浙教版初中数学第一章 平行线 2017年嵊州市单元综合测试(含答案)
- 格式:doc
- 大小:207.55 KB
- 文档页数:7
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,直线a,b被直线c所截,若a∥b,()A.70°B.100°C.110°D.120°2、一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC//DE;②如果BC//AD,则有∠2=45°;③∠BAE+∠CAD随着∠2的变化而变化;④如果∠4=45°,那么∠1=60°,其中正确的是()A.①②③B.①②④C.①③④D.①②③④3、如图.在△ABC中,∠CAB=80°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.20B.35C.40D.454、如图,AB∥CD,EF与AB,CD分别交于点G,H,∠CHG的平分线HM交AB于点M,若∠EGB=50°,则∠GMH的度数为()A.50°B.55°C.60°D.65°5、如图,,平分,且,则的度数为()A. B. C. D.6、如图,将一个含有45°角的直角三角尺放在两条平行线m、n上,已知∠α=120°,则∠β的度数是()A.45°B.60°C.65°D.75°7、如图,已知AB∥CD,与∠1是同位角的角是()A.∠2B.∠3C.∠4D.∠58、下列说法错误的是( )A.两条直线平行,内错角相等B.两条直线相交所成的角是对顶角C.两条直线平行,一组同旁内角的平分线互相垂直D.邻补角的平分线互相垂直9、将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°10、下列结论错误的是( )A.垂直于同一直线的两条直线互相平行B.两直线平行,同旁内角互补 C.过直线外一点有且只有一条直线与这条直线平行 D.同一平面内,不相交的两条直线叫做平行线11、如图,△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段EC的长度C.线段BE的长度D.线段EF的长度12、下列命题是真命题的是()A.平行于同一直线的两条直线平行B.两直线平行,同旁内角相等C.同旁内角互补D.同位角相等13、如图,中,,,顶点C在直线b上,若a∥b,,则的度数为()A. B. C. D.14、已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为()A.10°B.20°C.30°D.35°15、将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°二、填空题(共10题,共计30分)16、如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C′的位置,若∠EFB=65°,则∠AED′等于________°.17、将抛物线向上平移个单位长度,再向右平移个单位长度后得到的抛物线的解析式为________.18、如图,将矩形纸片ABCD(如图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片展平,那么∠AFE的度数为________.19、如图,将一张长方形纸片沿折叠后,点分别落在的位置,的延长线与交于点G.若,则________.20、将一张长方形纸片按如上图所示的方式折叠,若,则________.21、已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标________.22、如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°。
第一章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格第4题图第5题图第6题图4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若要使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件(B)A.∠1=∠2 B.∠1=∠DFE; C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A)A.26°B.32°C.25°D.36°,第7题图),第8题图) 8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B) A.100°B.115°C.120°D.130°9.将一幅三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为(D) A.10°B.20°C.30°D.15°,第9题图),第10题图) 10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题4分,共24分)11.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.则一定能判定AB∥CD的条件有__①③④__(填写正确的序号).,第11题图) ,第12题图) 12.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.13.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个直角梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.第13题图) 14.如图,将周长为10的三角形ABC沿BC方向平移2个单位得到三角形DEF,则四边形ABFD的周长为__14__.第14题图第15题图第16题图15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号)16.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠γ=180°__.三、解答题(共66分)17.(6分)如图:(1)过点P作AB的平行线EF;(2)过点P作CD的平行线MN;(3)过点P作AB的垂线段,垂足为G.解:图略18.(6分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°19.(6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF20.(8分)将一张长为8,宽为6的长方形纸片沿对角线剪开(如图①),得到两张三角形纸片,然后将两张纸片如图②所示位置摆放.(1)请在图②中画出△EDC沿DC方向将点D平移到AC中点的图形△E′D′C′;(2)设平移后E′D′与BC交于点F,直接写出图②中所有与∠A度数相同的角.解:(1)如图所示:△D′E′C′即为所求(2)与∠A度数相同的角有:∠E,∠D′FC,∠E′21.(8分)如图,∠BAP+∠APD=180°,∠1=∠2,证明:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP =∠FPA,∴AE∥PF,∴∠E=∠F22.(10分)如图,已知EF⊥AC,垂足为点F,DM⊥AC,垂足为点M,DN的延长线交AB于点A,且∠1=∠C,点N在AD上,且∠2=∠3,证明AB∥MN.证明:∵EF⊥AC,DM⊥AC,∴EF∥DM,∴∠3=∠CDM,∵∠3=∠2,∴∠2=∠CDM,∴MN∥CD,∴∠AMN=∠C,∵∠1=∠C,∴∠1=∠AMN,∴AB∥MN23.(10分)如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE .证明:(1)∵∠1+∠AFE =180°,∠CFE +∠AFE =180°,∴∠1=∠CFE ,∴BC ∥EF(2)∵∠BEG =∠EDF ,∴DF ∥EH ,∴∠DFE =∠GEF ,由(1)知BC ∥EF ,∴∠GEF =∠2,∴∠DFE =∠2,∵∠2=∠3,∴∠DFE =∠3,∴DF 平分∠AFE24.