浙教版中考压轴题精选(一)
- 格式:doc
- 大小:160.69 KB
- 文档页数:8
浙江省中考数学真题压轴题分类汇编一、压轴题--四边形1、(衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。
点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。
已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。
(1)如图1,当t=3时,求DF的长;(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。
2、(丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.二、压轴题--圆3、(•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.4、(•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.5、(•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.三、压轴题--方程6、(·台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。
中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。
9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。
16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。
(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。
12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。
CBA数学试卷(一)7.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠; ③直角三角形斜边上的中线等于斜边的一半。
④菱形的对角线互相垂直. 其中原命题与逆命题均为真命题的个数是( ) (A)4个 (B)3个 (C)2个 (D)1个8.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂 直平分线DE 交BC 的延长线于点E ,则CE 的长为( )(A)32 (B)76 (C)256(D)2 9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()(A) 47(B)5 (C) 27 (D)2210.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )14.若一边长为40㎝的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为 ▲ ㎝.(铁丝粗细忽略不计) 15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 ▲ cm 216.如图所示,在ABC Rt ∆中,︒=∠90C ,8,6==BC AC ,若以C 为圆心,R 为半径所得的圆与斜边AB 只有一个公共点,则R 的取值范围是: ▲ 。
22.(本小题满分10分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:AD B EC图2A (M )E DC BDBA M )(第15题)(1)设分配给甲店A 型产品件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?23.(本小题满分10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (1)若折叠后使点B 与点A 重合,求点C 的坐标;(2)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y=,试写出y 关于x 的函数解析式,并确定y 的取值范围;(3)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.24.(本小题满分12分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?二8.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是A B CO x yBCAE 1 E 2 E 3D 4D 1D 2D 3(第10题图)A EC AB ADAO A(第16题图)F9.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x… 0 1 2 3 … y…5212…点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y10.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则A .n S =14n ABC S △B .n S =13n +ABC S △ C .n S =()121n +ABC S △D .n S =()211n +ABC S △16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC =155BCE 沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,则(1)AB = ,BC = ;(2)若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积= .yA P M22.(本小题满分10分)如图,以△AOD 的三边为边,在AD 的同侧作三个等边三角形 △AED 、△BOD 、△AOF ,请回答下列问题并说明理由: (1)四边形OBEF 是什么四边形?(2)当△AOD 满足什么条件时,四边形OBEF 是菱形?是矩形? (3)当△AOD 满足什么条件时,以O 、B 、E 、F 为顶点的四边形不存在?24.(本小题满分12分) 如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.OAFDEB(第22题图)(第10题)三7.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B +10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是 .15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .16.如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 .EAB ′CF B(第15题)(第14题) P 1OA 1A 2A 3P 3P 2yx510(第16题)24.(本小题满分12分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2(4,)3. (1)求抛物线的解析式.(2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同 时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取54时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.四16.如图,AB 是半圆O 的直径,C 为半圆上一点,N 是线段BC 上一点(不与B ﹑C 重合),过N 作AB 的垂线交AB 于M ,交AC 的延长线于E ,过C 点作半圆O 的切线交EM 于F ,若NC ∶CF =3∶2,则 sinB=_______.