九年级物理熔点与沸点
- 格式:doc
- 大小:483.50 KB
- 文档页数:6
熔点沸点的应用和熔化凝固沸腾的条件一、方法解析1.熔点(凝固点)是物质固态和液态的分界点;沸点是物质液态和气态的分界点;温度在熔点和沸点之间,物质处于液态。
2.熔化条件:(固体)温度上升到熔点且继续吸热;凝固条件:(液体)温度下降到凝固点且继续放热;沸腾条件:(液体)温度上升到沸点且继续吸热。
二、例题讲解析题型一:制合金问题1.将不同金属在同一容器中加热,让它们培化并混合,冷凝后可以得到合金,这是制取合金的一种方法。
下表提供了几种金属的熔点和沸点数据,则下列合金中,不能用该方法制取的是()金属镁铝铜铁熔点649 660 1083 1535沸点1090 2467 2567 2750A.铝镁合金B.镁铁合金C.铁铜合金D.铜铝合金解析:A.由镁的熔点649℃,沸点1090℃,铝的熔点为660℃,沸点2467℃,则温度高于660℃而低于1090℃时,金属不会汽化,可利用此法制取铝镁合金,故A不符合题意;B.由铁的熔点为1535℃,镁的熔点和沸点分别为649℃、1090℃,显然铁熔化时镁已经汽化,所以不可采用此法制取镁铁合金,故B符合题意;C.由铁的熔点为1535℃,沸点2750℃,铜的熔点为1083℃,沸点2567℃,则温度高于1535℃而低于2567℃时,金属不会汽化,可制取铜铁合金,故C不符合题意;D.由铜的熔点为1083℃,沸点2567℃,铝的熔点为660℃,沸点2467℃,则温度高于1083℃而低于2467℃时,金属不会汽化,所以可利用此法制取铝铜合金,故D不符合题意。
题型二:选择温度计问题2.我国有的地区夏天温高达40℃,有的地区冬天温低于-50℃以下。
在我国各个地区都能测量气温的温度计是()物质水水银酒精乙醚熔点0 -39 -117 -114沸点100 357 78 35A.酒精温度计B.乙醚温度计C.水温度计D.水银温度计解析:我国寒冷地区的气温会达到-50℃,低于水银的凝固点-39℃和水的凝固点0℃,故CD错误;有的地区气温超过40℃,超过了乙醚的沸点,故B错误。
熔点和沸点
熔点和沸点是物理学中的重要概念,它们用于衡量物质在物理和化学上发生变化的状态。
由于它们是热力学的基础,因此在日常生活中使用它们也很常见。
比如,我们在采购食品时,会看到标签上写着熔点和沸点等信息,这可以帮助我们更好地搞懂食物的存储和消费。
那么,熔点和沸点分别是什么?熔点是指物质从固态直接过渡到液态的温度,而沸点则是指物质从液态直接过渡到气态的温度。
例如,水的熔点是0℃,即冰点,而沸点是100℃,即开水沸点。
由于不同
物质的熔点和沸点是不同的,因此在研究物理和化学时,我们需要去研究它们的不同熔点和沸点才能正确理解其物理和化学性质。
除了熔点和沸点这两个概念,我们还可以介绍分解温度、结晶温度和溶解温度等概念的区别。
分解温度是指物质从混合物中分解成单个物质所需的温度,而结晶温度是指物质从液态到固态的温度,而溶解温度则是指物质从固态到溶液的温度。
可以说,这些温度有时也可以影响物质的性质,但这与熔点和沸点有着不同的概念,因此不能混淆了。
在热效应方面,我们也可以介绍沸点升高和熔点升高的概念,这是熔点和沸点在遇到热效应时所表现出来的另一种性质。
通常情况下,物质在温度上升时,其密度也会因此而下降,但是熔点升高和沸点升高是由于物质的化学结构发生变化而导致的,这是由于升高的温度可以使分子更加活跃而有助于熔解物质。