(12分)如图①,在四边形ABCD 中,∠ABC +∠ADC =180°,BE ,DF 分别是∠ABC 与∠ADC 的平分线,∠1与∠2互余.(1)试判断直线BE 与DF 的位置关系,并说明理由;(2)如图②,延长CB ,DF 相交于点G ,过点B 作BH ⊥FG ,垂足为H ,试判断∠FBH 与∠GBH 的大小关系,并说明理由.解:(1)BE ∥DF .理由:∵BE ,DF 分别平分∠ABC 和∠ADC ,∴∠1=12∠ADC ,∠ABE =12∠ABC ,∵∠ABC +∠ADC =180°,∴∠1+∠ABE =12∠ADC +12∠ABC =12(∠ADC +∠ABC )=12×180°=90°,即∠1+∠ABE =90°,又∵∠1+∠2=90°,∴∠ABE =∠2,∴BE ∥DF(2)∠FBH =∠GBH .理由:∵BH ⊥FG ,∴∠BHG =90°,由(1)知,BE ∥DF ,∴∠EBH =∠BHG =90°,∴∠FBH +∠ABE =90°,∠GBH +∠CBE =180°-90°=90°,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠FBH =∠GBH。
浙教版七年级下册数学第一章《平行线》单元测试卷一、选择题(共10小题;共30分)1. 在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线的位置关系是( )A . 平行B . 垂直C . 相交D . 可能垂直,也有可能平行2. 如图,在下列条件中,能判断AD ∥BC 的是 ( )A .∠DAC =∠BCAB .∠DCB +∠ABC =180° C .∠ABD =∠BDCD .∠BAC =∠ACD3. 下列说法正确的个数有( )(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A . 0个B .1个C . 2 个D .3 个4. 如图,在610 的网格中,每个小方格的边长都是1个单位长度,将 ⊿ABC 平移到 ⊿DEF 的位置,下面正确的平移步骤是 ( )A . 先向左平移5个单位长度,再向下平移2个单位长度B . 先向右平移 5个单位长度,再向下平移2个单位长度C . 先向左平移5个单位长度,再向上平移 2个单位长度D . 先向右平移 5个单位长度,再向上平移 2个单位长度5.下列说法:(1)不相交的两条线是平行线(2)在同一平面内,两条直线的位置关系有两种(3)若线段AB 与CD 没有交点,则AB ∥CD(4)若A ∥B ,B ∥C ,则A 与C 不相交第6题图 第7题图若以上的说法均不考虑重合的情况,则其中正确的说法个数为( )A .1B .2C . 3D .46.如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点F 、E ,EG 是∠FED 的平分线,交AB 于点G . 若∠PEC =40°,那么∠EGB 等于( )A .80°B .100°C .110°D .120°7.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )A .a +bB .2a +bC .2(a +b )D .a +2b8.如图,AB ∥DE ,则下列说法中一定正确的是( )A .∠1=∠2+∠3B .∠1+∠2∠3=180°C .∠+∠2∠3=270°D .∠1-∠2+∠3=90°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm , 那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm10.如图,AB ∥EF ,∠C =90°,则δβα,,的关系为( )A .δαβ+=B .︒=++180δβαC .︒=-+90αδβD .︒=-+90δβα二、填空题(共6小题;共18分)11. 如图利用直尺和三角板过已知直线l 外一P 作直线l 平行线的方法,其理由是 .第10题图12.如图,直线AB被直线CD所截,若∠1=112°,∠2=68°,∠3=100°,则∠4=°.13.如图,∠1=∠2,∠A=60°,则∠ADC = °.14.如图,直线A∥B,点B在直线B上,且AB⊥BC,∠2=59°,则∠1=_________°.15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 °.16.七巧板是我国祖先的一次卓越创造,在19世界曾极为流行,如图在由七巧板拼成的图形中,互相平行的线段有________对.三、解答题(共7小题;共52分)17.(6分)已知:如图所示,AB∥CD,EF交AB于点G,交CD于点F,FH平分∠EFD,交AB于点H,∠AGE=50°,求:∠BHF的度数.18.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作P R⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(6分)如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.20.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.21.(8分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.22.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.答案一、选择题:AAAAB CCBCD二、填空题:11.同位角相等,两直线平行12.10013.12014.3115.10,10或2,13816.7三、解答题17.∵AB∥CD ,∴∠EFC=∠AGE=50°∴∠EFD=130°∵FH 平分∠EFD∴∠HFD=65°.∵AB∥CD ,∴∠HFD+∠BHF=180°∴∠BHF=115°.18.(1)(2)如图所示.(3)∠PQC=60°.∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.19.BD∥CF.因为∠1=∠2 ,所以AD∥BF,所以∠D=∠DBF,因为∠3=∠D,所以∠3=∠DBF ,所以BD ∥CF.20.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.21.(1)BF ∥DE.理由如下:∵∠AGF=∠ABC∴FG ∥BC∴∠1=∠3∵∠1+∠2=180°∴∠3+∠2=180 °∴∠3+∠2=180 °∴BF ∥DE(2)∵BF ∥DE,BF⊥AC∴DE ⊥AC∵∠1+∠2=180°,∠2=150°∴∠1=30°∴∠AFG=60°22.∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又BE,DF分别为∠ABC与∠ADC的平分线∴2∠ABE+2∠ADF=180°,即∠ABE+∠ADF=90°,又∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF23.解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN =21∠AMN ,∠ENM =21∠MNC , ∴∠EMN +∠ENM =90°,即∠MEN =90°,又∵NG ⊥EN ,∴∠MEN +∠ENH =180°,∴EM ∥NG ;(2)设∠HEG =x ,则∠HGE =∠MEG =x ,∠NEH =90°﹣2x , ∵EP 平分∠FEH ,∴∠FEH =2∠PEH =2(∠PEG +x ),又∵∠FEH +∠HEN =180°,∴2(∠PEG +x )+90°﹣2x =180°,解得∠PEG =45°.。
