多元线性回归实例分析报告
- 格式:doc
- 大小:1003.50 KB
- 文档页数:17
多元线性回归分析的实例研究多元线性回归是一种经典的统计方法,用于研究多个自变量对一个因变量的影响关系。
在实际应用中,多元线性回归分析可以帮助我们理解多个因素对一些现象的综合影响,并通过构建模型来进行预测和决策。
本文将以一个假想的房价分析为例,详细介绍多元线性回归分析的步骤、数据解释以及结果分析。
假设我们想要研究一个城市的房价与面积、房龄和地理位置之间的关系。
我们收集了100个房源的数据,包括房价(因变量)、面积(自变量1)、房龄(自变量2)和地理位置(自变量3)。
下面是我们的数据:序号,房价(万元),面积(平方米),房龄(年),地理位置(距市中心距离,公里)----,------------,--------------,----------,--------------------------------1,150,120,5,22,200,150,8,63,100,80,2,104,180,130,10,55,220,160,12,3...,...,...,...,...100,250,180,15,1首先,我们需要对数据进行描述性统计分析。
通过计算平均值、标准差、最小值、最大值等统计量,可以初步了解数据的分布和变异程度。
然后,我们需要进行回归模型的拟合。
回归模型可以表示为:房价=β0+β1*面积+β2*房龄+β3*地理位置+ε其中,β0、β1、β2、β3是待估计的回归系数,ε是模型的误差项。
回归系数表示自变量对因变量的影响大小和方向。
为了估计回归系数,我们可以使用最小二乘法。
最小二乘法通过找到一组回归系数,使得实际观测值与模型预测值之间的平方误差最小化。
在本例中,我们可以使用统计软件进行回归模型的拟合和参数估计。
假设我们得到的回归模型如下:房价=100+1.5*面积-5*房龄+10*地理位置接着,我们需要对回归模型进行评价和解释。
首先,我们可以计算回归模型的决定系数(R^2),它表示因变量的变异中能够被模型解释的比例。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计学方法,用于探究一个因变量与多个自变量之间的关系。
这种方法在各个领域的研究中广泛应用,如经济学、社会学、心理学等。
本文将通过一个具体的实例,展示多元线性回归分析的应用过程及其实证结果。
二、研究背景与目的本研究以某地区房价为研究对象,探讨房价与地理位置、房屋面积、房屋装修等因素之间的关系。
目的是通过多元线性回归分析,找出影响房价的主要因素,为房地产投资者和购房者提供参考依据。
三、数据收集与处理本研究采用某地区房地产交易数据,包括房价、地理位置、房屋面积、房屋装修等变量。
在数据收集过程中,我们确保数据的准确性和完整性,并对数据进行清洗和处理,以消除异常值和缺失值的影响。
四、多元线性回归分析(一)模型构建根据研究目的和收集的数据,构建多元线性回归模型。
假设房价为因变量Y,地理位置、房屋面积、房屋装修等因素为自变量X1、X2、X3。
则模型可以表示为:Y = β0 + β1X1 + β2X2 +β3X3 + ε。
其中,β0为常数项,β1、β2、β3为回归系数,ε为随机误差项。
(二)参数估计与假设检验利用统计软件对模型进行参数估计,得到各回归系数的估计值及其显著性水平。
通过假设检验,检验自变量与因变量之间的线性关系是否显著。
若显著性水平低于预设的阈值(如0.05),则认为自变量与因变量之间存在显著的线性关系。
(三)模型检验与优化对模型进行检验和优化,包括检查模型的拟合优度、自相关性和异方差性等。
若存在显著问题,则采取相应的方法进行修正和优化。
五、实证结果与分析(一)回归系数解释根据参数估计结果,得出各回归系数的估计值。
解释各系数在模型中的意义和作用,如地理位置对房价的影响程度、房屋面积对房价的影响程度等。
(二)实证结果分析根据实证结果,分析自变量与因变量之间的关系及影响程度。
通过对比各回归系数的估计值和显著性水平,找出影响房价的主要因素。
同时,结合实际情况,对实证结果进行深入分析和解释。
多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。
本文将以一个虚构的案例来介绍多元线性回归分析的应用。
2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。
为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。
3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。
我们检查了数据的缺失情况和异常值,并进行了相应的处理。
接下来,我们使用多元线性回归模型来分析数据。
模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。
5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。
- β1表示产品价格每增加1单位,销售额平均增加10单位。
- β2表示广告费用每增加1单位,销售额平均增加20单位。
- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。
拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。
这意味着模型对数据的拟合程度较好。
6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。
国际旅游外汇收入是国民经济发展的重要组成部分, 影响一个国家或地区旅游收入的因素包 括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。
《中国统计年鉴》 把第三产业划分为12个组成部分, 分别为 x 农林牧渔服务业 ,x 21地质勘查水利 管理业 ,x 交通运输仓储和邮电通信业 ,x 批发零售贸易和餐饮业 ,x 金融保险 534业,x 房地产业 ,x 社会服务业 ,x 卫生体育和社会福利业, x 教育文化艺术和广播 ,x 科学研106987究和综合艺术 ,x 党 政机关, x 其他行业。
采用 1998年我国 31 个省、市、自治区的数据, 1211以国际旅游外汇收入 (百 万美元)为因变量 y ,以如上 12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民 币。
即样本量n=31,变量 p=12。
利用 SPSS 软件对数据进行处理,输出:图1 输入/移除变量图 1 即输入了所有模型中的变量,分别为x :农林牧渔服务业 1x :地质勘查水利管理业 2x 电通信业 3x :批发零售贸易和餐饮业 4x :金融保险业 6x :社会服务业 7x :卫生体育和社会福利业 8x 播 9 x :科学研究和综合艺术 10x :党政机关 11x12 .图2 模型概述2=0.935R 。
由决 即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数2决定,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。
由R 定系数接近 1 模型优劣时需慎重,尤其是样本量与自变量个数接近时。
:交通运输仓储和邮5x :房地产业 :教育文化艺术和广 :其他行业图3 回归方程显著性的F检验F=10.482,F(n,n-p-1)=F(30,18)=2.11(α =0.05),P值=0.000,表明回归方程高度显著,αα即12 个自变量整体对因变量y 产生显著线性影响。
但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济分析、医学等多个领域,这种分析方法的应用都十分重要。
本实例研究以一个具体的商业案例为例,展示了如何应用多元线性回归分析方法进行研究,以便深入理解和探索各个变量之间的潜在关系。
二、背景介绍以某电子商务公司的销售额预测为例。
电子商务公司销售量的影响因素很多,包括市场宣传、商品价格、消费者喜好等。
因此,本文通过收集多个因素的数据,使用多元线性回归分析,以期达到更准确的销售预测和因素分析。
三、数据收集与处理为了进行多元线性回归分析,我们首先需要收集相关数据。
在本例中,我们收集了以下几个关键变量的数据:销售额(因变量)、广告投入、商品价格、消费者年龄分布、消费者性别比例等。
这些数据来自电子商务公司的历史销售记录和调查问卷。
在收集到数据后,我们需要对数据进行清洗和处理。
这包括去除无效数据、处理缺失值、标准化处理等步骤。
经过处理后,我们可以得到一个干净且结构化的数据集,为后续的多元线性回归分析提供基础。
四、多元线性回归分析1. 模型建立根据所收集的数据和实际情况,我们建立了如下的多元线性回归模型:销售额= β0 + β1广告投入+ β2商品价格+ β3消费者年龄分布+ β4消费者性别比例+ ε其中,β0为常数项,β1、β2、β3和β4为回归系数,ε为误差项。
2. 模型参数估计通过使用统计软件进行多元线性回归分析,我们可以得到每个变量的回归系数和显著性水平等参数。
这些参数反映了各个变量对销售额的影响程度和方向。
3. 模型检验与优化为了检验模型的可靠性和准确性,我们需要对模型进行假设检验、R方检验和残差分析等步骤。
同时,我们还可以通过引入交互项、调整自变量等方式优化模型,提高预测精度。
五、结果分析与讨论1. 结果解读根据多元线性回归分析的结果,我们可以得到以下结论:广告投入、商品价格、消费者年龄分布和消费者性别比例均对销售额有显著影响。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的线性关系。
在实际生活和科研工作中,这种分析方法广泛应用于经济、医学、生态学等领域。
本文以一个具体实例为例,深入探讨多元线性回归分析的步骤和应用。
该实例关注于房屋价格的影响因素分析。
二、研究背景及目的随着房地产市场的发展,房屋价格受到多种因素的影响。
为了探究这些因素如何共同影响房屋价格,本文选取了一组具有代表性的房屋数据,并运用多元线性回归分析方法进行实证研究。
研究目的在于揭示影响房屋价格的主要因素,为购房者和房地产投资者提供参考依据。
三、数据与方法(一)数据来源本研究的数据来源于某城市房屋交易数据库,涵盖了多个区域的房屋信息,包括房屋价格、房屋面积、房屋年龄、周边环境、学区等因素。
(二)研究方法本研究采用多元线性回归分析方法,通过建立模型来研究各因素与房屋价格之间的线性关系。
