任务24流化床反应器操作指导
- 格式:pptx
- 大小:6.26 MB
- 文档页数:20
反应操作单元(固定床、流化床、釜式、管式、塔式反应器)机械化、自动化设计指导方案目录1反应物系的相态化学反应是指分子破裂成原子,原子重新排列组合生成新分子的过程。
按反应物系的相态来分类,化学反应分为均相反应和多相反应,其中均相反应分为气相均相、液相均相、固相均相三类;多相反应分为气-固、气-液、液-液、液-固、固-固、气-液-固等六类。
2反应器类型反应器是一种实现反应过程的设备,根据不同特性,有不同的分类,工业生产中常用的五种反应器有固定床反应器、流化床反应器、釜式反应器、管式反应器、塔式反应器。
2.1固定床反应器化学工业中最为常用的气固相反应器主要是固定床反应器。
凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作固定床反应器,其中尤以用气态的反应物料通过由固体催化剂所构成的床层进行反应的气-固相催化反应器占最主要的地位。
如炼油工业中的催化重整,异构化,基本化学工业中的氨合成、天然气转化,石油化工中的乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯等等。
此外还有不少非催化的气-固相反应,如水煤气的生产,氮与电石反应生成石灰氮(CaCN2)以及许多矿物的焙烧等,也都采用固定床反应器。
2.2流化床反应器流态化技术是一种强化流体(气体或液体)与固体颗粒间相互作用的操作,可使操作连续,生产强化,过程简化。
具有传热效率较高、床层温度分布均匀、相间接触面积很大、固体粒子输送方便等优点。
流态化的过程与流化床的结构紧密联系,要根据生产任务正确识别流化床反应器及其附属设备。
流化床反应器是将流态化技术应用于流体(通常指气体)、固相化学反应的设备。
有气-固相流化床催化反应器和气-固相流化床非催化反应器两种。
以-定的流动速率使固体催化剂颗粒呈悬浮湍动,并在催化剂作用下进行化学反应的设备称为气-固相流化床催化反应器(常简称为流化床),它是气-固相催化反应常用的一种。
流化床反应器的结构形式很多,除单器外,还有双器流化床反应器。
文档编号:TSS_FLUID.DOC流化床反应器单元仿真培训系统操作说明书北京东方仿真软件技术有限公司二〇〇六年十月目录一、工艺流程说明 (3)1、工艺说明 (3)2、反应机理 (3)3、设备一览 (4)4、参数说明 (4)二、装置的操作规程 (4)1、冷态开车规程 (4)2、正常操作规程 (6)3、停车操作规程 (6)4、仪表一览表 (8)三、事故设置一览表 (9)四、仿真界面 (10)附:思考题 (12)一、工艺流程说明1、工艺说明该流化床反应器取材于HIMONT工艺本体聚合装置,用于生产高抗冲击共聚物。
具有剩余活性的干均聚物(聚丙烯),在压差作用下自闪蒸罐D-301流到该气相共聚反应器R-401。
在气体分析仪的控制下,氢气被加到乙烯进料管道中,以改进聚合物的本征粘度,满足加工需要。
聚合物从顶部进入流化床反应器,落在流化床的床层上。
流化气体(反应单体)通过一个特殊设计的栅板进入反应器。
由反应器底部出口管路上的控制阀来维持聚合物的料位。
聚合物料位决定了停留时间,从而决定了聚合反应的程度,为了避免过度聚合的鳞片状产物堆积在反应器壁上,反应器内配置一转速较慢的刮刀,以使反应器壁保持干净。
栅板下部夹带的聚合物细末,用一台小型旋风分离器S401除去,并送到下游的袋式过滤器中。
所有末反应的单体循环返回到流化压缩机的吸入口。
来自乙烯汽提塔顶部的回收气相与气相反应器出口的循环单体汇合,而补充的氢气,乙烯和丙烯加入到压缩机排出口。
循环气体用工业色谱仪进行分析,调节氢气和丙烯的补充量。
然后调节补充的丙烯进料量以保证反应器的进料气体满足工艺要求的组成。
用脱盐水作为冷却介质,用一台立式列管式换热器将聚合反应热撤出。
该热交换器位于循环气体压缩机之前。
共聚物的反应压力约为1.4Mpa(表),70℃,注意,该系统压力位于闪蒸罐压力和袋式过滤器压力之间,从而在整个聚合物管路中形成一定压力梯度,以避免容器间物料的返混并使聚合物向前流动。
流化床反应器安全操作规定摘要流化床反应器在化工行业中应用广泛,但操作风险较高。
本文将从操作前的准备工作出发,详细介绍流化床反应器的安全操作规定,以确保操作人员能够在最安全的环境下进行操作。
第一部分:操作前准备工作在操作流化床反应器之前,必须仔细检查所有设备并准备好所有必要的工具和设备。