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,△ABC中,∠ABC,∠ACB的平分线相交于O,MN过点O,且MN∥BC,△ABC的周长为20,△AMN的周长为12,则BC的长为()A.8B.4C.32D.162、如图,三角形ABC沿着BC方向平移得到三角形A′B′C′,P是直线AA′上任意一点,若三角形ABC,三角形PB′C′的面积分别为S1, S2,则下列关系正确的是( )A.S1>S2B.S1<S2C.S1=S2D.S1=2S23、下列说法中,正确的是()A.同位角相等B.三角形的高在三角形内部C.平行于同一直线的两条直线平行D.两个角的两边分别平行,则这两个角相等4、如图,任意中,与的平分线交于点F,过点作交于点D,交于点E,那么下列结论:①;② ;③ 的周长等于;④ .其中正确的有()A.①B.①②C.①②③D.①②③④5、下列说法正确的是()A.同一平面内不相交的两线段必平行B.同一平面内不相交的两射线必平行C.同一平面内不相交的一条线段与一条直线必平行D.同一平面内不相交的两条直线必平行6、如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个7、如图,直线,直线与分別相交于点,点,若,則()A.35°B.45°C.55°D.65°8、如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于()A.40°B.30°C.20°D.15°9、如图,在中,点D,E分别在边AB,AC上,.已知DE=6,,那么BC的长是()A.4.5B.8C.10.5D.1410、如图,已知直线AB∥直线CD,点E,F分别在直线AB和CD上,EN∥MF,HE∥FN,若∠N=114°,HE平分∠AEN,则∠MFH的度数为()A.48°B.58°C.66°D.68°11、如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°12、有下列现象:①地下水位逐年下降:②传送带的移动;③方向盘的转动:④水龙头开关的转动;⑤钟摆的运动:⑥荡秋千运动。
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等2、如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°3、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分∠MND,若∠1=70°,则∠2的度数为()A.10°B.15°C.20°D.35°4、已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5、如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1B.2C.3D.46、下列四个命题中,真命题有()两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个B.2个C.3个D.4个7、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.8、如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°9、下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1B.2C.3D.410、下列说法错误的是()A.经过平移,对应点所连的线段平行且相等B.经过平移,对应线段平行C.平移中,图形上每个点移动的距离可以不同D.平移不改变图形的形状和大小11、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°12、如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A. B.3S C.4S D.13、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠314、如图,已知AB∥CD,∠B=60°,则∠1的度数是()A.60°B.100°C.110°D.120°15、如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDFB.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°二、填空题(共10题,共计30分)16、完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD-∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=________ ( 依据:________).∵AB∥DE,CF∥AB( 已知 ) ,∴CF∥DE (依据:________)∴∠2+________=180°( 依据:________)∵∠2=∠BCD -∠1,∴∠D+∠BCD-∠B=180°.17、如图,a∥b,∠2=100°,则∠1的度数为________.18、如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y= (x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=________.19、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.20、如图,直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=________。
绝密★启用前浙教版七年级下第一章平行线单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.评卷人得分三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定【分析】两直线平行,同旁内角互补;不平行时无法确定同旁内角的大小关系.【解答】解:虽然α和β是同旁内角,但缺少两直线平行的前提,所以无法确定β的度数.故选:D.【点评】此题主要考查了同旁内角的定义,特别注意,同旁内角互补的条件是两直线平行.2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在【分析】分点P在OA上和不在OA上两种情况,根据平行公理解答即可.【解答】解:①若点P在OA上,则不能画出与OA平行的直线,②若点P不在OA上,则过点P有且只有一条直线与OA平行,所以,这样的直线有一条或不存在.故选:D.【点评】本题考查了平行公理,难点在于要考虑点P与OA的位置.3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行【分析】根据平行线的定义及平行公理进行判断.【解答】解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选:A.【点评】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°【分析】由折叠的性质和平行线的性质可知2∠2=∠1,可得出答案.【解答】解:如图,由折叠的性质可知∠2=∠3,∵AB∥CD,∴∠1=∠3+∠2=100°,∴∠2=50°.故选:A.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°【分析】首先根据平分线的性质求得∠DOA的度数,然后根据角平分线的性质得到∠EOD的度数,然后根据垂直求得∠DOF,从而求得∠BOF的度数.【解答】解:∵AB∥CD,∠D=50°,∴∠DOA=130°,∵OE平分∠AOD,∴∠DOE=65°,∵OF⊥OE,∴∠DOF=25°,∴∠BOF=25°,故选:C.【点评】本题考查了平行线的性质,利用平行线的性质和已知角求得∠DOA的度数是解决本题的关键.6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°【分析】由AB∥CD,MP∥AB推出AB∥CD∥MP,根据平行线的性质求出∠AMD的度数为70°,再根据角平分线的定义求出∠AMN=35°,所以∠NMP=∠AMP﹣∠AMN.