具体步骤包括:数据清洗、变量选择、模型建立、模型检验和结果解释等。
四、多元线性回归分析步骤及结果(一)变量选择与数据清洗根据研究目的和前人研究成果,本研究选择了以下变量:房屋价格(因变量)、房屋面积、房屋年龄、周边环境(包括交通、商业、绿化等)、学区等(自变量)。
在数据清洗阶段,剔除了异常值和缺失值,确保数据的准确性和可靠性。
(二)模型建立根据选定的变量,建立多元线性回归模型。
模型形式如下:P = β0 + β1 × Area + β2 × Age + β3 × Environment + β4 × Schoo l + ε其中,P表示房屋价格,Area表示房屋面积,Age表示房屋年龄,Environment表示周边环境因素,School表示学区因素,βi 为各变量的回归系数,ε为随机误差项。
(三)模型检验通过SPSS软件进行模型检验。
首先进行多重共线性检验,发现各变量之间不存在明显的共线性问题。
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数 利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。
在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。
本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。
案例背景。
假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。
我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。
数据分析。
首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。
我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。
通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。
多元线性回归模型。
我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。
模型验证。
我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。
结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。
同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。
决策建议。
多元线性回归模型案例分析报告多元线性回归模型是一种用于预测和建立因变量和多个自变量之间关系的统计方法。
它通过拟合一个线性方程,找到使得回归方程和实际观测值之间误差最小的系数。
本报告将以一个实际案例为例,对多元线性回归模型进行案例分析。
案例背景:公司是一家在线教育平台,希望通过多元线性回归模型来预测学生的学习时长,并找出对学习时长影响最大的因素。
为了进行分析,该公司收集了一些与学习时长相关的数据,包括学生的个人信息(性别、年龄、学历)、学习环境(家乡、宿舍)、学习资源(网络速度、学习材料)以及学习动力(学习目标、学习习惯)等多个自变量。
数据分析方法:通过建立多元线性回归模型,我们可以找到与学习时长最相关的因素,并预测学生的学习时长。
首先,我们将根据实际情况对数据进行预处理,包括数据清洗、过滤异常值等。
然后,我们使用逐步回归方法,通过逐步添加和删除自变量来筛选最佳模型。
最后,我们使用已选定的自变量建立多元线性回归模型,并进行系数估计和显著性检验。
案例分析结果:经过数据分析和模型建立,我们得到了如下的多元线性回归模型:学习时长=0.5*年龄+0.2*学历+0.3*学习资源+0.4*学习习惯对于系数估计,我们发现年龄、学历、学习资源和学习习惯对于学习时长均有正向影响,即随着这些变量的增加,学习时长也会增加。
其中,年龄和学习资源的影响较大,学历和学习习惯的影响较小。
在显著性检验中,我们发现该模型的拟合度较好,因为相关自变量的p值均小于0.05,表明它们对学习时长的影响具有统计学意义。
案例启示:本案例的分析结果为在线教育平台提供了重要的参考。
公司可以针对年龄较大、学历高、学习资源丰富和有良好学习习惯的学生,提供个性化的学习服务和辅导。
同时,公司也可以通过提供更好的学习资源和培养良好的学习习惯,来提升学生的学习时长和学习效果。
总结:多元线性回归模型在实际应用中具有广泛的应用价值。
通过对因变量和多个自变量之间的关系进行建模和分析,我们可以找到相关影响因素,并预测因变量的取值。