应注意以下事项:1.检查流化床内部是否干净,如有残留物应及时清理。
2.检查床层状态,如果床层不均匀或异常,应及时调整或修复。
3.检查排放管道是否正常,排放口是否畅通。
4.检查进料管道和转换器是否正常。
5.准备清洁工具和安全装备,如手套,护目镜等。
第二部分:操作规定在操作流化床反应器时,需要严格遵守以下规定:1.操作前应将进料阀门完全关闭,并确保所有液体和气体的容器处于关闭状态。
2.在开启进料阀门之前,需要先将反应器内部加热到所需的反应温度,然后温度保持一段时间以确保温度均匀。
3.当进料阀门开启时,必须慢慢释放其内部的压力,以避免过度压力和温度的波动。
4.在进料过程中,应严格监测反应器内部的压力和温度,以避免压力过大或过小,或者温度过高或过低。
5.如需要停止操作,应立即关闭进料阀门并同时切断电源和压力源。
第三部分:应急处理规定在紧急情况下,应采取以下应急处理措施:1.发现异常情况时,应立即关闭进料阀门并向操作主管汇报。
2.在气体泄漏的情况下,应身穿防毒面具并立即切断压力源。
3.在气体泄漏的情况下,应立即向安全总监汇报,并进行相应的应急处理措施,如撤离人员等。
4.在发生火灾或爆炸时,应立即拉响警报器并按照公司应急计划执行。
结论在操作流化床反应器时,必须向操作人员强调操作规定,遵循以上规定可以保证操作的最大安全性和高效性。
同时,操作人员应定期进行技术培训和演习,以进一步降低操作风险。
流化床反响器的操作和日常维护2.6.1 流化床反响器的操作流化床反响器最早用于煤造气,后来在石油加工、矿石焙烧等方面得到广泛应用。
按气固物料在反响中所起的作用,可分为催化反响和非催化反响。
不管是何种反响,其运行与操作都是通过优化工艺条件,提高转化率和产品质量。
本节以流化床催化反响器为例介绍流化床反响器的操作。
对于一般的流化床反响器,需要控制和测量的参数主要有颗粒粒度、颗粒组成、床层压力和温度、流量等。
这些参数的控制除了受到所进行的化学反响的限制外,还受到流态化要求的影响。
实际操作中是通过安装在反响器上的各种测量仪表来了解流化床中的各项指标,以便采取正确的控制步骤到达反响器的正常工作。
1.颗粒粒度和组成的控制流化床操作中,颗粒粒度和组成对流态化质量以及化学反响转化率有重要影响。
下面介绍一种简便而常用的控制粒度和组成的方法。
比方在氨氧化制丙烯腈的反响器内,采用的催化剂粒度和组成中,为了保持<44mμ的“关键组分〔即对流态化质量起关键作用的较小粒度的颗粒。
〕〞粒子在202140%之间,在反响器上安装了一个“造粉器〞,当取样分析发现床层内<44mμ的粒子小于12%时,就启动造粉器。
造粉器实际上就是一个简单的气流喷枪,它是用压缩空气以大于300m/s的流速喷入床层,粘结的催化剂粒子即被粉碎,从而增加了小于44μm粒子的含量。
在造粉过程中,要不断从反响器中取出固体颗粒样品,进行粒度和含量的分析,直到细粉含量到达要求为止。
流化床正常运转中,从床层取固体颗粒样品,虽然简单,但又要特别注意并且妥善处理好。
如图2-31所示的是王尊孝提出的取样器。
在平时,锥形活动堵头3是关闭的,阀6是开启的,取样器本体内充满了压力高于床层内压力的枯燥空气,以防止反响产物渗入取样器内,造成启动时的困难〔例如苯酐反响器,当温度低于150℃时,苯酐呈液体析出;当温度低于130.8℃时,苯酐变成固体,如果没有反吹气,取样器将因苯酐冻结而堵死〕。
流化床反应器设备安全操作规程
1. 引言
流化床反应器是一种广泛应用于化工、石化、精细化工等领域的反
应器设备。
然而,这种设备具有高温、高压、易燃、易爆等特点,存
在较大的安全风险。
为了确保设备的正常运行,保障生产安全,制定
本规程对流化床反应器设备的安全操作进行规范。
2. 设备安全操作规范
2.1. 操作前准备
1.检查设备的运行状态,并确认仪表的准确性。
2.查看设备的标签和说明书,了解反应器的工作原理、操作
要求、紧急处理手段等信息。
3.穿戴好劳动防护用品,包括: 双眼镜、呼吸器、耳塞、手套
和防护衣等。
4.监测环境温度和湿度,设定预警值,确保操作环境的安全。
2.2. 设备运行操作
1.在启动流化床反应器设备前,必须检测好防火设备和报警
器的工作状态,并保持通道畅通,以便发现异常情况及时报警。
2.设备操作中,应确保正常加料、排气,避免气体、液体积
聚,产生爆炸、燃烧等危险情况。