【解答】解:∵AB∥CD,MP∥AB,∴AB∥CD∥MP,∵∠A=40°,∠D=30°,∴∠AMP=∠A=40°,∠DMP=∠D=30°,∴∠AMD=40°+30°=70°,∵MN平分∠AMD,∴∠AMN=∠AMD=×70°=35°,∴∠NMP=∠AMP﹣∠AMN=40°﹣35°=5°.故选:C.【点评】本题主要考查两直线平行内错角相等的性质和角平分线的定义,熟练掌握性质和定义是解题的关键.7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④【分析】根据余角的概念和同角的余角相等判断①;根据平行线的判定定理判断②;根据平行线的判定定理判断③;根据②的结论和平行线的性质定理判断④..【解答】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C=45°,∴BC与AD不平行,③错误;∵∠2=30°∴AC∥DE,∴∠4=∠C,④正确.故选:B.【点评】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.6【分析】根据平移的性质,只要能求出横向与纵向的总长度,即可求出它的周长.【解答】解:根据平移的性质,只要知道GH、AB、BC的长度,就可以求出周长.故选A.【点评】本题主要考查了平移的性质,把不规则图形部分平移到规则图形的部分是解题的关键.9.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选:D.【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°【分析】延长BC交直线DE于F,根据平行线的性质得到∠F=180°﹣∠1,由三角形的外角的性质得到∠F=∠2﹣∠3,即可得到结论.【解答】解:延长BC交直线DE于F,∵AB∥DF,∴∠1+∠F=180°,∴∠F=180°﹣∠1,∵∠2=∠3+∠F,∴∠F=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质定理是解题的关键.二.填空题(共6小题)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有2个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.12.如图,与∠1构成同位角的是∠B,,与∠2构成同旁内角的是∠1.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.分别进行分析.【解答】解:如图:与∠1是同位角的是∠B,与∠2是同旁内角的是∠1.故答案为:∠B,∠1.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.13.经过直线外一点,有且只有一条直线与这条直线平行.【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行解答即可.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:有且只有.【点评】本题考查了平行公理,牢记平行公理:经过直线外一点,有且只有一条直线与这条直线平行是解题的关键.注意平行公理中“有且只有”的含义,从作图的角度说,它是“能但只能画出一条”的意思.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有①②④.(填序号)【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴①正确.②∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴②正确.③∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴③错误.④由②得AC∥DE.∴∠4=∠C.∴④正确.故答案为:①②④.【点评】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是52度,再沿BF折叠成图c,则图c中的∠DHF的度数是78°.【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,由三角形的外角性质得出∠FGD 的度数;根据平角定义、折叠的性质求出∠CFE=102°,再根据平行线的性质即可求解.【解答】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴图b中,∠FGD=26°+26°=52°;图c中,∠CFE=180°﹣3×26°=102°,∴∠DHF=180°﹣102°=78°.故答案为:52,78°.【点评】本题考查了翻折变换的性质,平行线的性质,三角形的外角性质;熟练掌握翻折变换的性质和平行线的性质是解决问题的关键.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=110°.【分析】根据折叠的性质可知ME∥NF,由ME∥NF可得出∠BGM=∠GFN,再分解平角通过计算得出∠BGM的度数,根据∠BGM与∠2互补即可得出结论.【解答】解:由折叠的性质可知ME∥NF,∴∠BGM=∠GFN.∵2∠EFG+∠GFN=180°,且∠EFG=55°,∴∠BGM=∠GFN=180°﹣2×55°=70°,又∵∠2+∠BGM=180°,∴∠2=110°.故答案为:110°【点评】本题考查了平行线的性质以及角的计算,解题的关键是求出∠BGM的度数.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质结合折叠的性质得出相等(或互补)的角是关键.三.解答题(共7小题)17.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.【分析】(1)借用量角器,测出∠AEC=90°即可;(2)利用角平分线的作法作出∠ABC的平分线;(3)利用平行线的性质:同位角相等,作图;(4)借用量角器,测出∠AHC=90°即可.【解答】解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.【点评】本题主要考查了平行线、垂线及角平分线的画法.在解答此题时,用到的作图工具有圆规、量角器及直尺.18.如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.【分析】根据三角形的外角和为360°,三角形的内角和为180°以及三角形外角和定理即可写出三个角之间的数量关系.【解答】解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.【点评】此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等)∴∠2=∠CGD(等量代换)∴CE∥BF(同位角相等,两直线平行)∴∠C=∠BFD(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行)【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).【点评】此题考查了平行线的判定与性质.注意数形结合思想的应用.20.(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是∠3=∠1+∠2;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=85°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.【分析】(1)在图1中,作PM∥AC,利用平行线性质即可证明;利用①结论即可求得∠BAC的度数.