SPSS返回多元线性返回模型案例剖析!(一)之阳早格格创做多元线性返回,主假如钻研一个果变量与多个自变量之间的相闭闭系,跟一元返回本理好已几,辨别正在于做用果素(自变量)更多些而已,比圆:一元线性返回圆程为:毫无疑问,多元线性返回圆程该当为:上图中的 x1, x2, xp分别代表“自变量”Xp停止,代表有P个自变量,如果有“N组样本,那么那个多元线性返回,将会组成一个矩阵,如下图所示:那么,多元线性返回圆程矩阵形式为:其中:代表随机缺面,其中随机缺面分为:可阐明的缺面战不可阐明的缺面,随机缺面必须谦脚以下四个条件,多元线性圆程才蓄意思(一元线性圆程也一般)1:服成正太分散,即指:随机缺面必须是服成正太分别的随机变量.2:无偏偏性假设,即指:憧憬值为03:共共圆好性假设,即指,所有的随机缺面变量圆好皆相等4:独力性假设,即指:所有的随机缺面变量皆相互独力,不妨用协圆好阐明.即日跟大家所有计划一下,SPSS多元线性返回的简曲支配历程,底下以教程教程数据为例,分解汽车特性与汽车出卖量之间的闭系.通太过解汽车特性跟汽车出卖量的闭系,建坐拟合多元线性返回模型.数据如下图所示:面打“分解”——返回——线性——加进如下图所示的界里:将“出卖量”动做“果变量”拖进果变量框内,将“车少,车宽,耗油率,车洁沉等10个自变量拖进自变量框内,如上图所示,正在“要收”中间,采用“逐步”,天然,您也不妨采用其余的办法,如果您采用“加进”默认的办法,正在分解停止中,将会得到如下图所示的停止:(所有的自变量,皆市强止加进)如果您采用“逐步”那个要收,将会得到如下图所示的停止:(将会根据预先设定的“F统计量的概率值举止筛选,最先加进返回圆程的“自变量”该当是跟“果变量”闭系最为稀切,孝敬最大的,如下图不妨瞅出,车的代价战车轴跟果变量闭系最为稀切,切合推断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“采用变量(E)" 框内,尔并不输进数据,如果您需要对于某个“自变量”举止条件筛选,不妨将那个自变量,移进“采用变量框”内,有一个前提便是:该变量从已正在另一个目标列表中出现!,再面打“准则”设定相映的“筛选条件”即可,如下图所示:面打“统计量”弹出如下所示的框,如下所示:正在“返回系数”底下勾选“预计,正在左侧勾选”模型拟合度“ 战”共线性诊疗“ 二个选项,再勾选“个案诊疗”再面打“离群值”普遍默认值为“3”,(设定非常十分值的依据,惟有当残好超出3倍尺度好的瞅测才会被当搞非常十分值)面打继承.提示:共线性考验,如果有二个大概二个以上的自变量之间存留线性相闭闭系,便会爆收多沉共线性局里.那时间,用最小二乘法预计的模型参数便会不宁静,返回系数的预计值很简单引起误导大概者引导过失的论断.所以,需要勾选“共线性诊疗”去搞推断通过容许度不妨预计共线性的存留与可?容许度TOL=1RI仄圆大概圆好伸展果子(VIF): VIF=1/1RI仄圆,其中RI仄圆是用其余自变量预测第I个变量的复相闭系数,隐然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其余自变量之间存留共线性的大概性越大.提供三种处理要收:1:从有共线性问题的变量里简略不要害的变量2:减少样本量大概沉新抽与样本.3:采与其余要收拟合模型,如收返回法,逐步返回法,主身分分解法.再面打“画造”选项,如下所示:上图中:DEPENDENT( 果变量) ZPRED(尺度化预测值) ZRESID(尺度化残好) DRESID(剔除残好) ADJPRED(建正后预测值) SRSID(教死化残好) SDRESID(教死化剔除残好)普遍咱们大部分以“自变量”动做 X 轴,用“残好”动做Y 轴,然而是,也不要忽略特殊情况,那里咱们以“ZPRED (尺度化预测值)动做"x" 轴,分别用“SDRESID(血死化剔除残好)”战“ZRESID(尺度化残好)动做Y轴,分别动做二组画图变量.再面打”保存“按钮,加进如下界里:如上图所示:勾选“距离”底下的“cook距离”选项(cook 距离,主假如指:把一个个案从预计返回系数的样本中剔除时所引起的残好大小,cook距离越大,标明该个案对于返回系数的做用也越大)正在“预测区间”勾选“均值”战“单值” 面打“继承”按钮,再面打“决定按钮,得到如下所示的分解停止:(此分解停止,采与的是“逐步法”得到的停止)SPSS—返回—多元线性返回停止分解(二),迩去背去很闲,公司的潮起潮降,便佳比人死的跌岩起伏,眼瞅着一步步走背衰强,却无计可施,也许要教习“步步惊心”内里“四阿哥”的座左铭:“止到火贫处”,”坐瞅云起时“.交着上一期的“多元线性返回剖析”内里的真质,上一次,不写停止分解,那次补上,停止分解如下所示:停止分解1:由于启初采用的是“逐步”法,逐步法是“背前”战“背后”的分离体,从停止不妨瞅出,最先加进“线性返回模型”的是“price in thousands"建坐了模型1,紧随其后的是“Wheelbase"建坐了模型2,所以,模型中有此要收有个概率值,当小于等于0.05时,加进“线性返回模型”(最先加进模型的,相闭性最强,闭系最为稀切)当大于等0.1时,从“线性模型中”剔除停止分解:1:从“模型汇总”中不妨瞅出,有二个模型,(模型1战模型2)从R2 拟合劣度去瞅,模型2的拟合劣度明隐比模型1要佳一些(0.422>0.300)2:从“Anova"表中,不妨瞅出“模型2”中的“返回仄圆战”为115.311,“残好仄圆战”为153.072,由于总仄圆战=返回仄圆战+残好仄圆战,由于残好仄圆战(即指随即缺面,不可阐明的缺面)由于“返回仄圆战”跟“残好仄圆战”险些交近,所有,此线性返回模型只阐明了总仄圆战的一半,3:根据后里的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引进,其隐著性概率值均近小于0.01,所以不妨隐著天中断总体返回系数为0的本假设,通过ANOVA圆好分解表不妨瞅出“出卖量”与“代价”战“轴距”之间存留着线性闭系,至于线性闭系的强强,需要进一步举止分解.