熔点和沸点是一个重要的热力学理论,许多物理和化学现象正是
基于此理论而发生变化。
因此,正确理解和搞懂熔点和沸点的概念,对于我们理解物理和化学的实践非常重要。
只有理解了它们的概念,才能正确操作物质,并可以更好地应用它们来解决实际问题。
九年级物理熔点沸点知识点物质的熔点和沸点是物质特性的重要指标,它们关于物质状态变化和能量转移具有重要的指导意义。
本文将介绍九年级物理中与熔点沸点相关的知识点。
一、熔点的定义和影响因素熔点是指物质从固体变为液体的温度,反过来则称为凝固点。
熔点的测量可以通过升温试验得到。
熔点的数值可以受到以下几个因素的影响:1.分子键的强度:分子间的相互作用力越强,需要的能量才能使其分子束缚解开,熔点就越高。
例如,金属结晶中的金属键是金属熔点较高的因素之一。
2.分子量的大小:分子量越大,分子内的原子或分子之间的相互作用力越强,熔点也就越高。
例如,氨的分子量较小,熔点较低,而钻石的分子量很大,熔点很高。
3.杂质的存在:杂质会影响物质的熔点。
杂质可以打乱晶体结构,使其熔点降低,称为降熔作用。
另外,某些杂质也可以提高物质的熔点,称为升熔作用。
二、沸点的定义和影响因素沸点是指物质从液体变为气体的温度,反过来则称为凝固点。
沸点的测量可以通过升温试验得到。
沸点的数值可以受到以下几个因素的影响:1.大气压强:在常压下,沸点是物质的固定数值。
但是,当改变压强时,沸点也会随之改变。
例如,水在海拔较高的地方煮沸的温度较低。
2.分子间相互作用力:与熔点类似,分子间的相互作用力越强,沸点也就越高。
氢键、范德华力等都会影响物质的沸点。
3.溶剂的选择:当溶剂不同的时候,溶质的沸点也会有所改变。
三、熔点与沸点的应用熔点和沸点的数值可以通过实验得到,可以作为物质鉴别和纯度判断的依据。
纯度较高的物质其熔点和沸点较为固定,而杂质和掺杂会导致熔点和沸点的变化。
熔点和沸点的研究也有助于了解物质内部结构和性质的变化。
通过对物质的熔点和沸点的研究,可以对物质的组成和性质进行进一步理解,推动科学的发展。
总结:熔点和沸点是物质特性的重要指标,可以帮助我们了解物质状态变化和能量转移的规律。
熔点沸点数值的测量可以通过升温实验获得,受到分子间作用力、分子量、大气压强等因素的影响。
2019中考沪科版九年级上册物理知识点:熔点与沸点沪科版九年级上册物理知识点:熔点与沸点一.熔点与沸点1.水的三种状态:固态、液态、气态。
2.熔化:物质从固态变成液态的过程称为熔化。
晶体开始熔化时的温度称为熔点。
3.熔化的条件:(1)达到熔点(2)继续吸热4.规律:晶体熔化过程吸收热量,温度不变。
5.晶体有一定的熔点和凝固点。
3.汽化:物质由液态变为气态的过程称为汽化。
4.汽化的两种方式:(1)蒸发:①定义:在液体表面发生的缓慢的汽化现象。
②影响蒸发快慢的因素:液体温度;液体表面积;液体上方空气的流速。
③特点:吸热致冷(2)沸腾:①定义:液体内部和表面同时进行的剧烈的汽化现象。
液体沸腾时的温度为沸点。
②条件:达到沸点;继续吸热。
③特点:在沸腾过程中,吸收热量,温度不变。
二.物态变化中的吸热过程1.熔化是吸热过程。
2.汽化是吸热过程。
3.升华:①定义:物质从固态直接变为气态的过程。
②升华是吸热过程。
三.物态变化中的放热过程1.凝固:①定义:物质从液态变为固态。
凝固是放热过程。
②晶体凝固条件:达到凝固点;继续放热。
③规律:放出热量;温度不变。