(2)根据BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.根据∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,正确添加辅助线是解决问题的关键.21.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.22.若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{﹣2,﹣1}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{2,﹣2}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{﹣2a,﹣b}直接平移至点F.【分析】(1)根据图形,点B在点C的左边2个单位,下方1个单位,再根据“平移量”的定义即可求解;(2)①根据“平移量”的定义确定出点D的位置即可;②根据“平移量”的定义求出从点B移动到点D的路程,然后乘以2.5,计算即可得解;③根据“平移量”的定义结合直接写出点B到点D的平移量即可;把从点E到点F所有平移量的横向相加,纵向相加,计算即可得解.【解答】解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.【点评】本题考查了平移的性质,平移量的定义,读懂题目信息,理解平移量的定义并熟练掌握网格结构是解题的关键.23.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=60°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB =30°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB;(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=30°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=60°﹣x,利用∠OEB=∠OCA得到30°+x=60°﹣x,解得x=15°,所以∠OCA=60°﹣x=45°.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.熟练掌握平行线的判定与性质是解本题的关键.。
浙教版初中数学七年级下册第一单元《平行线》单元测试卷(较易)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列四边形中,AB不平行于CD的是( )A. B.C. D.2. 下列生活实例: ①交通路口的斑马线; ②天上的彩虹; ③长方形门框的上下边; ④百米直线跑道; ⑤火车的平直铁轨线.其中属于平行线的有( )A. 1个B. 2个C. 3个D. 4个3. 如图所示,与∠C构成同旁内角的个数为( )A. 1B. 2C. 3D. 44. 如图所示,下列说法错误的是( )A. ∠A与∠EDC是同位角B. ∠A与∠ABF是内错角C. ∠A与∠ADC是同旁内角D. ∠A与∠C是同旁内角5. 如图,∠B的同位角可以是( )A. ∠1B. ∠2C. ∠3D. ∠46. 如图所示,下列能判定AB//EF的条件有( )①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A. 1个B. 2个C. 3个D. 4个7. 如图所示,下列条件中能判定AB//CE的是( )A. ∠B=∠ACBB. ∠B=∠BACC. ∠B=∠ECDD. ∠A=∠ECD8. 如图所示,AB//CD,EF//GH,∠1=65∘,则下列结论中错误的是( )A. ∠2=115∘B. ∠3=65∘C. ∠4=115∘D. ∠5=65∘9. 如图,直线m//n,若∠1=105∘,则∠2的度数为( )A. 55∘B. 65∘C. 75∘D. 105∘10. 如图所示,将三角形ABC平移得到三角形EFG,则图中共有平行线(含虚线)( )A. 3对B. 4对C. 5对D. 6对11. 如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A‘B’C’,则四边形AA‘C’B的周长为( )A. 22cmB. 23cmC. 24cmD. 25cm12. 如图,将△ABC沿BC方向平移至△DEF的位置,针对四边形ABED与四边形ACFD,下列说法中正确的是( )A. 周长与面积都相等B. 周长相等,面积不相等C. 周长不相等,面积相等D. 周长与面积都不相等第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,已知PC//AB,QC//AB,则点P,C,Q在同一条直线上.理由是.14.如图,与∠A是同旁内角的角共有个.15.如图所示,将面积为5的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.16.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为______.三、解答题(本大题共9小题,共72分。
浙教版2023年七年级下册第1章平行线单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直2.(3分)若将如图平移,则得到的图形是()A.B.C.D.3.(3分)如图,直线a,b被c所截,则∠1与∠2是()A.邻补角B.同位角C.内错角D.同旁内角4.(3分)如图,直线a,b被直线c所截,若a∥b,∠2=110°,则∠1的度数为()A.70°B.75°C.80°D.85°5.(3分)下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c6.(3分)如图,下列推理中,正确的是()A.如果∠2=∠4,那么AD∥BCB.如果∠1=∠3,那么AD∥BCC.如果∠4+∠D=180°,那么AD∥BCD.如果∠4+∠B=180°,那么AB∥DC7.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=()A.60°B.50°C.40°D.30°8.(3分)如图,三角形ABC的周长是16cm,将三角形ABC向右平移3cm得到三角形DEF,则四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm9.(3分)如图,把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,若∠AEB1=70°,则∠BEF=()A.70°B.60°C.65°D.55°10.(3分)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°二.填空题(共5小题,满分20分,每小题4分)11.(4分)下列现象是数学中的平移的是.(填序号)①苹果垂直从树上落下;②电梯从底楼升到顶楼;③骑自行车时轮胎的滚动;④钟摆的摆动.12.(4分)如图,直线a,b被直线c所截,∠3的同旁内角是.13.(4分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=度.14.(4分)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为.15.(4分)如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=100°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为时,CD与AB平行.三.解答题(共7小题,满分50分)16.(6分)如图,指出图中直线AC,BC被直线AB所截的同位角、内错角、同旁内角.17.(6分)如图,已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.