(第24题)(第16题)EMNCBAF (第9题)23.(本题10分)如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是线段BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG (1) 连结GD ,求证△ADG ≌△ABE ; (2) 如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB=1,BC=2,E 是线段BC 上一动点(不含端点B,C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当E 由B 向C 运动时,∠FCN 的大小是否保持不变,若∠FCN 的大小不变,求tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明.24.(本题12分)如图①,ABC Rt ∆中,︒=∠90B ︒=∠30CAB ,轴x AC ⊥.它的顶点A 的坐标为)0,10(,顶点B 的坐标为)35,5(,点P 从点A 出发,沿C B A →→的方向匀速运动,同时点Q 从点)2,0(D 出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒. (1)求BAO ∠的度数.(直接写出结果)(2)当点P 在AB 上运动时,OPQ ∆的面积S 与时间t (秒)之间的函数图象为抛物线的一部分(如图②),求点P 的运动速度.(3)求题(2)中面积S 与时间t 之间的函数关系式,及面积S 取最大值时点P 的坐标. (4)如果点Q P ,保持题(2)中的速度不变,当t 取何值时,PO=PQ ,请说明理由.(第24题)(2)E N M F G D A (1)G FDA (第23题)。
解直角三角形与几何综合【典例1】如图,在Rt△AEB中,∠AEB=90°,点C在线段BE的延长线上,过点C作CD∥AB,连接AD,再过点A作AF⊥CD于点F;(1)如图1,连接EF,若∠BAE=30°,∠D=45°,DF=6,AE=4,求线段EF的长;(2)如图2,在线段CE上取一点H,连接AH、DH,当AH平分∠BHD,∠ABH=∠DAH时,求证:DH=HC+ 2HE.(3)如图3,在(2)的条件下,连接ED,若AE=12,BE=4,当(ED+DF)取得最小值时,请直接写出线段AH的长.(1)过点E作EM⊥AF于M,利用勾股定理可得EM=√AE2−AM2=2√3,EF=√EM2+MF2=2√7;(2)连接AC,过A作AW⊥HD于,则有∠AWH=∠AWD=90°,可证Rt△AHE≌Rt△AHW(HL),则HE=HW,然后可得A、H、C、D四点共圆,则可证△AEC≌△AWD(AAS),进而问题可求证;(3)在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,可证得△AEG≌△AEH(SAS),,利用解直角三角形可得EM=36,再由勾股定理可得AM=△AGC≌△AHD(SAS),设∠BAE=α,则tanα=13√AE2+EM2=12√10,作点E关于DM的对称点E′,连接EE′,DE′,EE′交DM于P,则DE=DE′,由于ED+ DF=DE′+DF≥EF,故当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,应用解直角三角形即可求得答案.(1)解:过点E作EM⊥AF于M,如图1,则∠AME=∠EMF=90°,∵AF⊥CD,CD∥AB,∴∠BAF=∠AFD=90°,∵∠BAE=30°,∴∠EAM=60°,∴∠AEM=30°,∵AE=4,AE=2,∴AM=12在Rt△AEM中,EM=√AE2−AM2=√42−22=2√3,在Rt△ADF中,∠D=45°,DF=6,∴AF=DF=6,∴MF=AF−AM=6−2=4,在Rt△EMF中,EF=√EM2+MF2=√(2√3)2+42=2√7,∴线段EF的长为2√7;(2)证明:连接AC,过A作AW⊥HD于W,如图2,则∠AWH=∠AWD=90°,∵∠AEB=90°,∴∠AEH=90°,∵AH平分∠BHD,AE⊥HB,AW⊥HD,∴AE=AW,在Rt△AHE和Rt△AHW中,{AH=AHAE=AW,∴Rt△AHE≌Rt△AHW(HL),∴HE=HW,∵CD∥AB,∴∠ABH+∠BCD=180°,∵∠ABH=∠DAH,∴∠DAH+∠BCD=180°,∵∠DAH与∠BCD在DH异侧,∴A、H、C、D四点共圆,∴∠ACH=∠ADW,∵AE=AW,∠AEC=∠AWD=90°,∴△AEC≌△AWD(AAS),∴EC=WD,∴DH=HW+WD=HE+EC=HE+HE+HC,即DH=HC+2HE;(3)解:如图3,在线段EB上截取EG=EH,延长AF交BC的延长线于M,连接AG,AC,DM,则CG=HC+2HE,由(2)得DH=HC+2HE,∴CG=DH,在△AEG和△AEH中,{EG=EH∠AEG=∠AEH=90°AE=AE,∴△AEG≌△AEH(SAS),∴AG=AH,∠AGC=∠AHE,∵AH平分∠BHD,∴∠AHE=∠AHD,∴∠AGC=∠AHD,∴△AGC≌△AHD(SAS),∴AC=AD,∵AF⊥CD,∴DF=CF,∴DM=CM,设∠BAE=α,则tanα=BEAE =412=13,∵∠BAE+∠MAE=∠AME+∠MAE=90°,∴∠AME=∠BAE=α,∴AEEM =tanM=13,∴EM=3AE=3×12=36,∴AM=√AE2+EM2=√122+362=12√10,如图4,作点E关于DM的对称点E,连接EE′,DE′,EE′交DM于P,则DE=DE′,∴ED+DF=DE′+DF≥E′F,当且仅当E′、D、F三点共线时,ED+DF=EF为最小值,过点E′作E′N⊥BC于N,过点D作DK⊥CM于K,则∠AMD=∠CE′E=∠CE′N=∠CDK=∠AME=α,设CF=DF=x,则FM=CFtanα=3x,∴CM=√CF2+FM2=√x2+(3x)2=√10x,∵sin∠DCK=DKCD =FMCM,即DK2x=√10x,∴DK=3√105x,∵cos∠DCK=CKCD =CFCM,即CK2x=√10x,∴CK=√105x,∴MK=CM−CK=√10x−√105x=4√105x,∴tan2α=DKMK =3√105x4√105x=34,∴PEPM =tan2α=34,设PE=3y,则PM=4y,∵PE2+PM2=EM2,∴(3y)2+(4y)2=362,∴y=365(负值舍去),∴PE=3×365=1085,PM=4×365=1445,∴EE′=2PE=2165,∵sin2α=ENEE′=PEEM,即EN2165=108536,∴EN=64825,∴MN=EM−EN=36−64825=25225,∴E′N=ENtan2α=6482534=86425,∴CN=E′N⋅tanα=86425×13=28825,∴CM=CN+MN=28825+25225=1085,∴FM=CM⋅cosα=1085×3√1010=162√1025,CF=13FM=54√1025,∴AF=AM−FM=12√10−162√1025=138√1025,在Rt△ADF中,AD=√AF2+DF2=(138√1025)+(54√1025)=12√615,∵∠DAH=∠ABH=∠MAE,∴∠DAH−∠MAH=∠MAE−∠MAH,即∠DAF=∠HAE,∴cos∠DAF=cos∠HAE,∴AFAD =AEAH,即138√102512√615=12AH,∴AH=12√61023.1.(2023·辽宁·中考真题)△ABC是等边三角形,点E是射线BC上的一点(不与点B,C重合),连接AE,在AE的左侧作等边三角形AED,将线段EC绕点E逆时针旋转120°,得到线段EF,连接BF.交DE于点M.(1)如图1,当点E为BC中点时,请直接写出线段DM与EM的数量关系;(2)如图2.