2.液化:①定义:物质从气态变为液态的过程。
液化是放热过程。
②液化的方法:降低温度;压缩体积。
3.凝华:物质从气态直接变为固态的过程。
凝华是放热过程。
四水资源与水危机1、资源危机的原因:水污染2、水污染的罪魁:生活污水;工业废水;工业固体废物;生活垃圾。
熔点及沸点的测定实验报告熔点及沸点的测定实验报告一、实验目的1.掌握熔点和沸点的概念及其物理意义;2.了解熔点测定和沸点测定的基本方法和原理;3.学习使用熔点测定仪和沸点测定仪;4.通过实验,培养实验技能、观察能力和数据处理能力。
二、实验原理1.熔点:物质的熔点是指在一定压力下,该物质的固态和液态呈平衡状态时的温度。
换句话说,熔点是固体物质从固态转变为液态的温度。
不同物质的熔点不同,这是因为不同物质分子间的相互作用力不同。
2.沸点:物质的沸点是指在一定压力下,该物质的液态和气态呈平衡状态时的温度。
换句话说,沸点是液体物质从液态转变为气态的温度。
不同物质的沸点也不同,这是因为不同物质分子间的相互作用力和分子本身的性质不同。
3.熔点测定:熔点测定是通过加热物质,观察其熔化过程中的温度变化,从而确定该物质的熔点。
常用的熔点测定方法有毛细管法和熔点测定仪法。
本实验采用熔点测定仪法。
4.沸点测定:沸点测定是通过加热液体物质,观察其沸腾过程中的温度变化,从而确定该物质的沸点。
常用的沸点测定方法有沸点管法和沸点测定仪法。
本实验采用沸点测定仪法。
三、实验步骤1.熔点测定:(1) 打开熔点测定仪的电源,预热10分钟;(2) 用干净的纸巾擦拭干净熔点测定仪的表面和毛细管;(3) 取少量待测物质,放入毛细管中,并将毛细管插入熔点测定仪中;(4) 打开加热开关,慢慢升高温度,观察并记录物质的熔化过程;(5) 当物质完全熔化后,关闭加热开关,记录此时的温度即为该物质的熔点。
2.沸点测定:(1) 打开沸点测定仪的电源,预热10分钟;(2) 用干净的纸巾擦拭干净沸点测定仪的表面和沸点管;(3) 取适量待测液体物质,放入沸点管中,并将沸点管插入沸点测定仪中;(4) 打开加热开关,慢慢升高温度,观察并记录液体的沸腾过程;(5) 当液体完全沸腾后,关闭加热开关,记录此时的温度即为该液体的沸点。
四、实验结果与数据分析1.熔点测定结果:本实验测定了两种物质的熔点,分别是纯水和食盐。
熔点,沸点熔点与沸点都是物质的物理性质,它们是衡量物质在不同温度条件下相变的重要指标,同时也是物质的重要特征之一。
下面将从理论和应用角度出发,分别探讨熔点和沸点的相关内容。
一、熔点1、熔点概念及特征熔点是指物质在均匀压力下,从固态无序状态到液态无序状态的过程中,经过一定的温度变化,使物质的结晶体发生熔解而成为液体的温度,这个温度称为熔点。
熔点是物质固态与液态之间相变的温度界限,它是固态结构强度与有序性的重要表征。
2、熔点影响因素(1)物质的分子结构:不同物质分子结构的差异,会导致其分布合力的不同,从而使各固体激发态之间的跃迁能量差异,而产生差异的熔点。
(2)气压:固体的熔点受到气压的影响。
一般来说,气压越高,熔点也越高,而气压越小,熔点则越低。
(3)杂质:在同一温度和压力下,杂质的存在可以明显地改变物质的熔点。
3、熔点在实践中的应用(1)材料制备:通过熔点的变化,可以选取不同的材料制备工艺,如电熔、氧化熔制、激光熔单等。
(2)制备纯度高的物质:通过分离、提纯等处理可以将杂质去除,从而使物质的熔点升高,实现制备纯度高的物质。