证明:∵∠BAD=∠DCB,∠1=∠3(),∴∠BAD﹣=∠DCB﹣(等式的性质),即=.∴AD∥BC().18.(6分)已知:如图,AE与BD相交于点F,∠B=∠C,∠1=∠2.求证:AB∥CE.19.(6分)如图,AF分别与BD、CE交于点G、H,AC分别与BD、CE交于点B、C,DF分别与BD、CE交于点D、E,∠1=55°.若∠A=∠F,∠C=∠D,求∠2的度数.20.(8分)如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连接BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,求证:AB∥EF.21.(8分)如图,AF的延长线与BC的延长线交于点E,AD∥BE,∠1=∠2=30°,∠3=∠4=80°.(1)求∠CAE的度数;(2)求证:AB∥DC.22.(10分)如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.2.【解答】解:将图中所示的图案平移后得到的图案是:,故选:C.3.【解答】解:∠1与∠2是内错角.故选:C.4.【解答】解:如图:∵a∥b,∠2=110°,∴∠3=∠2=110°,∵∠1+∠3=180°,∴∠1=70°.故选:A.5.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.6.【解答】解:A、由内错角相等,两直线平行可知如果∠2=∠4,那么AB∥CD,不能得到AD∥BC,故此选项不符合题意;B、由内错角相等,两直线平行可知如果∠1=∠3,那么AD∥BC,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠D=180°,那么AD∥BC,,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠B=180°,那么AB∥DC,故此选项不符合题意;故选:B.7.【解答】解:如图,∵∠2=40°,∴∠3=90°﹣∠2=50°,∴∠1=50°.故选:B.8.【解答】解:由平移的性质可知,AD=BE=CF=3cm,AB=DE,BC=EF,AC=DF,由于三角形ABC的周长是16cm,即AB+BC+AC=16cm,所以四边形ABFD的周长=AD+AB+BC+CF+DF=AB+BC+AC+AD+CF=16+3+3=22(cm),故选:D.9.【解答】解:∵把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,∴∠BEF=∠B1EF,∵∠AEB1=70°,∠AEB1+∠BEF+∠AEB1=180°,∴∠BEF=(180°﹣∠AEB1)==55°.故选:D.10.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:①苹果垂直从树上落下,是平移,②电梯从底楼升到顶楼,是平移,③骑自行车时轮胎的滚动,是旋转,④钟摆的摆动,是旋转,所以,上列现象是数学中的平移的是:①②,故答案为:①②.12.【解答】解:根据题意,∠3的同旁内角是∠6.故答案为:∠6.13.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.14.【解答】解:由平移的性质知,BE=CF=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC=S梯形ABEH=(AB+HE)•BE=(6+4)×3=15.故答案为:15.15.【解答】解:分三种情况:如图①,AB与CD在EF的两侧时,∵∠BAF=110°,∠DCF=60°,∴∠ACD=180°﹣60°﹣(6t)°=120°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠ACD=∠BAF,即120°﹣(6t)°=100°﹣t°,解得t=4;此时(180°﹣60°)÷6=20,∴0<t<20;②CD旋转到与AB都在EF的右侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=360°﹣(6t)°﹣60°=300°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(6t)°=100°﹣t°,解得t=40,此时(360°﹣60°)÷6=50,∴20<t<50;③CD旋转到与AB都在EF的左侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=(6t)°﹣(180°﹣60°+180°)=(6t)°﹣300°,∠BAC=t°﹣100°,要使AB∥CD,则∠DCF=∠BAC,即(6t)°﹣300°=t°﹣100°,解得t=40,此时t>50,∵40<50,∴此情况不存在.综上所述,当时间t的值为4秒或40秒时,CD与AB平行.故答案为:4秒或40秒.三.解答题(共7小题,满分50分)16.【解答】解:∵直线AC、BC被直线AB所截,∴∠1 与∠2,∠4 与∠DBC是同位角;∠1 与∠3,∠4 与∠5 是内错角;∠3 与∠4 是同旁内角,∠1 与∠5 是同旁内角.17.【解答】证明:∵∠BAD=∠DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式的性质),即∠2=∠4.∴AD∥BC(内错角相等,两直线平行).故答案为:已知,∠1,∠3,∠2,∠4,内错角相等,两直线平行.18.【解答】解:∵∠1=∠2,∴AC∥BD,∴∠C=∠BDE,∵∠B=∠C,∴∠B=∠BDE,∴AB∥CE.19.【解答】解:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠1=∠AHC=55°,∴∠2=180°﹣∠AHC=125°.20.【解答】证明:(1)∵EB⊥EF,∴∠FEB=90°,∴∠DEF+∠BEG=180°﹣90°=90°.又∵∠EBG+∠BEG=90°,∴∠DEF=∠EBG;(2)∵∠EBG=∠A,∠DEF=∠EBG,∴∠A=∠DEF.∵EF平分∠AED,∴∠AEF=∠DEF,∴∠A=∠AEF,∴AB//EF.21.【解答】(1)解:∵AD∥BE,∴∠CAD=∠3,∵∠2+∠CAE=∠CAD,∠3=80°,∴∠2+∠CAE=80°,∵∠2=30°,∴∠CAE=50°;(2)证明:∵∠2+∠CAE=∠CAD=∠3,∠1=∠2,∠3=∠4,∴∠1+∠CAE=∠4,即∠BAE=∠4,∴AB∥DC.22.【解答】解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.。
浙教版七年级下数学第一章综合测评卷一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是( ).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于( ).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为( ).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( ).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为( ).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为( ).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于( ).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为( ).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为( ).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为( ).