当点E在线段BC的延长线上时,请判断(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当BC=6,CE=2时,请直接写出AM的长.【思路点拨】(1)可证得∠BAD=∠BAE=30°,进一步利用等腰三角形的三线合一得出结果;(2)连接BD、DF,可证明△BAD≌△CAE,从而∠ABD=∠ACE=120°,BD=CE,进而得出∠DBE=60°,从而得出∠DBE+∠BEF=60°+120°=180°,从而BD∥EF,结合BD=EF得出四边形BDFE是平行四边形,从而得出DM=EM;(3)分为两种情形∶当点E在BC的延长线上时,作AG⊥BC于G,可得出CG=3,AG=3√3,从而EG=CG+ CE=3+2=5,进而得出AE=2√13,进一步得出结果;当点E在BC上时,作AG⊥BC于G,可得出EG=1,AE=2√7,进一步得出结果.【解题过程】(1)解∶∵△ABC是等边三角形,点E是BC的中点,∠BAC,∴∠BAC=60°,∠BAE=12∴∠BAE=30°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=∠DAE−∠BAE=60°−30°=30°,∴∠DAE=∠BAE,∴DM=EM;(2)解:如图l,DM=EM仍然成立,理由如下∶连接BD、DF,∵△ABC和△ADE是等边三角形,∴∠ABC=∠BAC=∠DAE=∠ACB=60°,AB=AC,AD=AE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=180°−∠ACB=120°,BD=CE,∴∠DBE=∠ABD−∠ABC=120°−60°=60°,∴∠DBE+∠BEF=60°+120°=180°,∴BD∥EF,∵CE=EF,∴BD =EF ,∴四边形BDFE 是平行四边形,∴DM =EM ;(3)解:如图2,当点E 在BC 的延长线上时,作AG⟂BC 于G ,∵∠ACB =60°,∴CG =AC ⋅cos60°=12AC =3,AG =AC ⋅sin60°=√32AC =3√3,∴EG =CG +CE =3+2=5,∴AE =√AC 2+EC 2=√(3√3)2+52=2√13.由(2)知∶DM =EM ,∴AM ⊥DE ,∴∠AME =90°,∴∠AED =60°,∴AM =AE ⋅sin60°=2√13×√32=√39,如图3,当点E 在BC 上时,作AG ⊥BC 于G ,由上知∶AG =3√3,CG =3,∴EG =CG −CE =3−2=1,∴AE=√AG2+EG2=√(3√3)2+12=2√7,∴AM=2√7×√32=√21,综上所述∶AM=√39或√21.2.(22·23下·安徽·专题练习)在△ABC中,∠ACB=90°,ACBC=m,D是边BC上一点,将△ABD沿AD折叠得到△AED,连接BE.(1)特例发现:如图1,当m=1,AE落在直线AC上时.①求证:∠DAC=∠EBC;②填空:CDCE的值为;(2)类比探究:如图2,当m≠1,AE与边BC相交时,在AD上取一点G,使∠ACG=∠BCE,CG交AE于点H.探究CGCE的值(用含m的式子表示),并写出探究过程;(3)拓展运用:在(2)的条件下,当m=√22,D是BC的中点时,若EB⋅EH=6,求CG的长.【思路点拨】(1)①由折叠知,∠AFB=90°=∠ACB,再由等角的余角相等,即可得出结论;②由①知,∠DAC=∠EBC,再判断出AC=BC,进而用ASA判断出,△ACD≌△BCE,即可得出结论;(2)同(1)①的方法,即可得出结论;(3)先判断出DF是△BCE的中位线,得出DF∥CE,进而得出∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,再判断出AG=CE,设CG=x,则AG=√2x,BE=2x,得出AG=CE进而用AAS判断出△AGH≌△ECH,得出GH=12x,再用勾股定理求出AH=32x,即可得出结论.【解题过程】(1)如图1,延长AD交BE于F,由折叠知,∠AFB=90°=∠ACB,∴∠DAC+∠ADC=∠BDF+∠EBC=90°,∵∠ADC=∠BDF,∴∠DAC=∠EBC;②由①知,∠DAC=∠EBC,∵m=1,∴AC=BC,∵∠ACD=∠BCE,∴△ACD≌△BCE(ASA),∴CD=CE,=1,∴CDCE故答案为1.(2)如图2,延长AD交BE于F,由(1)①知,∠DAC=∠EBC,∵∠ACG=∠BCE,∴△ACG∽△BCE,∴CGCE =ACBC=m;(3)由折叠知,∠AFB=90°,BF=FE,∵点D是BC的中点,∴BD=CD,∴DF是△BCE的中位线,∴DF∥CE,∴∠BEC=∠BFD=90°,∠AGC=∠ECG,∠GAH=∠CEA,由(2)知,△ACG∽△BCE,∴∠AGC=∠BEC=90°,ACCD =AC12BC=2m=√2,∴CGAG =tan∠GAC=DCAC=1√2,设CG=x,则AG=√2x,BE=2x,∴AG=CE,∴△AGH≌△ECH(AAS),∴AH=EH,GH=CH,∴GH=12x,在Rt△AGH中,根据勾股定理得,AH=√AG2+GH2=32x,∵EB⋅EH=6,∴2x⋅32x=6,∴x=√2或x=−√2(舍),即CG=√2.3.(22·23·濮阳·一模)数学活动课上,老师组织数学小组的同学们以“正方形折叠”为主题开展数学活动.【动手实践】(1)如图(1),已知正方形纸片ABCD,数学小组将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠使AD与AM重合,折痕为AF,易知点E、M、F共线,则∠EAF=°,EF、BE、DF三条线段的关系为;【拓展应用】(2)解决下面问题:①如图(2)作FN⊥AE于点N,交AM于点P,求证:△ANP≌△FNE;②如图(3),数学小组在图(1)的基础上进行如下操作:将正方形纸片沿EF继续折叠,点C的对应点为点N,他们发现,当点E的位置不同时,点N的位置也不同,若点N恰好落在△AEF边上,AB=3,请直接写出此时BE的长度.【思路点拨】∠BAD=45°.由∠AME=(1)根据折叠的性质可得∠EAM=∠EAB,∠FAM=∠FAD,由此可得∠EAF=12∠B=90°,∠AMF=∠D=90°可得E、M、F三点共线.又由ME=BE,MF=DF可得EF=BE+DF.(2)①由∠ANF=90°,∠EAF=45°可得∠AFN=45°,于是可得AN=FN,由“同角的余角相等”可得∠EAM=∠NFE,最后根据角边角即可证明△ANP≌△FNE.②分两种情况:当点N落在AE上时,当点N落在AF上时,分别利用三角函数解直角三角形即可求得BE的长.【解题过程】(1)∵四边形ABCD是正方形,∴∠BAD=∠B=∠D=90°,AB=AD.∵△ABE沿AE折叠后得△AME,△ADF沿AF折叠后得△AMF,∴△AME≌△ABE,△AMF≌△ADF,∴∠EAM=∠EAB,∠FAM=∠FAD,∠BAD=45°,∴∠EAM+∠FAM=∠EAB+∠FAB=12即∠EAF=45°.∵∠AME=∠B=90°,∠AMF=∠D=90°,∴∠AME+∠AMF=180°.∴E、M、F三点共线.∵ME=BE,MF=DF,∴ME+MF=BE+DF,∴EF=BE+DF.故答案为:45,EF=BE+DF.(2)①∵FN⊥AE,∴∠ANF=∠FNE=90°.∵∠EAF=45°,∴∠AFN=45°,∴AN=FN.∵△AEM中,∠AME=90°,∴∠EAM+∠AEM=90°.∵△FNE中,∠FNE=90°,∴∠NFE+∠AEM=90°,∴∠EAM=∠NFE.在△ANP和△FNE中,{∠NAP=∠NFEAN=FN∠ANP=∠FNE,∴△ANP≌△FNE(ASA).②如图,当点N落在AE上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°.由折叠的性质可得∠AEB=∠AEM=∠CEF,∵∠AEB+∠AEM+∠CEF=180°,∴∠AEB=∠AEM=∠CEF=60°.