22202)0()0(A EEI y x =E +E =∞''*当光通过长度为l 的晶体后,在输出面l z =处,设x '和y '分量之间产生的相位差为δ∆,不考虑公共的相位因子,则有:δ∆-''=E =E i y x Ael A l )()(先不考虑插入4λ玻片,这样从检偏器出射的光)(l x 'E 和)(l E y '在Y 轴上的分量之和为:()12-A =∆-δi y eE )(设此时对应的输出光强为I ,则有:()()[]()()[]2s i n2112222δδδ∆=--=∞∆∆-*A eeAE E I i i yy电光的透过率T 可表示为: 2s i n2δ∆=I I T外加点成所引起位相差δ∆为:()d lUn l n n y x 223022γλπλπδ=-=∆''其中,d 为外加电场方向上(即X 方向)的晶体厚度,U 为加在晶体X 方向上的电压,d UE x =。
广东第二师范学院学生实验报告内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验 结果与分析、实验心得 【实验目的】1. 掌握晶体电光调制的原理和实验方法2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】 一、调整光路系统1. 调节三角导轨底角螺丝,使其稳定于调节台上。
在导轨上放置好半导体光源部分 滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基 本处于一条直线,即使光束通过小孔。
放上起偏振器,使其表面与激光束垂直,器,使其表面也与激光束垂直,转动检偏器,截面与起偏器的主截面垂直,这时光点消失,2. 将铌酸锂晶体置于导轨上,调节晶体使其 x 轴在铅直方向,使其通光表面垂直于 激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看 光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶 体,且从晶体出来的反射像与半导体的出射光束重合。
3. 拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。
光强调到最大,此时晶体偏压为零。
这时可观察到晶体的单轴锥光干涉图, 即一个清楚的暗十 字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。
如图四所 示实验项目名称 实验时间I 2014年12月18日 实验成绩电光调制实验物理楼五楼指导老师签名— 实验地点 且使光束在元件中心穿过。
再放上检偏 使其与起偏器正交,即,使检偏器的主 即所谓的消光状态。
班 别 11物理4.旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。
如图五所示图四图五6.晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。
电光调制实验实验报告一、实验目的通过本次实验,学生将能够掌握电光调制器的基本原理、工作方式及其在通信中的应用。
二、实验仪器设备1. 光源:激光管2. 实验桌3. PCS2814型电光调制器4. 准直器5. 直流电源6. 光电探测器7. 示波器三、实验原理电光调制器是一种通过在光传输介质中加入直流或低频信号来改变光强度的设备。
可以用于光电通信、激光雷达、医学成像等领域。
电光调制器根据调制原理的不同分为两种:强度调制和相位调制。
其中,强度调制通过改变光强度来实现信息传输,相位调制则是改变光波的相位而传输信息。
在强度调制中,光信号传输的过程可以分为两个步骤:1.信号电流模拟调制通过窄带高频电信号调制直流偏置电压,生成相应的光信号。
这样调制后的光信号频率范围集中在带宽较窄的低频范围内。
2.对光强进行调制将调制后的光信号通过调制后器的光口,再经准直器射到检测器上,检测器能将光电转换为电信号,这样就能获得来自光传输介质的有效信号。
四、实验步骤1. 搭建实验装置:将激光管、电光调制器、准直器和光电探测器依次放置在实验台上,随后将它们连接起来,准确设置检测器到准直器的距离,为了获得最佳的工作效果,排除光学信号串扰和反射的影响,准直器进行精细调整。
2. 测试无调制状态下的光强度:通过开启激光管,取得光电探测器采集的光强度数据,这里需要使用示波器进行监测和测量,并记录数据。
通过调节电流模拟信号源,模拟调制电流信号,然后通过调制器进行传输,观察并记录数据变化,比较与无调制状态下的光强度数据变化情况。
4. 可用性测试:根据测试结果,可以判断电光调制器中的效果如何,以及它是否适合于实际应用。
五、实验结果分析通过对实验数据的可视化分析,可以看出,电光调制器能够通过调制电流控制光传输介质内关联的光强度,这样就能够实现由电信号到光信号的转化。
在本实验中,使用的是单调制强度调制电路,因此,仅仅是将高频电流信号作用于调制器,就能够将开关的信号传输到光传输介质内,转化成可用的数字信号,这样就实现了从电信号到光信号的转换。
实验一电光调制1.一、实验目的:2.了解电光调制的工作原理及相关特性;3.掌握电光晶体性能参数的测量方法;二、实验原理简介:某些光学介质受到外电场作用时, 它的折射率将随着外电场变化, 介电系数和折射率都与方向有关, 在光学性质上变为各向异性, 这就是电光效应。
电光效应有两种, 一种是折射率的变化量与外电场强度的一次方成比例, 称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例, 称为克尔(Kerr)效应。
利用克尔效应制成的调制器, 称为克尔盒, 其中的光学介质为具有电光效应的液体有机化合物。
利用泡克耳斯效应制成的调制器, 称为泡克耳斯盒, 其中的光学介质为非中心对称的压电晶体。
泡克耳斯盒又有纵向调制器和横向调制器两种, 图1是几种电光调制器的基本结构形式。
图1: 几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时, 盒中的介质是透明的, 各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。
通过克尔盒时不改变振动方向。
到达Q时, 因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器, 安装时, 它们的光轴彼此垂直。
), 所以Q没有光输出;给克尔盒加以电压时, 盒中的介质则因有外电场的作用而具有单轴晶体的光学性质, 光轴的方向平行于电场。
这时, 通过它的平面偏振光则改变其振动方向。