停止分解:1:从“已排除的变量”表中,不妨瞅出:“模型2”中各变量的T检的概率值皆大于“0.05”所以,不克不迭够引进“线性返回模型”必须剔除.从“系数a” 表中不妨瞅出:1:多元线性返回圆程该当为:出卖量=1.8220.055*代价+0.061*轴距然而是,由于常数项的sig为(0.116>0.1) 所以常数项不具备隐著性,所以,咱们再瞅后里的“尺度系数”,正在尺度系数一列中,不妨瞅到“常数项”不数值,已经被剔除所以:尺度化的返回圆程为:出卖量=0.59*代价+0.356*轴距2:再瞅末尾一列“共线性统计量”,其中“代价”战“轴距”二个容好战“vif皆一般,而且VIF皆为1.012,且皆小于5,所以二个自变量之间不出现共线性,容忍度战伸展果子是互为倒数闭系,容忍度越小,伸展果子越大,爆收共线性的大概性也越大从“共线性诊疗”表中不妨瞅出:1:共线性诊疗采与的是“特性值”的办法,特性值主要用去描画自变量的圆好,诊疗自变量间是可存留较强多沉共线性的另一种要收是利用主身分分解法,基础思维是:如果自变量间真真存留较强的相闭闭系,那么它们之间必定存留疑息沉叠,于是便不妨从那些自变量中提与出既能反应自变量疑息(圆好),而且有相互独力的果素(身分)去,该要收主要从自变量间的相闭系数矩阵出收,预计相闭系数矩阵的特性值,得到相映的若搞身分.条件索引=最大特性值/相对于特性值再举止启圆(即特性值2的条件索引为 2.847/0.150 再启圆=4.351)尺度化后,圆好为1,每一个特性值皆不妨描画某自变量的一定比率,所有的特性值能将描画某自变量疑息的局部,于是,咱们不妨得到以下论断:不妨瞅出:不一个特性值,既不妨阐明“代价”又不妨阐明“轴距”所以“代价”战“轴距”之间存留共线性较强.前里的论断进一步得到了论证.(残好统计量的表中数值怎么去的,那个预计历程,尔便不写了)从上图不妨得知:大部分自变量的残好皆切合正太分散,惟有一,二处场合稍有偏偏离,如图上的(5到3天区的)处理偏偏离状态。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济学、管理学等多个领域中,它被广泛用于预测和解释一个变量如何受到多个独立变量的影响。
本文将通过一个实际案例,详细介绍多元线性回归分析的应用过程。
二、案例背景假设我们正在研究一个城市的新房销售价格问题。
我们关注的是新房的销售价格(因变量),并假设它受到以下几个自变量的影响:房屋面积、地理位置、房屋年龄和装修情况。
我们的目标是建立一个多元线性回归模型,以解释这些因素如何共同影响新房销售价格。
三、数据收集与处理我们收集了该城市内一定时间内的新房销售数据,包括房屋面积、地理位置(我们将其转化为几个虚拟变量以表示不同区域)、房屋年龄和装修情况等数据。
同时,我们也收集了相应的销售价格数据。
在数据处理阶段,我们对数据进行清洗、整理和格式化,以确保数据的质量和准确性。
四、多元线性回归分析1. 模型设定根据我们的研究目的和所收集的数据,我们设定了一个多元线性回归模型。
模型的形式为:销售价格= β0 + β1 房屋面积+ β2 地理位置+ β3 房屋年龄+ β4 装修情况+ ε,其中β0为常数项,β1、β2、β3、β4为回归系数,ε为随机误差项。
2. 参数估计我们使用最小二乘法对模型参数进行估计。
通过计算,我们得到了各个回归系数的估计值以及对应的t值、p值等统计量。
3. 模型检验我们对模型进行了一系列检验,包括变量的共线性检验、模型的拟合优度检验、回归系数的显著性检验等。
通过检验,我们发现模型的整体拟合效果较好,各变量之间没有明显的共线性问题,且回归系数的显著性水平均较低。
五、结果分析1. 回归系数解释根据回归系数的估计值,我们可以得出以下结论:房屋面积、地理位置、房屋年龄和装修情况对新房销售价格均有显著影响。
其中,房屋面积的回归系数最大,说明房屋面积对销售价格的影响最大。
其次是地理位置和装修情况,而房屋年龄的回归系数相对较小。
中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。
为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:〔1〕从宏观经济看,经济整体增长是税收增长的基根源泉。
〔2〕公共财政的需求,税收收入是财政的主体,社会经济的开展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。
〔3〕物价水平。
我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。
〔4〕税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984—%。
但是第二次税制改革对税收的增长速度的影响不是非常大。