∵AB=3,∴BE=ABtan∠AEB =ABtan60°=√3=√3;如图,当N落在AF上时,∵四边形ABCD是正方形,∴∠C=∠B=∠D=∠BAD=90°,由折叠的性质可得∠AFE=∠CFE=∠AFD,又∵∠AFE+∠CFE+∠AFD=180°,∴∠AFE=∠CFE=∠AFD=60°,∴DF=ADtan∠AFD =ADtan60°=3√3=√3,∴CF=CD−DF=3−√3,∴EC=CF⋅tan∠CFE=(3−√3)×√3=3√3−3,∴BE=BC−EC=3−(3√3−3)6−3√3,综上,BE的长为√3或6−3√3.4.(22·23下·泉州·模拟预测)已知:如图1,在矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,连接FP并延长交CD的延长线于点M,过点P作PE⊥FM,交直线BC于点E,连接EF.(1)求tan∠PEF的值;(2)如图2,连接EM,点Q是EM的中点.①当∠AFP=2∠BEF时,求PQ的长;②点F从A点运动到B点的过程中,求点Q经过的路径长.【思路点拨】(1)作PG⊥BC于点G,由四边形ABCD是矩形,点P是AD的中点,得∠A=∠B=∠PGB=90°,PA=PD=1 2AD=3,可证明△APF∽△GPE,则tan∠PEF=PFPE=PAPG=34;(2)①作EF的垂直平分线KN交BE于点N,连接FN,则∠BEF=∠NFE,所以∠BNF=2∠BEF,则∠AFP=∠BNF,可证明∠NFP=∠EPM=90°,则FN∥PE,所以∠BEF=∠NFE=∠PEF,则BF=PF,由勾股定理得32+(4−PF)2=PF2,求得PF=258,则FE=12524,再证明PF=PM,则PQ=12FE=12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,可证明PC∥AG,则∠DPI=∠PAG,再证明△PFE∽△PAG,得∠PFE=∠PAG,可推导出∠DPI=∠MPQ,则∠IPQ=∠DPM=∠APF,再证明△PIQ∽△PAF,则∠PIQ=∠PAF=90°,可知点Q在线段PC的垂直平分线上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,由ILPI =tan∠DPI=tan∠PAG=PGPA=43,求得IL=43PI=103,则点Q经过的路径长是103.【解题过程】(1)解:作PG⊥BC于点G∵四边形ABCD是矩形,AB=4,AD=6,点P是AD的中点,∴∠A=∠B=∠PGB=90°,PA=PD=12AD=3,∴四边形ABGP是矩形,∴PG=AB=4,∠APG=90°,∵PE⊥FM,交直线BC于点E,∴∠FPE=90°,∴∠APF=∠GPE=90°−∠FPE,∵∠A=∠PGE=90°,∴△APF∽△GPE,∴tan∠PEF=PFPE =PAPG=34,∴tan∠PEF的值是34;(2)解:①作EF的垂直平分线KN交BE于点N,连接FN,则EN=FN,如图2所示:∴∠BEF=∠NFE,∴∠BNF=∠BEF+∠NFE=2∠BEF,∵∠AFP=2∠BEF,∴∠AFP=∠BNF,∴∠AFP+∠BFN=∠BNF+∠BFN=90°,∴∠NFP=∠EPM=90°,∴FN∥PE,∴∠BEF=∠NFE=∠PEF,∵BF⊥EB,PF⊥EP,∴BF=PF,∵AP2+AF2=PF2,AF=4−BF=4−PF,∴32+(4−PF)2=PF2,解得PF=258,设PF=3m,则PE=4m,由3m=258得m=2524,∴FE=√PF2+PE2=√(3m)2+(4m)2=5m=5×2524=12524,∵AF∥DM,∴PFPM =PAPD=1,∴PF=PM,∵点P是FM的中点,点Q是EM的中点,∴PQ=12FE=12×12524=12548,∴PQ的长是12548;②作PG⊥BC于点G,连接AG、PC,取PC的中点I,连接IQ,如图3所示:∵BC=AD=6,GB=PA=3,∴CG=BC−GB=6−3=3=∵CG∥AP,∴四边形APCG是平行四边形,∴PC∥AG,∴∠DPI=∠PAG,∵PFPE =PAPG,∴PFPA =PEPG,∴△PFE∽△PAG,∴∠PFE=∠PAG,∴∠DPI=∠PFE,∵∠MPQ=∠PFE,∴∠DPI=∠MPQ,∴∠DPI−∠DPQ=∠MPQ−∠DPQ,∴∠IPQ=∠DPM=∠APF,∵PC=AG=√PA2+PG2=√32+42=5,∴PI=12PC=12×5=52,∴PIPA =523=56,∵FEPF =53,FE=2PQ,∴2PQPF =53,∴PQPF =56=PIPA,∴△PIQ∽△PAF,∴∠PIQ=∠PAF=90°,∴点Q在线段PC的垂直平分线点上运动,延长IQ、PD交于点L,当点F从点A运动到点B,则点Q从点I运动到点L,∵ILPI =tan∠DPI=tan∠PAG=PGPA=43,∴IL=43PI=43×52=103,∴点Q经过的路径长是103.5.(2023·江苏镇江·中考真题)【发现】如图1,有一张三角形纸片ABC,小宏做如下操作:(1)取AB,AC的中点D,E,在边BC上作MN=DE;(2)连接EM,分别过点D,N作DG⊥EM,NH⊥EM,垂足为G,H;(3)将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置;(4)延长PQ ,ST 交于点F .小宏发现并证明了以下几个结论是正确的: ①点Q ,A ,T 在一条直线上; ②四边形FPGS 是矩形; ③△FQT≌△HMN ;④四边形FPGS 与△ABC 的面积相等. 【任务1】请你对结论①进行证明.【任务2】如图2,在四边形ABCD 中,AD∥BC ,P ,Q 分别是AB ,CD 的中点,连接PQ .求证:PQ =12(AD +BC ). 【任务3】如图3,有一张四边形纸ABCD ,AD∥BC ,AD =2,BC =8,CD =9,sin∠DCB =45,小丽分别取AB ,CD 的中点P ,Q ,在边BC 上作MN =PQ ,连接MQ ,她仿照小宏的操作,将四边形ABCD 分割、拼成了矩形.若她拼成的矩形恰好是正方形,求BM 的长. 【思路点拨】(1)由旋转的性质得对应角相等,即∠ABC =∠QAD ,∠ACB =∠TAE ,由三角形内角和定理得∠ABC +∠BAC +∠ACB =180°,从而得∠QAD +∠BAC +∠TAE =180°,即Q ,A ,T 三点共线;(2)梯形中位线的证明问题常转化为三角形的中位线问题解决,连接AQ 并延长,交BC 的延长线于点E ,证明△ADQ≌△ECQ ,可得AQ =EQ ,AD =CE ,由三角形中位线定理得PQ =12BE =12(AD +BC );(3)过点D 作DR ⊥BC 于点R ,由DC =9,sin∠DCB =45得DR =365,从而得S 梯形ABCD =12×(2+8)×365=36,由【发现】得S 正方形GEST =S 梯形ABCD ,则GE =6,PE =3,由【任务2】的结论得PQ =5,由勾股定理得EQ =4.过点Q 作QH ⊥BC ,垂足为H .由CQ=92及sin∠DCB =45得QH =185,从而得CH =2710,证明△PEQ∽△QHM ,得HM =245,从而得BM =BC −HM −CH =12.【解题过程】 [任务1]证法1:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB . 在△ABC 中,∠ABC +∠BAC +∠ACB =180°, ∴∠QAD +∠BAC +∠TAE =180°, ∴点Q ,A ,T 在一条直线上.证法2:由旋转得,∠QAD =∠ABC ,∠TAE =∠ACB .∴AQ∥BC,AT∥BC.∴点Q,A,T在一条直线上.[任务2]证明:如图1,连接AQ并延长,交BC的延长线于点E.∵AD∥BC,∴∠DAQ=∠E.∵Q是CD的中点,∴DQ=CQ.在△ADQ和△ECQ中,{∠DAQ=∠E,∠AQD=∠EQC, DQ=CQ,∴△ADQ≌△ECQ(AAS).∴AQ=EQ,AD=CE.又∵P是AB的中点,∴AP=BP,∴PQ是△ABE的中位线,∴PQ=12BE=12(CE+BC),∴PQ=12(AD+BC).[任务3]的方法画出示意图如图2所示.