(3)热处理:熔点的变化和物质的结晶形态有着密切关系,通过热处理可以改变物质的熔点,从而改变结晶形态,达到不同的性能要求。
二、沸点1、沸点概念及特征沸点是指物质在均匀压力下,从液态状态到气态状态的过程中,经过一定的温度变化,使物质的液体内部分子全部达到饱和蒸汽压大于环境一定压强的温度,这个温度即为沸点。
沸点是物质液态与气态之间相变的温度界限,它是液体内部分子热运动特征的重要表征。
2、沸点影响因素(1)物质的分子结构:不同物质分子结构的差异,会导致其分布合力的不同,从而使物质分子之间的吸引力、分子运动能力产生差异,而产生差异的沸点。
(2)气压:液体的沸点受到气压的影响。
一般来说,气压越大,沸点也越高,而气压越小,沸点则越低。
(3)杂质:杂质的存在可以明显地改变物质的沸点。
3、沸点在实践中的应用(1)提纯:沸点差异可以用来对杂质成分进行选择性蒸馏,用以提纯物质。
熔点、沸点、凝固点与压强的关系原因分析一、熔点、沸点、凝固点1、凝固点凝固点是晶体物质凝固时的温度,不同晶体具有不同的凝固点。
在一定压强下,任何晶体的凝固点,与其熔点相同。
同一种晶体,凝固点与压强有关。
凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。
在凝固过程中,液体转变为固体,同时放出热量。
所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。
非晶体物质则无凝固点。
液-固共存温度浓度越高,凝固点越低,液体变为固体的过程叫凝固2、沸点饱和蒸汽压:在一定温度下,与液体或固体处于相平衡的蒸汽所具有的压力称为饱和蒸汽压. 沸点:在一定压力下,某物质的饱和蒸汽压与此压力相等时对应的温度。
沸腾是在一定温度下液体内部和表面同时发生的剧烈汽化现象。
液体沸腾时候的温度被称为沸点。
浓度高,沸点高,不同液体的沸点是不同的,几种不同液体的沸点/摄氏度(在标准大气压下)液态铁:2750液态铅:1740水银(汞):357亚麻仁油:287食用油:约250萘:218煤油:150甲苯:111水:100酒精:78乙醚:35液态氨:—33液态氧:—183液态氮:-196液态氢:-253液态氦:—268。
9所谓沸点是针对不同的液态物质沸腾时的温度.液体开始沸腾时的温度。
沸点随外界压力变化而改变,压力低,沸点也低。
沸点:液体发生沸腾时的温度;即物质由液态转变为气态的温度.当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度。
液体的沸点跟外部压强有关。
当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低.例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上。
又如,在高山上煮饭,水易沸腾,但饭不易熟。
这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐浙下降.(在海拔1900米处,大气压约为79800帕(600毫米汞柱),水的沸点是93。
熔点和沸点熔点和沸点是物理化学中重要的概念,它们涉及到物质的量子性质和物质之间相互作用的规律。
熔点和沸点的区别是物质以什么形式从固体到液体,以及液体到气体的转变。
相反,沸点是液体转变为气体的过程,熔点是固体转变为液体的过程。