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是,内错角是,同旁内角是.(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= .14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD 的位置关系,并说明理由.(第19题)20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.(第20题)21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD,并说明理由.图1 图2 图3(第21题)22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)23.(12分)如图1所示,已知直线CD∥EF,点A,B分别在直线CD与EF上,点P为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP.(2)利用(1)的结论解答:①如图2所示,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠APB与∠AP1B的数量关系.②如图3所示,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=80°,求∠AP2B的度数.图1 图2 图3(第23题)参考答案一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是(C).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于(C).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为(D).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为(A).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为(C).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为(A).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于(B).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为(C).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为(C).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为(B).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是∠ACD,内错角是∠BCE,同旁内角是∠BAC和∠ACB .(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为 20 cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= 30°.14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= 25° .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80° .16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= 140° .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)【答案】∵AD∥BE,∴∠A=∠3.∵∠1=∠2,∴DE∥AC.∴∠E=∠3.∴∠A=∠3=∠E.18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)【答案】BA平分∠EBF.理由如下:∵AB∥CD,∴∠ABE=∠FDB.∵∠1∶∠2∶∠3=1∶2∶3,∴∠3=∠1+∠2.∵∠3=∠1+∠FDB,∴∠2=∠FDB.∴∠2=∠ABE.∴BA平分∠EBF.19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD的位置关系,并说明理由.(第19题)【答案】AB∥CD.理由如下:∵BE平分∠ABD,DE平分∠CDB,又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD.20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】∵BE⊥FD,∴∠EGD=90°.∴∠1+∠D=90°.∵∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2.又∵∠C=∠1,∴∠C=∠2.∴AB∥CD.21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足∠1+∠2=90°时,AB∥CD.(2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD.(3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD,并说明理由.图1 图2 图3(第21题)【答案】(1)∠1+∠2=90° (2)∠1=∠2(3)∠1=∠2.理由如下:∵EG平分∠AEF,FH平分∠DFE,∴∠AEF=2∠1,∠DFE=2∠2.∵∠1=∠2,∴∠AEF=∠DFE.∴AB∥CD.22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)【答案】 (1)∵PC∥MN,∴∠PCA=∠MAC. ∵AD 为∠MAB 的平分线,∴∠MAC=∠PAC. ∴∠PCA=∠PAC.∴PC=PA.∵PA=PB,∴PC=PB.∴∠B=∠BCP. ∵∠B+∠BCP+∠PCA+∠PAC=180°, ∴∠BCA=90°.∴BC⊥AD.(2)∵∠MAB 的平分线为AD ,∠NAB 的平分线为AF ,∠MAN=150°, ∴∠BAC+∠BAE=75°.由(1)的结论可得BC⊥AD,BE⊥AF,∴∠BCA+∠BEA=180°. ∴∠BAC+∠BAE+∠CBA+∠ABE=180°, ∴∠CBE=∠CBA+∠ABE=180°-75°=105°.23.(12分)如图1所示,已知直线CD∥EF,点A ,B 分别在直线CD 与EF 上,点P 为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP. (2)利用(1)的结论解答:①如图2所示,AP 1,BP 1分别平分∠DAP ,∠FBP,请你直接写出∠APB 与∠AP 1B 的数量关系. ②如图3所示,AP 2,BP 2分别平分∠CAP ,∠EBP,若∠APB=80°,求∠AP 2B 的度数.图1 图2 图3(第23题)【答案】(1)过点P 作PM∥CD,则∠APM=∠DAP.∵CD∥EF,∴PM∥EF.∴∠MPB=∠FBP.∴∠APM+∠MPB=∠DAP+∠FBP ,即∠APB=∠DAP+∠FBP. (2)①∠APB=2∠AP 1B.②由①得∠APB=∠DAP+∠FBP ,∠AP 2B=∠CAP 2+∠EBP 2.∵AP 2,BP 2分别平分∠CAP ,∠EBP ,∴∠CAP 2=21∠CAP ,∠EBP 2=21∠EBP. ∴∠AP 2B=21∠CAP+21∠EBP=21(180°-∠DAP )+21(180°-∠FBP )=180°-21(∠DAP+∠FBP )=180°-40°=140°.。
第一章“平行线”单元综合测试题
满分120分,时间100分钟
一、选择题(每题2分,满分20分)
1. 如图,∠1和∠2是同位角的是()
A.B.C.D.