由【任务2】可得PQ ∥BC ,PQ =12(AD +BC )=12×(2+8)=5. 过点D 作DR ⊥BC ,垂足为R . 在Rt △DCR 中,sin∠DCB =DR CD ,∴DR =CD ⋅sin∠DCB =9×45=365.∴S 正方形GEST =S 梯形ABCD =12×(2+8)×365=36,∴GE =6,PE =3.在Rt △PEQ 中,由勾股定理得EQ =√PQ 2−PE 2= √52−32=4. 过点Q 作QH ⊥BC ,垂足为H . ∵Q 是CD 的中点, ∴CQ =12CD =12×9=92.在Rt △QHC 中,sin∠DCB =QH CQ,∴QH =CQ ⋅sin∠DCB =92×45=185.又由勾股定理得CH =√CQ 2−QH 2=√(92)2−(185)2=2710.由PQ ∥BC ,得∠PQE =∠QMH . 又∵∠PEQ =∠QHM =90°, ∴△PEQ∽△QHM . ∴PE QH =EQ HM ,即3185=4HM ,∴HM =245.∴BM =BC −HM −CH =8−245−2710=12.6.(23·24九年级上·江苏无锡·阶段练习)【基本图形】(1)如图1,在矩形ABCD 中,CE ⊥BD 于点H ,交AD于点E.求证:CEBD =CDBC;【类比探究】(2)如图2,在四边形ABCD中,∠A=∠B=90°,AD=4,BC=9,CD=7.E是边AB上的一动点,过点C作CG⊥ED,交ED的延长线于点G,交AD的延长线于点F.试探究CFDE是否为定值?若是,请求出CFDE的值;若不是,请说明理由;【拓展延伸】(3)如图3,在Rt△ABD中,∠BAD=90°,将△ABD沿BD翻折得到△CBD,点E,F分别在边AB,AD上,连接CF,DE.若∠AED=∠AFC,且CFDE =35,则ADAB的值为______(直接写出结果).【思路点拨】(1)证明△CED∽△BDC,利用相似三角形的性质即可证明CEBD =CDBC;(2)过点C作CH⊥AF交AF延长线于点H,首先证明四边形ABCH为矩形,易得AB=CH,BC=AH,再证明△DEA∽△CFH,由相似三角形的性质可得CFDE =CHAD,然好由勾股定理解得CH=2√6,即可证明CFDE=CHAD=√62,即可获得答案;(3)过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,证明CG∥AB,易得∠ABD=∠GHD,再证明△AED∽△GFC,由相似三角形的性质可得CFDE =CGAD=35,由折叠的性质可得AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,由勾股定理可得DG=√CD2−CG2=4x,然后由角平分线的性质定理可得HG=HM,结合S△HDG+S△CHD=S△CDG,可求得HG=4x3,然后可推导tan∠ABD=tan∠DHG=DGHG=3,即可获得ADAB得值.【解题过程】解:(1)∵四边形ABCD为矩形,∴∠ADC=∠DCB=90°,∵CE⊥BD,∴∠DBC+∠BCH=∠BCH+∠ECD=90°,∴∠DBC=∠ECD,∴△CED∽△BDC,∴CE BD =CDBC;(2)CFDE是否为定值,如下图,过点C作CH⊥AF交AF延长线于点H,∴∠A=∠B=∠H=90°,∴四边形ABCH为矩形,∴AB=CH,BC=AH,∵∠GFD=∠HFC,∠GDF=∠ADE,又∵∠GFD+∠GDF=∠HFC+∠HCF,∴∠ADE=∠HCF,∵∠A=∠H,∴△DEA∽△CFH,∴CF DE =CHAD,∵BC=9,CD=7,AD=4,∴DH=AH−AD=BC−AD=5,∴CH=√CD2−DH2=2√6,∴CF DE =CHAD=2√64=√62,∴CF DE 为定值√62;(3)如下图,过点C作CG⊥AD于点G,交BD于点H,作HM⊥CD于点M,∴∠CGF=∠A=90°,∴CG∥AB,∴∠ABD=∠GHD,∵∠AED=∠AFC,∠CGF=∠A,∴△AED∽△GFC,∴CF DE =CGAD=35,∵将△ABD沿BD翻折得到△CBD,∴AD=CD,∠ADB=∠CDB,设GC=3x,则AD=CD=5x,∴DG=√CD2−CG2=4x,∵HG⊥AD,HM⊥CD,∠ADB=∠CDB,∴HG=HM,∵S△HDG+S△CHD=S△CDG,即12×4x×HG+12×5x×HM=12×3x×4x,∴HG=4x3,∴tan∠ABD=tan∠DHG=DGHG =4x43x=3,∴ADAB=3.7.(21·22九年级下·辽宁盘锦·期中)如图,在矩形ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E.连接CE,点F是BE上一动点,过点F作FG∥CE交BC于点G.将△BFG绕点B旋转得到△BF′G′,(1)如图1,连接CG′,EF′,求证:△BEF′∽△BCG′;(2)当点G′恰好落在直线AE上时,若BF=3,求EG′的值;(3)如图3,连接GG′,当GG′与BE交于点F时,猜想FG与FG′的数量关系,并证明.【思路点拨】(1)平行得到△BFG∽△BEC,得到BFBE =BGBC,旋转得到BF=BF′,BG=BG′,∠GBF=∠G′BF′,进而得到BF′BE =BG′BC,∠FBF′=∠GBG′,即可得证;(2)分点G′在线段AE和在线段EA的延长线上,两种情况进行讨论求解;(3)过点F作FH⊥BG于点H,过点B作BP⊥GG′于点P,易得BH=FH,根据矩形的性质,平行线的性质,得到∠FGB=∠ECB=∠CED,进而得到tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,推出tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,分别求出FG,FG′,即可得解.【解题过程】(1)证明:∵FG∥CE,∴△BFG∽△BEC,∴BF BE =BGBC,∵将△BFG绕点B旋转得到△BF′G′,∴BF=BF′,BG=BG′,∠GBF=∠G′BF′,∴BF′BE =BG′BC,∠FBF′=∠GBG′,∴BF′BG′=BEBC,∴△BEF′∽△BCG′;(2)解:∵矩形ABCD中,AB=3,BC=5,∴AD∥BC,∠A=∠ABC=90°,∴∠AEB=∠EBC,∵BE 平分∠ABC , ∴∠ABE =∠EBC =45°, ∴∠ABE =∠AEB =45°, ∴AE =AB =3,BE =3√2, 由(1)知:BFBE =BGBC ,即:3√2=BG 5,∴BG =5√22, ∴BG ′=BG =5√22, ①当点G ′在线段AE 上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE −AG ′=3−√142; ②当点G ′在线段EA 的延长线上时,在Rt △BAG ′中,AG ′=√G ′B 2−AB 2=√142, ∴EG ′=AE +AG ′=3+√142;综上:EG ′=3−√142或3+√142; (3)FGFG ′=137;证明如下:过点F 作FH ⊥BG 于点H ,过点B 作BP ⊥GG ′于点P ,由(2)知,∠FBC =45°,AE =3, ∴BH =FH , ∵矩形ABCD ,∴AD ∥BC,AD =BC =5,CD =AB =3,∠D =90°, ∴DE =5−3=2,∠CED =∠ECB ,∴CE=√DE2+CD2=√13,∵FG∥CE,∴∠FGB=∠ECB=∠CED,∴tan∠FGB=tan∠CED=CDDE =32,cos∠FGB=cos∠CED=EDCE=2√1313,∴tan∠FGB=FHGH =32,cos∠FGB=PGBG=2√1313,设FH=3a,HG=2a,则:FG=√FH2+HG2=√13a,BH=FH=3a,∴BG=BH+HG=5a,∴PG=10√1313a,∵旋转,∴BG=BG′,∴GG′=2PG=20√1313a,∴FG′=GG′−FG=7√1313a,∴FG FG′=√13a7√13a13=137.8.(21·22下·沧州·二模)如图1,在一平面内,线段AB=20,M,N是线段AB上两点,且AM=BN=2,点C从点M开始向终点N AC,BC为边在线段AB同侧作等边△ACD和等边△BCE,设AC=x.