熔点是指物质从固体状态变为液体状态的温度,也称为凝固点,因为它描述的是物质从固体到液体的转变过程。
它的发现是由欧洲著名物理学家费希特发明的。
大多数固体物质的熔点都比它们的沸点低,而液体中的分子结构越松散,它们的熔点也越低。
有些物质,如石蜡,其熔点比沸点高,所以它们不能直接从固体到气体,而要经历固体到液体再到气体的过程,这称为三态转变。
沸点是液体变成气体的温度,又被称为汽化点,它描述的是物质从液体变为气体的过程。
沸点的量化可以用沸点的温度描述,它的变化受到压力的影响。
沸点是由欧洲著名物理学家西洛贝尔发现的。
一般来说,比相同温度的熔点高,但也有例外。
当温度升高时,沸点也会随之升高,但当温度超过一定程度时,沸点就不再变化。
熔点和沸点的本质是熔解和汽化的过程。
熔解是将冷却的固体变为液体的过程,它涉及到物质组成部分的量子性质,是物质微观世界和宏观世界的桥梁。
当温度超过熔点时,分子的运动能或振动能超过了由分子间键合力产生的结合能,分子之间的弱键断裂,固体物质就熔融了。
汽化是液体转变为气体的过程,它涉及到分子之间作用力的断裂和释放压力的减少,从而使液体变为气体。
这两个概念不仅对化学家和物理学家有重要的意义,而且在日常生活中也有一定的作用和应用。
比如,在制造工业中,熔点是金属熔接的基本指标。
熔点越高,金属的可熔接性越好,工艺性也越好。
而在医药行业中,液体的沸点也被用于测定其质量。
例如,醋酸乙烯的沸点,也称为馏程,对于其质量的检测也起着重要作用。
因此,熔点和沸点都是物理化学中重要的概念,它们反映了物质量子特性和物质之间相互作用的规律,在日常生活中也有一定的应用,因此深入研究它们的特性和应用是非常有必要的。
熔点与沸点熔点与沸点都是物质状态变化时具有特定温度的物理性质。
熔点指物质从固态转变为液态的温度,沸点指物质从液态转变为气态的温度。
这两个性质都是物质的分子和原子之间的相互作用力所引起的。
首先,熔点的概念是指在常压下,物质从固态转化为液态时,固态物质的温度称为熔点。
一般来说,当物质从固态转化为液态时,物质内部的分子或原子的相互作用力将会被弱化,导致原本相互接近的分子或原子能够以更自由的方式移动并且迅速地变化其位置,进而使物质变成液态。
其次,沸点的概念是指在常压下,液态物质的温度随着温度升高,达到使液态物质的表面或者底部能够形成气泡并逸出液体表面和液面齐平时,液态物质的温度称为沸点。
沸点通常是由于减少分子内的相互作用力并加强分子之间相互作用影响的结果。
需要注意的是,物质的熔点和沸点是物质固有性质,与物质样品的大小和形状无关,因为这些性质只是由分子引起的。
同样,不同分子之间的相互作用力差异也是造成熔点和沸点不同的主要原因。
分子之间的不同相互作用力是由分子之间的分布类型和分子面积决定的。
另一个需要注意的问题是,物质的熔点和沸点可以用于制定许多实际应用,包括炼钢、淬火、蒸馏和助燃等。
举个例子,对于煤油这种物质来说,因其沸点比水低,于是可以被用作煤气或航空燃料;对于水来说,因其沸点高于煤油,于是可以被用作冷却水或汽车循环冷却剂。
此外,熔点和沸点也被用于代表晶体中的生长程度,因为晶体在过饱和状态下会凝固。
因此,这些属性在化学、物理、环境科学以及医学等许多领域中都具有重要的应用,成为压力的研究方向。
最后,对于需要实验的学生来说,要正确测定物质的熔点和沸点并不容易,需要一些技巧和步骤。