2. 在同一平面内,两条直线可能的位置关系是()
A.平行B.相交C.相交或平行D.垂直
3. 下列说法正确的是()
A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥c
B.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥c
C.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c
D.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c
4. 若∠1与∠2是内错角,∠1=40°,则()
A.∠2=40°B.∠2=140°
C.∠2=40°或∠2=140°D.∠2的大小不确定
5.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF
的位置,若CF=3,则下列结论中错误的是()
A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE
(第5题)(第7题) (第8题)
6. 下列图形中,不能通过其中一个四边形平移得到的是()
A.B.C.D.
7. 如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()
A.55°B.45°C.35°D.25°
8. 如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数
是()
A.30°B.40°C.50°D.60°
9. 如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为()
A.90°B.100°C.110°D.120°
(第9题)(第10题) (第11题)
10. 如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则
∠1=()
A.35°B.40°C.45°D.50°
二、填空题(每题4分,满分24分)
11.如图,写出图中∠A所有的内错角:.
12. 如图,直线l1∥l2,∠1=62°,则∠2的度数为.
(第12题) (第13题)(第14题)
13.如图,请你添加一个条件,使AB∥CD,这个条件是,你的依据
是.
14. 如图,直线a∥b,∠1=125°,则∠2的度数为°.
15. 如图,直角三角形AOB的周长为100,在其内部有n个小直角三角形,则这n个小直角
三角形的周长之和为.
(第15题) (第16题)
16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.
三、解答题(满分56分)
17. (10分)已知:如图,∠AOB和OB上的一点P.
(1)求作直线MN,使直线MN过点P且MN∥O A.
(2)写出一对相等的同位角和一对互补的同旁内角.
O B
P
18. (10分)如图,将三角形ABC沿直线l向右平移2cm.
''',将图中相等的线段找出来.
(1)平移后所得的为三角形A B C
(2)连接AA',BB',CC',这三条直线之间存在着什么关系?
19. (12分)已知:如图,AB ∥CD ,∠1=∠2,试说明:∠B =∠D .
20. (12分)如图,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.
21. (12分)(1)把①号图向上平移4个格.
(2)把②号图向左平移4个格,再向下平移1个格.
(3)把③号图向右平移2个格,再向下平移2个格.
(4)移一移,画一画,涂上你喜欢的颜色,看一看像什么?
参考答案
一、选择题
1.D
2.C
3.A
4.D
5.C
6.D
7.C
8.B
9.B提示:∵AB∥CD,∴∠C=∠ABC=40°.
∵BC是∠ABD的平分线,∴∠ABC=∠DBC=40°.∴∠ABD=80°.
又∵AB∥CD,∴∠ABD+∠D=180°.∴∠D=100°.
10.D提示:∵∠2=∠3=70°,
∴AB∥CD,
∴∠BGP=∠GPC,
∵∠GPC=80°,
∴∠BGP=80°,
∴∠BGM=180°-∠BGP=100°,
∵GH平分∠MGB,
∴∠1=1 2 ∠BGM=50°,
故选D.
二、填空题(每题4分,满分24分)
11. ∠ACD,∠ACE
12.62°
13.答案不唯一,如:∠CDA=∠DAB;内错角相等,两直线平行
14. 55
15. 100提示:如图所示:过小直角三角形的直角定点作AO,BO的平行线,
所得四边形都是矩形.
则小直角三角形的与AO平行的边的和等于AO,与BO平行的边的和等于BO.因此小直角三角形的周长等于直角△ABC的周长.
故这n个小直角三角形的周长为100.
16. 140提示:延长AB 与直线l 2相交于点C ,∵直线l 1∥l 2,∴∠3=∠1=40°,∵∠α=∠β,∴AC ∥DE ,∴∠3+∠2=180°,∴ ∠2=140°,故答案为140°
.
三、解答题(满分56分)
17. (1)如图所示:
O
(2)一对相等的同位角:O BPN ∠=∠,一对互补的同旁内角:O OPN ∠=∠.
18. 解:(1)图中相等的线段有,
AB A B ''=,BC B C ''=,AC A C ''=,AA BB CC '''==.
(2)直线AA ',BB ',CC '的关系是////AA BB CC '''.
19. 解:∵∠1=∠2,
∴AD ∥BC .
∴∠BAD +∠B =180°.
又∵AB ∥CD ,
∴∠D +∠BAD =180º,
∴∠B =∠D .
20.∵AB ∥CD ,
∴
165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ∵
BC ABD ∠平分, ∴2130ABD ABC ∠=∠=︒
,
∴
18050BDC ABD ∠=︒-∠=︒, ∴250BDC ∠=∠=︒.
21. 解:(1)把①号图向上平移4个格(下图).
(2)把②号图向左平移4个格,再向下平移1个格(下图).
(3)把③号图向右平移2个格,再向下平移2个格(下图).
(4)涂上我喜欢的颜色如下(下图),像一棵小松树.。