(1)直接写出CD和BE位置关系:______;(2)如图2,连接AE,BD,求证:AE=BD;(3)如图3,点G,点H分别是CD,BE的中点,①求当x为何值时,线段GH取得最小值?最小值是多少?②当线段GH取得最小值此时,求△ACE的面积;(4)如图4,设DE的中点为P,则点P移动路径的长为______.【思路点拨】(1)根据平行线的判定即可;(2)证明△ACE≌△DCB(SAS)即可;(3)①连接AG并延长交直线BE于F,连接CH、CF,先证明四边形CGFH是矩形,得FC=GH,当FC⊥AB 时GH最小即可,②过E作EK⊥AB于K,∠ECB=60°,再根据三角函数及三角形的面积公式即可;(4)以点A为原点,直线AB为x轴,过点A垂直于直线AB的直线为y轴,建立平面直角坐标系,过点D作DG⊥AC于点G,过点E作EH⊥AC于点H,再表示出点P的坐标即可.【解题过程】(1)解:在等边△ACD和等边△BCE中,∴∠ACD=∠B=60°,∴CD∥BE.故答案为:平行.(2)解:∵△ACD和△BCE是等边三角形,∴AC=CD,CE=CB,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即:∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;(3)解:①连接AG并延长交直线BE于F,连接CH、CF,∵△ACD和△BCE是等边三角形,∴∠ACD=∠B=60°,∴CD∥BE,∴∠DCH=∠CHB,∵点G,点H分别是CD,BE的中点,∴∠AGC=∠CHE=∠CHB=90°,∠BAF=30°∴∠CGF=∠AGC=∠DCH=90°,∴∠CGF=∠CHE=∠DCH=90°,∴四边形CGFH是矩形,∴FC=GH,∴当FC⊥AB时GH最小,在△ABF中,AF=ABsin60°=在△AFC中,AC=AFcos30°=15,FC=AF⋅sin30°=5√3,∵2≤AC≤18,∴当x=15时,线段GH取得最小值,最小值是5√3;②过E作EK⊥AB于K,∠ECB=60°,在△CEK中,∠ECB=60°,CB=AB−AC=5,EK=CE⋅sin60°=5√3,2∴S △ACE =12⋅AC ⋅EK =754√3;(4)解:如图,以点A 为原点,直线AB 为x 轴,过点A 垂直于直线AB 的直线为y 轴,建立平面直角坐标系,过点D 作DG ⊥AC 于点G ,过点E 作EH ⊥AC 于点H ,则M(2,0),B(20,0),N(18,0),C(x,0), AC =x,BC =20−x ,∵△ACD,△BCE 均为等边三角形,∴∠DAC =∠ECH =60°,AG =12AC =x2,CH =12BC =20−x 2,∴AH =AC +CH =x +20−x 2=x2+10,∴DG =OG ⋅tan60°=x 2×√3=√3x2,EH =CH ⋅tan60°=(10−x2)×√3=−√3x2+10√3,∴D(x 2,√3x 2),E(x2+10,−√3x 2+10√3),则DE 的中点为P 的坐标为P(x2+5,5√3)(2≤x ≤18), ∵P 的纵坐标为定值,即点P 在平行于x 轴的直线上运动, x =2时,P 1(6,5√3), x =18时,P 2(14,5√3),点P 移动路径的长为P 1P 2=14−6=8, 故答案为:8.9.(23·24九年级上·吉林长春·阶段练习)如图①,在▱ABCD 中,∠A =60°,AB =4,AD =6,点E 在边BC 上,且BE =2,动点P 从点E 出发,沿折线EB −BA −AD 以每秒2个单位长度的速度运动.作∠PEQ =60°,EQ 交边AD 或边DC 于点Q ,连接PQ .当点Q 与点C 重合时,点P 停止运动.设点P 的运动时间为t 秒.(t >0)(1)当点P和点B重合时,线段PQ的长为______;(2)当点Q和点D重合时,求tan∠PQE.(3)如图②,当点Q在边DC上运动时,证明:PD=CQ.(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和▱ABCD重叠部分图形为轴对称四边形时,直接写出t的值.【思路点拨】(1)首先证明四边形ABEQ是平行四边形,取QE中点M,连接BM,则△AQP是直角三角形,利用勾股定理解题即可;(2),过点D作DN⊥BC于点N,在Rt△QNC中,CN=2,EN=2,在Rt△QCN中,利用勾股定理求出QN= 2√3,然后根据tan∠PQE=tan∠QEC=DN解题即可;EN(3)连接DE,过点D作DG⊥BC于点G,利用ASA证明△PED≌△QEC解题即可;(4)当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形,根据题意求出t的值.【解题过程】(1))解: ∵四边形ABCD是平行四边形,∴AQ∥BE,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,又∵∠PEQ=60°,∴∠ABE+∠PEQ=180°,∴AB∥QE,∴四边形ABEQ是平行四边形.∴QE=AB=4,AQ=BE=2,取QE中点M,连接BM,∴QM=ME=2,又∵∠PEQ=60°,∴△BME是等边三角形,∴QM=BM=ME,∴∠MBE=60°,∴∠MQP=∠QPM=30°,∴∠QPE=90°,∵AQ∥BE,∴∠AQP=90°,∴△AQP是直角三角形,∴在Rt△AQP中QP=√AB²−AQ²=√42−22=2√3,∴当P点和B点重合时,PQ的长为2故答案为:2√3;(2))解:∴四边形ABCD是平行四边形. ∴AD∥BC,∠A=∠C=60°∴∠PQE=∠QEC∵BC=AD=6,BE=2.∴CE=4如图2,过点D作DN⊥BC于点N,在Rt△QNC中,∠QNC=90°,∠C=60°∴∠NQC=30°∴CN=12CD=12×4=2,∴EN=EC−CN=4−2=2∴在Rt△QCN中,∴QN=√CQ²−CN²=√42−22=2√3,∴tan∠PQE=tan∠QEC=DNEN =2√32=√3,∴当Q点和D点重合时,tan∠PQE=√3;(3)证明:连接DE,过点D作DG⊥BC于点G,如图3由(2)知EC=CD=4,∠C=60°,∴△CDE是等边三角形∴DE=EC=CD=4又∵四边形ABCD是平行四边形.∴∠ADC=120°又∵∠PEQ=60°,∠DEC=∠C=∠EDC=60°,∴∠PED+∠DEQ=∠QEC+∠DEQ,∴∠PDE=∠QCE=60°,∠PED=∠QEC,∴△PED≌△QEC(ASA),∴PD=QC,(4)解:由题意得,当Q点位于CD中点时.四边形EPFQ与ABCD重叠部分四边形为轴对称四边形.理由如下:如图4,连接DE,由(3)知△CDE是等边三角形,∵Q点为CD的中点,∴QD=QC=1CD=22∴QE⊥CD,∴∠CQE=90°,又∵∠C=60°∴∠CEQ=30°∴∠PEQ=60°∴∠PEC=90°∴PE⊥BC,又∵AD∥BC,∴PE⊥AD∴DE=4,PE=2√3,PD=2,∴PD=QD,∴Rt△PDE≌Pt△QDE(HL).∴四边形EPFQ与ABCD的重叠部分为EPDQ为轴对称四边形,∴P点的运动轨迹为EB+BA+AP=2+4+4=10,∵P点的速度为2个单位长度每秒,∴2t=10∴t=5∴t的值为5.10.(21·22·武汉·模拟预测)问题背景:如图(1),在四边形ABCD中,P是BC上一点,∠ABC=∠BCD=∠APD,求证:△ABP∽△PCD;尝试运用:如图(2),D,E,F三点分别在等边△ABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,△DEF的面积为y,求y关于x的函数关系式(不求自变量x的取值范围);拓展创新:如图(3),D是等边△ABC边BC上一点,连接AD,E是AD上一点,CD=2BD,∠BEC=120°,请用一个等式直接写出BE与CE的数量关系.