例如,熔点测定中,可以将具有不同熔点的基准化合物和待测化合物进行混合,待混合物质熔点的变化可以检测出样品的最终熔点;而沸点测定需要使用蒸馏技术,该技术可使液态化合物部分蒸发并缓慢冷却,蒸发性较强的物质蒸发更多,并导致瓶底沉积物浓度升高。
丁烷熔点沸点闪点密度溶解度丁烷是一种常见的烷烃类化合物,具有独特的物理性质。
本文将从熔点、沸点、闪点、密度和溶解度五个方面介绍丁烷的性质。
我们来了解一下丁烷的熔点。
熔点是指物质从固态转变为液态的温度。
丁烷的熔点为-138.36°C。
这意味着在低于-138.36°C的温度下,丁烷会呈现固态,而当温度升高到-138.36°C以上时,丁烷会逐渐转变为液态。
接下来是丁烷的沸点。
沸点是指物质从液态转变为气态的温度。
丁烷的沸点为-0.5°C。
当温度超过-0.5°C时,丁烷会迅速蒸发,形成气体状态。
闪点是指液体在特定条件下能够蒸发出足够的蒸气与空气形成可燃混合物并能被点燃的最低温度。
丁烷的闪点为-40°C。
这意味着在-40°C以下的温度下,丁烷的蒸气无法与空气形成可燃混合物,因此不会发生闪燃现象。
密度是指物质的质量与体积之比。
丁烷的密度为0.573 g/cm³。
这意味着单位体积的丁烷质量较轻,比水轻,因此丁烷可以浮在水上。
最后是丁烷的溶解度。
溶解度是指物质在一定温度和压力下在溶剂中能够溶解的最大量。
丁烷是一种非极性溶剂,可溶于非极性溶剂如乙醇、醚类和烃类溶剂,但不溶于极性溶剂如水。
总结一下,丁烷的熔点为-138.36°C,沸点为-0.5°C,闪点为-40°C,密度为0.573 g/cm³,溶解度为可溶于非极性溶剂。
这些物理性质使得丁烷在许多领域有广泛的应用,如化学实验室中的溶剂、石油工业中的溶剂和燃料等。
希望通过本文的介绍,读者能够对丁烷的熔点、沸点、闪点、密度和溶解度有更加深入的了解。
九年级物理重点难点11-1科学探究:熔点与沸点重点:知道熔化、汽化现象及其产生条件。
难点:能把生活现象和自然现象与物质的熔点和沸点联系起来。
11-2物态变化中的吸热过程重点:熔化、汽化是吸热过程,汽化两种方式之间的区别。
难点:升华是吸热过程,蒸发也要吸热。
11-3物态变化中的放热过程重点:理解冰、霜、雾的形成过程及放热现象;理解物态变化图像的物理意义及作用。
难点:会用物态变化的规律解释自然界或生活中一些简单的物态变化现象。
12-1温度与内能重点:⒈ 能正确使用液体温度计测液体温度。
⒉ 认识改变物体内能的途径。
难点:能够认识到热量、内能、温度三个物理量的区别与联系。
12-2科学探究:物质的比热容重点:理解比热容的概念,利用比热容的有关知识解释生活中的有关问题。
难点:掌握热量的计算相关公式。
12-3内燃机重点:了解汽油机、柴油机的构造。
难点:描述内燃机的各冲程工作情况。
12-4热机效率和环境保护重点:燃料的热值,热机的效率。
热点:理解热值,利用热值进行计算和应用。
13-1电是什么重点:知道两种电荷及电荷之间的相互作用的规律。
难点:两轻小物体相互吸引是否都带电。
13-2 重点:了解电路的组成,知道电流方向,认识短路危害。
难点:会画简单电路。
13-3连接串联电路和并联电路重点:理解串、并联电路连接特点,学会连接简单的串联和并联电路。
难点:连接并联电路。
13-4串联和并联电路的电流重点:理解串联电路和并联电路中电流特点。
难点:会将电流表正确接入电路。
13-5测量电压重点:会正确将电压表连入电路中,理解串、并联电路电压特点。