因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收〞〔简称“税收收入〞〕作为被解释变量,以反映国家税收的增长;选择“国内生产总值〔GDP〕〞作为经济整体增长水平的代表;选择中央和地方“财政支出〞作为公共财政需求的代表;选择“商品零售物价指数〞作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值〔GDP〕〞、“财政支出〞、“商品零售物价指数〞从《中国统计年鉴》收集到以下数据年份财政收入〔亿元〕Y国内生产总值(亿元〕X2财政支出〔亿元〕X3商品零售价格指数〔%)X419781979 102 1980 106 1981198219831984 717119851986 106 1987198819891990199119921993199419951996199719981999 97 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 12/01/09 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1463163. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)模型估计的结果为:Y i=+0.022067X2+X3+X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21四、模型检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
多元回归现行回归习题分析【例3.2】中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制改革的深化和经济的快速增长,中国的财政收支状况发生很大变化,中央和地方的税收收入1978年为519.28亿元,到2002年已增长到17636.45亿元,25年间增长了33倍,平均每年增长%。
为了研究影响中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984-1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收增长速度的影响不是非常大。
因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了全面反映中国税收增长的全貌,选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“税收收入”)作为被解释变量,以反映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于财税体制的改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑税制改革对税收增长的影响。
所以解释变量设定为可观测的“国内生产总值”、“财政支出”、“商品零售物价指数”等变量。
多元线性回归模型案例分析报告多元线性回归模型案例分析——中国人口自然增长分析一·讨论目的要求中国从1971年开头全面开展了方案生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,临近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的进展等各方面的因素相联系,与经济生活息息相关,为了讨论此后影响中国人口自然增长的主要缘由,分析全国人口增长逻辑,与猜想中国将来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有无数,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的凹凸可能会间接影响人口增长率。
(3)文化程度,因为教导年限的凹凸,相应会改变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,挑选人口增长率作为被解释变量,以反映中国人口的增长;挑选“国名收入”及“人均GDP”作为经济整体增长的代表;挑选“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估量参数利用EViews 估量模型的参数,办法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中挑选“Annual ” (年度),并在“Start date ”中输入开头时光“1988”,在“end date ”中输入最后时光“2022”,点击“ok ”,浮现“Workfile UNTITLED ”工作框。
多元线性回归实例分析报告多元线性回归是一种用于预测目标变量和多个自变量之间关系的统计分析方法。
它可以帮助我们理解多个自变量对目标变量的影响,并通过建立回归模型进行预测。
本文将以一个实例为例,详细介绍多元线性回归的分析步骤和结果。
假设我们研究了一个电子产品公司的销售数据,并想通过多元线性回归来预测销售额。
我们收集了以下数据:目标变量(销售额)和三个自变量(广告费用、产品种类和市场规模)。
首先,我们需要对数据进行探索性分析,了解数据的分布、缺失值等情况。
我们可以使用散点图和相关系数矩阵来查看变量之间的关系。
通过绘制广告费用与销售额的散点图,我们可以观察到一定的正相关关系。
相关系数矩阵可以用来度量变量之间的线性关系的强度和方向。
接下来,我们需要构建多元线性回归模型。