【思路点拨】问题背景:如图(1),根据三角形相似的判定定理:两角对应相等的两个三角形相似证明即可;尝试运用:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示,D,E,F三点分别在等边ΔABC边BC,AB,AC上,∠ABC=∠EDF,BD=CD.已知BC=4,设EF=x,ΔDEF的面积为y,根据相似三角形判定与性质,再结合解直角三角形即可得到答案;拓展创新:将ΔBCE绕点C顺时针旋转60°,作DF∥CE,如图所示,可得DF∥CE∥AE′,证得△BDF∽△BCE,设BE=m,EC=x,可得EF的长,由△DFE∽△AE′E,利用相似三角形的性质可得结果.【解题过程】问题背景:证明:如图所示:∵∠ABC=∠APD,∴∠BAP+∠BPA=∠CPD+∠BPA,∴∠BAP=∠CPD,又∵∠ABP=∠PCD,∴△ABP∽△PCD;尝试运用:解:过点D分别作DG⊥AB,DH⊥AC,垂足分别为G,H,如图所示:∵△ABC是等边三角形,∠ABC=∠EDF,∴∠ABC=∠EDF=∠C=60°,由(1)知△BDE∽△CFD,∴BECD =DEFD,∵BD=CD,∴BEBD =DEFD,又∵∠ABC=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴DG=DH,在Rt△BDG中,∠ABC=60°,BD=2,则sinB=DGBD =DG2,即DG=2×√32=√3,∴DH=√3,∴y=√32x;拓展创新:解:CE=√2BE.将△BCE绕点C顺时针旋转60°,作DF∥CE,如图所示:∵将△BCE绕点C顺时针旋转60°得到△ACE′,∴BE=AE′,∠AE′C=120°,CE=CE′,∵DF∥CE,∠BEC=120°,∴∠CEE′=60°,∴△CEE′为等边三角形,∴∠CE′E=60°,EE′=CE,∴∠AE′B=60°,∴CE∥AE′,∵DF∥CE,∴DF∥AE′,∴△BDF∽△BCE,∴BFBE =DFCE=BDBC=13,设BE=m,∴BF=13m,EF=23m,设CE=x,∴DF=x3,∵△DFE∽△AE′E,∴EFEE′=DFAE′,∴23mx=13xm,∴x2=2m2,∵x>0,m>0,∴x=√2m,∴EC=√2BE.11.(22·23·信阳·三模)综合与实践【问题情境】在△ABC中,AB=AC,∠BAC=α,点D为BC边上一动点(不与B,C重合),连接AD,以AD为始边顺时针作∠ADE=β(α+β=180°),DF平分∠ADE.【初步探究】(1)如图1,DE与AC的延长线交于点E,若α=60°,β=120°,CD=2BD,则BDCF的值为_____,∠CDF与∠E的数量关系是_________.【类比探究】(2)如图2,DE与AC的延长线交于点E,若α=β=90°,CD=2BD,求出BDCF的值及∠CDF与∠E的数量关系.【拓展应用】(3)如图3,DE与AC交于点E,α=β=90°,∠CAD=15°,AB=6√2,将△ADF绕点在平面内自由旋转,当B,A,F三点共线时,直接写出AFBD的值.【思路点拨】(1)可证得△ABD∽△DCF,从而BDCF =ABCD,进而得出BDCF=32,由∠BAD+∠DAE=60°可得出∠CDF=∠E;(2)可证得△ABD∽△DCF,从而得出BDCF =ABCD,进而得出BDCF=3√24,根据∠BAD+∠DAE=90°可推出∠CDF=∠E;(3)作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,解直角三角形ABH求得AH=6,解Rt△ADH求得AD的值,解Rt△ADR求得AR和BR的值,解Rt△ARF求得AF和RF,进而求得AF,当F在BA的延长线上时,解Rt△DFX求得FX和DX的值,解Rt△ADX求得BD,进一步得出结果;当F在AB上时,作DV⊥AB于V,同样的方法得出结果.【解题过程】解:(1)∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=120°,∵∠ADF=12∠ADE=60°,∴∠DB+∠CDE=120°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴AB=BC=32CD,∴BDCF =32,∵∠BAD+∠DAE=60°,∴∠CDF+60°−∠E=60°,∴∠CDF=∠E,故答案为:32,相等;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∴∠BAD+∠ADB=135°,∵∠ADF=12∠ADE=45°,∴∠DB+∠CDE=135°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴BDCF =ABCD,∵CD=2BD,∴BC=32CD,∵AB=√22BC,∴BDCF =3√24,∵∠BAD+∠DAE=90°,∴∠CDF+90°−∠E=90°,∴∠CDF=∠E;(3)如图1,作AH⊥BC于H,作AR⊥DF,交DF的延长线于R,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,BH=CH,∴AH=√22AB=6,在Rt△ADH中,∠ADH=∠DAC+∠C=60°,AH=6,∴AD=6 sin60°=4√3,在Rt△ADR中,AD=4√3,∠ADF=45°,∴AR=DR=√22AD=2√6,在Rt△ARF中,AR=2√6,∠AFR=∠DAC+∠ADF=15°+45°=60°,∴AF=2√6 sin60°=√6√32=4√2,RF=2√6=√6√3=2√2,∴AF=2FR=DF=DR−RF=2√6−2√2,如图2,当F在BA的延长线上时,作DX⊥AF于X,在Rt△DFX中,DF=2√6−2√2,∠DFX=60°,∴FX=12DF=√6−√2,DX=DF⋅sin60°=3√2−√6,在Rt△ADX中,BX=AB+AF+FX=6√2+4√2+√6−√2=9√2+√6,DX=3√2−√6,∴BD=√(9√2+√6)2+(3√2−√6)2=2√48+6√3,∴ AFBD =√22√48+6√3=√24+3√324+3√3,如图3,当F在AB上时,作DV⊥AB于V,由上知:FV=√6−√2,DV=3√2−√6,∴BV=AB−AF−FV=6√2−4√2−(√6−√2)=3√2−√6,∴BD=√2BV=√2(3√2−√6),∴AFBD =√2√2(3√2−√6)=3√2+√63,综上所述: AFBD =√24+3√324+3√3或3√2+√63.12.(23·24九年级上·辽宁沈阳·阶段练习)在平面直角坐标系中,已知点A(0,6),点B在线段AO上,且AB=2BO,若点P在x轴的正半轴上,连接BP,过点P作PQ⊥PB.(1)如图1,点E是射线PQ上一点,过点E作EC⊥x轴,垂足为点C.①点B的坐标__________.②求证:△BOP∼△PCE;(2)在(1)的条件下,如图2,若点C坐标为(8,0).过点A作DA⊥y轴,且和CE的延长线交于点D.若点C关于直线PQ的对称点C′正好落在线段AD上.连接PC,则点P的坐标__________.(3)如图3,若∠BPO=60°,点E在直线PQ上,EC⊥x轴,垂足为点C.若以点E,P,C为顶点的三角形和△BPE相似,请直接写出点E的坐标__________.【思路点拨】(1)①根据OA=6,AB=2OB求解即可.②根据两角对应相等,两三角形相似证明即可.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x,则PC=4−x.在Rt△EBC′中,根据C′P2=PG2+C′G2,构建方程求解即可.(3)如图3中, 由题意∠PBQ=∠ECP=90°, 分四种情形, 当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 当∠PE3B=30°时, 以点E,P,C 为顶点的三角形和△BPE相似,当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似, 分别求解即可.