难点:会用电压表检测开路点。
14-1电阻与变阻器重点:电阻,决定电阻大小的因素,知道滑动变阻器的用法。
难点:对电阻的理解,及对研究问题的方法的理解。
14-2欧姆定律重点:知道电流与电压和电阻的关系;经历探究的全过程,理解欧姆定律的表达式。
难点:会用欧姆定律分析解决简单的问题,能对探究结果进行评估。
物理学科“自学、释疑、达标”教学案设计人:殷宪敏使用时间:九年级班第学习小组姓名
11.从水之旅谈起
第一节科学探究:熔点与沸点
学习目标
1、在一定条件下物质存在的状态可以发生变化;
2、了解自然界水循环现象,熟悉水的熔点和沸点;
3、通过对冰的熔化现象的科学探究,学会记录处理实验数据,学会根据实验数据作
物理图像的方法,能分析图像的物理意义。
4、学会对物质进行简单分类,了解晶体的熔点与沸点;
5、能利用熔化,汽化吸热解释日常生活中的一些现象。
重点:熔化的特点,液体沸腾的特点
课前准备
1、收集信息
上网或通过科普读物查看,自然界中云、雪、雨、露、雾、霜的形成并记录下来,准备课上与同学交流,谈谈自己的认识。
2、预习记录:
通过预习课文,你学会了什么?有哪些疑问,请简要记录下来。
合作探究
一、实验探究:人造“雨”
活动1:在老师的指导下由两名同学完成实验演示;
(1).从实验室冰箱里面取出冰块放入烧水的电壶中加热;
(2).拿一个不锈钢的勺子或铲子放在壶嘴处。
①,请一个同学描述观察到的现象;
②,如果你把钢勺上的水收集起来再次放入冰箱结果又怎样?
二、科学探究:冰的熔点与水的沸点
活动2:分组实验探究
1、提出问题:
冰在什么情况下开始熔化?水在什么情况下沸腾?在熔化和
沸腾过程温度如何变化?
2、猜想与假设
3、制定实验方案
思考完成下列问题:
谁能描述一下冰的熔化和水的沸腾现象,看谁说的全面。
冰的熔化实验中水的位置和冰的位置谁高?应采用什么方法加热?怎样既节约能源又节省时间?
①开始给水加热时,在什么地方形成气泡?并考虑气泡是怎样形
成的?水的沸腾前后上升的气泡大小怎样变化?
②冰的熔化和水的沸腾过程中温度如何变化?
利用实验桌上的器材,制定出实验步骤。
组内交流后,以小组为单位展示。
研读教材P5页“加油站”内的内容,组内讨论解决如下问题:温度计如何使用?应注意哪些问题?
4、进行实验与收集数据
以小组为单位,按照实验步骤,完成探究实验,
熔化记录表格
汽化记录表格
将上述资料在坐标纸上反映出来。
5、分析与论证:
6、实验评估:
猜想与假设是否与实验结论一致,数据有无误差,原因可能是什么? 结论是否可靠?
活动3:自学课本P6-P7页内容:
看完后,先个人总结出晶体、非晶体的特点,常见晶体的沸点、熔点。
然后以小组为单位,结合实际例子进行展示。
课堂小结:
谈谈你本节课的收获
1、将冰箱里的冰块拿出,不久就熔化,冬季黄河结冰,到春天就解冻。
这是为什么?
2.张宁的手表进水了,表面灰蒙蒙的,指针一点也看不清。
后来,他把表面朝内,底壳朝外,戴在手上2h后,又能看清指针了,这是怎么回事呢?你还有什么好办法吗?
3、某同学对碎冰加热使其熔化。
下表中记录了加热过程中温度随时间变化的情
4、如图5所示,是小明同学做“观察水沸腾”的实验装置。
(1)本实验的目的是:观察沸腾现象;探究水沸腾时的
变化规律。
(2)图中所示的温度是℃。
可以看出:此时水的沸点是℃,水在沸腾的过程中温度 (3)小云测得水的沸点不是100℃,可能的原因是:。
5.为什么水落在热油锅里会爆炸。