假设目标变量(销售额)与三个自变量(广告费用、产品种类和市场规模)之间存在线性关系,模型可以表示为:销售额=β0+β1*广告费用+β2*产品种类+β3*市场规模+ε其中,β0是截距,β1、β2和β3是回归系数,ε是误差项。
我们可以使用最小二乘法估计回归系数。
最小二乘法可以最小化目标变量的预测值和实际值之间的差异的平方和。
通过计算最小二乘估计得到的回归系数,我们可以建立多元线性回归模型。
在实际应用中,我们通常使用统计软件来进行多元线性回归分析。
通过输入相应的数据和设置模型参数,软件会自动计算回归系数和其他统计指标。
例如,我们可以使用Python的statsmodels库或R语言的lm函数来进行多元线性回归分析。
最后,我们需要评估回归模型的拟合程度和预测能力。
常见的评估指标包括R方值和调整R方值。
R方值可以描述自变量对因变量的解释程度,值越接近1表示拟合程度越好。
调整R方值考虑了模型中自变量的个数,避免了过度拟合的问题。
在我们的实例中,假设我们得到了一个R方值为0.8的多元线性回归模型,说明模型可以解释目标变量80%的方差。
这个模型还可以用来进行销售额的预测。
《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济学、管理学等多个领域中,它被广泛用于预测和解释一个变量如何受到多个其他变量的影响。
本文将通过一个实际案例,详细介绍多元线性回归分析的应用过程和结果。
二、案例背景假设我们关注的是某城市房价的影响因素。
为了更全面地了解房价的变动,我们选取了该城市的一个住宅小区,收集了该小区近五年内若干套房子的售价数据,以及与房价相关的多个因素,如房屋面积、房龄、小区内设施、周边环境等。
我们的目标是找出这些因素对房价的影响程度,以及它们之间的相互关系。
三、数据收集与处理首先,我们需要收集相关的数据。
对于这个案例,我们可以从房地产网站、房产交易中心等渠道获取房屋售价、房屋面积、房龄等信息。
同时,我们还需要考虑一些可能影响房价的其他因素,如小区内设施(如绿化、健身房等)、周边环境(如学校、医院、商场等)等。
这些数据可以通过问卷调查、实地考察等方式获取。
在收集到数据后,我们需要对数据进行清洗和处理。
这包括去除重复数据、处理缺失值、对数据进行标准化或归一化等。
此外,我们还需要对自变量和因变量进行相关性分析,以确定哪些因素对房价有显著影响。
四、多元线性回归分析在完成数据预处理后,我们可以开始进行多元线性回归分析。
首先,我们需要建立多元线性回归模型。
假设房价为因变量Y,房屋面积、房龄、小区内设施、周边环境等为自变量X1、X2、X3...Xn。
那么,我们可以建立一个多元线性回归方程:Y = β0 + β1X1 + β2X2 + ... + βnXn。
其中,β0为截距项,β1、β2...βn为各变量的回归系数。
接下来,我们需要利用统计软件(如SPSS、SAS等)对模型进行估计。
在估计过程中,我们需要考虑模型的拟合优度、变量的显著性等因素。
通过分析模型的参数估计结果,我们可以得出各个自变量对因变量的影响程度。
五、结果分析根据多元线性回归分析的结果,我们可以得出以下结论:1. 房屋面积、房龄、小区内设施、周边环境等因素对房价均有显著影响。
SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“和”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
SPSS--回归-多元线性回归模型案例解析!(一)
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:
毫无疑问,多元线性回归方程应该为:
上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
那么,多元线性回归方程矩阵形式为:
其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为0
3:同共方差性假设,即指,所有的随机误差变量方差都相等
4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:
点击“分析”——回归——线性——进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10
个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)
如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,
贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于,当概率值大于等于时将会被剔除)
“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:
点击“统计量”弹出如下所示的框,如下所示:
在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“和”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
提示:
共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。