《化学反应过程与设备》课程标准课程代码:B0201427课程类别:专业核心课授课系(部):化学工程系学分学时:4学分64学时一、课程定位与作用1.课程的定位《化学反应过程与设备》是高职应用化工技术专业核心课程,是学生深化专业理论学习、培养专业能力和职业素养的专业骨干课程。
2.课程的作用本课程对高职应用化工技术专业人才培养,对职业能力和素质的形成具有基础性关键性地位,是工学结合的专业核心课程,对中控操作能力,反应设备的操作维护,异常现象的判断和处理,质量意识,成本意识,节能意识,环保意识,劳动安全卫生意识等职业能力和素质的养成起着重要的支撑作用。
3.与其他课程的关系本课程的前导课程有《物理化学》、《化工设备基础》等课程,通过化学动力学,化工设备的结构、工作原理、腐蚀防腐等知识和技能的学习训练,为本门课程的学习打下基础,本课程的后续课程有《无机化工生产技术》、《化工总控操作技术》等,运用本课程所学的知识技能为后续课程做准备。
二、课程目标通过本课程的学习,使学生掌握反应器的结构组成、流体在反应器中的流动特征、化学反应的类型和特点、催化剂及工程因素对化学反应的影响等基本知识,具备反应器选型、简单反应器设计计算、反应器的操作和控制等职业能力以及安全、节能、环保、质量、成本等职业素质,为今后的职业生涯打下基础。
1.知识目标(1)了解反应器在化学生产中的重要作用;(2)了解反应器的发展趋势;(3)掌握反应器的分类;(4)掌握反应器的基本结构及特点;(5)掌握反应器类型选择方法;(6)掌握均相、非均相反应动力学基本概念;(7)掌握理想流动模型的特点及造成非理想流动的原因;(8)掌握降低反应器返混程度的措施;(9)掌握催化剂基本概念;(10)掌握反应器设计的简单计算;(11)掌握反应器操作工艺参数的控制方法。
2、能力目标(1)能根据反应特点和工艺要求选择反应器类型;(2)能对反应器的设计与操作进行简单的优化或改进;(3)能按生产操作规程操作反应单元;(4)能对反应器进行操作参数调节控制;(5)能分析和处理操作反应器过程中出现的常见故障;3、素质目标(1)具有较强的口头与书面表达能力、人际沟通能力;(2)具有团队意识和合作精神;(3)具有良好的心理素质和克服困难的能力;(4)具有自主学习新知识、新技术的能力;(5)具有通过各种媒体资源查找所需信息的能力(6)具有独立制订工作计划并实施的能力;(7)具有规范操作、文明操作意识;(8)具有分析问题和解决问题的能力;(9)具有科学思维方法;(10)具有劳动保护与安全生产意识;(11)具有节能减排意识;(12)具有经济成本意识;(13)具有化工生产职业道德;(14)具有“6S”管理意识。
《反应过程与技术》仿真操作指导书周波辽宁石化职业技术学院石油化工系流化床反应仿真操作单元一.工艺流程说明:该流化床反应器取材于HIMONT工艺本体聚合装置,用于生产高抗冲击共聚物。
具有剩余活性的干均聚物(聚丙烯),在压差作用下自闪蒸罐D-301流到该气相共聚反应器R-401。
在气体分析仪的控制下,氢气被加到乙烯进料管道中,以改进聚合物的本征粘度,满足加工需要。
聚合物从顶部进入流化床反应器,落在流化床的床层上。
流化气体(反应单体)通过一个特殊设计的栅板进入反应器。
由反应器底部出口管路上的控制阀来维持聚合物的料位。
聚合物料位决定了停留时间,从而决定了聚合反应的程度,为了避免过度聚合的鳞片状产物堆积在反应器壁上,反应器内配置一转速较慢的刮刀,以使反应器壁保持干净。
栅板下部夹带的聚合物细末,用一台小型旋风分离器S401除去,并送到下游的袋式过滤器中。
所有末反应的单体循环返回到流化压缩机的吸入口。
来自乙烯汽提塔顶部的回收气相与气相反应器出口的循环单体汇合,而补充的氢气,乙烯和丙烯加入到压缩机排出口。
循环气体用工业色谱仪进行分析,调节氢气和丙烯的补充量。
然后调节补充的丙烯进料量以保证反应器的进料气体满足工艺要求的组成。
用脱盐水作为冷却介质,用一台立式列管式换热器将聚合反应热撤出。
该热交换器位于循环气体压缩机之前。
共聚物的反应压力约为1.4Mpa(表),70℃,注意,该系统压力位于闪蒸罐压力和袋式过滤器压力之间,从而在整个聚合物管路中形成一定压力梯度,以避免容器间物料的返混并使聚合物向前流动。
反应机理:乙烯,丙烯以及反应混合气在一定的温度70度,一定的压力1.35Mpa下,通过具有剩余活性的干均聚物(聚丙烯)的引发,在流化床反应器里进行反应,同时加入氢气以改善共聚物的本征粘度,生成高抗冲击共聚物。
主要原料:乙烯,丙烯,具有剩余活性的干均聚物(聚丙烯),氢气。
主产物:高抗冲击共聚物(具有乙烯和丙烯单体的共聚物)。