所以, 经过起偏器P产生的平面偏振光, 通过克尔盒后, 振动方向就不再与Q光轴垂直, 而是在Q光轴方向上有光振动的分量, 所以, 此时Q就有光输出了。
Q的光输出强弱, 与盒中的介质性质、几何尺寸、外加电压大小等因素有关。
对于结构已确定的克尔盒来说, 如果外加电压是周期性变化的, 则Q的光输出必然也是周期性变化的。
由此即实现了对光的调制。
泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体, 它的自然状态就有单轴晶体的光学性质, 安装时, 使晶体的光轴平行于入射光线。
一、实验目的1. 理解电光调制和声光调制的原理及基本过程。
2. 掌握电光调制器和声光调制器的实验操作方法。
3. 分析实验数据,验证电光调制和声光调制的基本特性。
二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。
电光调制器主要由调制晶体、电极、光源和探测器组成。
当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。
2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。
声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。
当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。
通过控制超声波的强度、频率和相位,可以实现对光信号的调制。
三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。
实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。
2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。
实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。
四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变调制信号频率和幅度,观察调制效果。
2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变超声波频率和强度,观察调制效果。
五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。
(2)分析电光调制器的调制带宽、调制深度等特性。
最新电光调制实验实验报告实验目的:本实验旨在探究电光调制器的工作原理及其在光通信中的应用。
通过实验,我们将了解电光效应的基本理论,并观察电光调制器如何根据外加电压的变化调制光信号。
实验原理:电光效应是指某些晶体材料在外加电场作用下,其折射率发生变化的现象。
这种变化可以通过改变通过晶体的光波的相位或强度来实现对光信号的调制。
在本实验中,我们将使用液晶材料作为电光调制器,通过改变施加在其上的电压来控制光的透过率。
实验设备:1. 激光源(如氦氖激光器)2. 电光调制器(液晶调制器)3. 光电探测器(如光电二极管)4. 电源及电压调节器5. 光束准直器和光束分析仪6. 数据采集系统实验步骤:1. 搭建实验装置,确保激光源发出的光束经过电光调制器,并被光电探测器接收。
2. 调整激光源,使其发出稳定的光束,并保证光束完全通过电光调制器。
3. 将光电探测器连接到数据采集系统,以便记录光强度的变化。
4. 打开电源,逐渐增加施加在电光调制器上的电压,并记录不同电压下光电探测器的输出信号。
5. 分析数据,绘制电压与光强度之间的关系曲线,观察电光调制效果。
6. 通过改变激光的波长,重复步骤4和5,研究波长对电光调制效果的影响。
实验结果:实验数据显示,随着施加电压的增加,光电探测器接收到的光强度呈现出周期性变化,这与电光调制器的调制特性相符。
在特定电压下,光强度达到最小值,表明此时调制器对光信号实现了有效调制。
通过改变激光波长,发现不同波长的光在相同的电压下表现出不同的调制深度,这与液晶材料的光谱特性有关。
结论:通过本次实验,我们成功验证了电光调制器的工作原理,并观察到了外加电压对光信号调制的影响。
实验结果表明,电光调制器可以作为一种有效的光通信工具,用于控制和调节光信号的传输。
此外,实验还揭示了不同波长光在电光调制中的性能差异,为未来调制器的设计和应用提供了重要参考。
光电工程学院2013 / 2014学年第 2 学期实验报告课程名称:光电子基础实验实验名称:电光调制实验班级学号1213032809学生姓名丁毅指导教师孙晓芸日期: 2014年5月07日电光调制实验【实验目得】1、掌握晶体电光调制得原理与实验方法;2、学会用实验装置测量晶体得半波电压,绘制晶体特性曲线,计算电光晶体得消光比与透射率。
【实验仪器及装置】电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。
实验系统由光路与电路两大单元组成,如图3、1所示:图3、1 电光调制实验系统结构一、光路系统由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加得减光器(P1)与λ/4波片(P2)等组装在精密光具座上,组成电光调制器得光路系统.二、电路系统除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。
图3、2电路主控单元前面板注:•本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其她激光源时,需另加与其配套得电源。
•激光强度可由半导体激光器后背得电位器加以调节,故本系统未提供减光器(P1)。
•本系统未提供λ/4波片(P2)即可进行实验,如有必要可自行配置。
图3、2为电路单元得仪器面板图,其中各控制部件得作用如下:•电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。
•晶体偏压开关用于控制电光晶体得直流电场。
(仅在打开电源开关后有效)•偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场得大小。
•偏压极性开关改变晶体得直流电场极性。
•偏压指示数字显示晶体得直流偏置电压。
•指示方式开关用于保持光强与偏压指示值,以便于读数.•调制加载开关用于对电光晶体施加内部得交流调制信号.(内置1KHz得正弦波)•外调输入插座用于对电光晶体施加外接得调制信号得插座。