这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。
所以,需要勾选“共线性诊断”来做判断
通过容许度可以计算共线性的存在与否?容许度TOL=1-RI平方或方差膨胀因子(VIF): VIF=1/1-RI平方,其中RI平方是用其他自变量预测第I个变量的复相关系数,显然,VIF为TOL的倒数,TOL的值越小,VIF的值越大,自变量XI与其他自变量之间存在共线性的可能性越大。
提供三种处理方法:
1:从有共线性问题的变量里删除不重要的变量
2:增加样本量或重新抽取样本。
3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。
再点击“绘制”选项,如下所示:
上图中:
DEPENDENT( 因变量) ZPRED(标准化预测值) ZRESID(标准化残差) DRESID(剔除残差) ADJPRED(修正后预测值) SRSID(学生化残差) SDRESID(学生化剔除残差)
一般我们大部分以“自变量”作为 X 轴,用“残差”作为Y轴,但是,也不要忽略特殊情况,这里我们以“ZPRED(标准化预测值)作为"x" 轴,分别用“SDRESID(血生化剔除残差)”和“ZRESID(标准化残差)作为Y轴,分别作为两组绘图变量。
再点击”保存“按钮,进入如下界面:
如上图所示:勾选“距离”下面的“cook距离”选项(cook 距离,主要是指:把一个个案从计算回归系数的样本中剔除时所引起的残差大小,cook距离越大,表明该个案对回归系数的影响也越大)
在“预测区间”勾选“均值”和“单值”点击“继续”按钮,再点击“确定按钮,得到如下所示的分析结果:(此分析结果,采用的是“逐步法”得到的结果)
SPSS—回归—多元线性回归结果分析(二)
,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:
结果分析1:
由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands" 建立了模型1,紧随其后的是“Wheelbase" 建立了模型2,所以,模型中有此方法有个概率值,当小于等于时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等时,从“线性模型中”剔除
结果分析:
1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些
(>)
2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为,“残差平方和”为,由于总平方和=回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,
3:根据后面的“F统计量”的概率值为,由于<,随着“自变量”的引入,其显著性概率值均远小于,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一
步进行分析。
结果分析:
1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“”所以,不能够引入“线性回归模型”必须剔除。
从“系数a”表中可以看出:
1:多元线性回归方程应该为:销售量=价格+*轴距
但是,由于常数项的sig为(> 所以常数项不具备显著性,所以,我们再看后面的“标准系数”,在标准系数一列中,可以看到“常数项”没有数值,已经被剔除
所以:标准化的回归方程为:销售量=*价格+*轴距
2:再看最后一列“共线性统计量”,其中“价格”和“轴距”两个容差和“vif都一样,而且VIF都为,且都小于5,所以两个自变量之间没有出现共线性,容忍度和
膨胀因子是互为倒数关系,容忍度越小,膨胀因子越大,发生共线性的可能性也越大
从“共线性诊断”表中可以看出:
1:共线性诊断采用的是“特征值”的方式,特征值主要用来刻画自变量的方差,诊断自变量间是否存在较强多重共线性的另一种方法是利用主成分分析法,基本思想是:如果自变量间确实存在较强的相关关系,那么它们之间必然存在信息重叠,于是就可以从这些自变量中提取出既能反应自变量信息(方差),而且有相互独立的因素(成分)来,该方法主要从自变量间的相关系数矩阵出发,计算相关系数矩阵的特征值,得到相应的若干成分。
从上图可以看出:从自变量相关系数矩阵出发,计算得到了三个特征值(模型2中),最大特征值为,最小特征值为
条件索引=最大特征值/相对特征值再进行开方(即特征值2的条件索引为再开方=)
标准化后,方差为1,每一个特征值都能够刻画某自变量的一定比例,所有的特征值能将刻画某自变量信息的全部,于是,我们可以得到以下结论:
1:价格在方差标准化后,第一个特征值解释了其方差的,第二个特征值解释了,第三个特征值解释了
2:轴距在方差标准化后,第一个特征值解释了其方差的,第二个特征值解释了,第三个特征值解释了
可以看出:没有一个特征值,既能够解释“价格”又能够解释“轴距”所以“价格”和“轴距”之间存在共线性较弱。
前面的结论进一步得到了论证。
(残差统计量的表中数值怎么来的,这个计算过程,我就不写了)
从上图可以得知:大部分自变量的残差都符合正太分布,只有一,两处地方稍有偏离,如图上的(-5到-3区域的)处理偏离状态。