【解题过程】(1)①∵A(0,6),∴OA=6,∵AB=2BO,∴AB=4, OB=2,∴B(0,1);故答案为:(0,1)②证明: 如图1中,∵PQ⊥PB,EC⊥OC,∴∠ECP=∠BPE=∠POB=90°,∴∠OPB+∠EPC=90°,∠EPC+∠CEP=90°,∴∠OPB=∠PEC,∴△BOP∽△PCE.(2)如图2中, 过点C′作C′G⊥OC于G, 延长PB交DA的延长线于F.设OP=x, 则PC=4−x.∵AF∥OP,∴∠F=∠BPO,∠FAB=∠BOP,∴△FBA∽△PBO,∴FAOP =ABOB=2,∴AF=2x,∵∠EPC+∠OPB=90°,∠EPC′+∠C′PF=90°∵∠EPC=∠EPC′,∴∠C′PF=∠OPB,∵∠OPB=∠F,∴∠F=∠C′PF,∴C′F=C′P=PC=8−x,∴AC′=8−3x,∴C′D=3x,∴PG=PC−CG=8−4x,在Rt△EBC′中,∵C′P2=PG2+C′G2,∴(8−x)2=(8−4x)2+62,解得x=65或x=2,∴P(65,0) 或(2,0).故答案为:(65,0) 或(2,0);(3)如图3中,∵OB=2,∠POB=90°,∠OPB=60°,∴∠PBO=30°,∴OP=OB⋅tan30°=2√33,PB=2OP=4√33,∵∠BPQ=90°,∴∠QPC=30°,∵∠PBQ=∠ECP=90°,∴当∠PE1B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,∴PE1=√3PB=4,∴E1C=12PE1=2,PC=2√3∴OC=8√33,∴E1(8√33,2),当∠PBE2=30°时, 以点E,P,C为顶点的三角形和△BPE相似,,同法可得E2(4√33,23).当∠PE3B=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E3(−4√33,−2).当∠PBE4=30°时, 以点E,P,C为顶点的三角形和△BPE相似,同法可得E4(0,−23).综上所述,满足条件的点E的坐标为(8√33,2)或(4√33,23)或(−4√33,−2)或(0,−23).13.(23·24·全国·专题练习)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A′处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD的BC边上取一点E,将四边形ABED沿DE翻折,使点B落在DC的延长线上B′处,若BC⋅CE=24,AB=6,求BE的值;(3)如图③,在△ABC中,∠BAC=45°,AD⊥BC,垂足为点D,AD=10,AE=6,过点E作EF⊥AD交AC于点F,连接DF,且满足∠DFE=2∠DAC,直接写出BD+53EF的值.【思路点拨】(1)由矩形性质和翻折性质、结合勾股定理求得A′B=2,设AE=A′E=x则BE=AB−AE=6−x,Rt△A′BE中利用勾股定理求得x=103,则AE=103,BE=6−103=83,进而求解即可;(2)由矩形的性质和翻折性质得到∠EBC=∠BDA,证明△EBC∽△BDA,利用相似三角形的性质求得BC= 4,则BD=10,在Rt△ABD中,利用勾股定理求得AD=8,进而求得BC=8,CE=3可求解;(3)证明△AEF∽△ADC得到CD=53EF,则BD+53EF=BD+CD=BC;设EF=3k,CD=5k,过点D作DH⊥AC于H,证明△CHD≌△FHD(ASA)得到DF=CD=5k,在Rt△EFD中,由勾股定理解得k=1,进而可求得AC=5√5.过B作BG⊥AC于G,证明∠CBG=∠CDH=∠DAC,则sin∠CBG=sin∠DAC=√55,cos∠CBG=cos∠DAC=2√55,再证明AG=BG,在Rt△BCG中利用锐角三角函数和AG+CG=BG+CG= AC,求得BC,即可求解.【解题过程】解:(1)∵四边形ABCD是矩形,∴AD=BC=10,CD=AB=6,∠A=∠B=∠C=90°,由翻折性质得AD=A′D=10,AE=A′E,在Rt△A′CD中,A′C=√A′D2−CD2=√102−62=8,∴A′B=BC−AC=2,。
压轴题(1)班级某某学号一、选择题1.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或102.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图FEDB CA7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .88.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0④当y >0时,x 的取值X 围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EOBCD12.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是_____________.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为.三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.答案详解一、选择题【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定【考点】抛物线与x 轴的交点.【分析】设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,由二次函数的图象可知x 1+x 2>0,a >0,设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b 再根据根与系数的关系即可得出结论.【解答】解:设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b ,则a +b =﹣=﹣+,∵a >0,∴>0, ∴a +b >0.故选C .6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F D B A【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B. 【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确;∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确;过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AEED =1.∴AF =FH .∴FH =CH .∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G HF E D ACB设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BFAF .∴AF =EF •BF =1×2= 2.∴tan∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan∠CAD =tan∠ABF =22.…………④错误. 故选择B.7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8【分析】先根据S △ABO =4,tan ∠BAO =2求出AO 、BO 的长度,再根据点C 为斜边A ′B 的中点,求出点C 的坐标,点C 的横纵坐标之积即为k 值.【解答】解:设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D ,∵tan ∠BAO =2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3X;第2个图案中白色纸片有7=1+2×3X;第3个图案中白色纸片有10=1+3×3X;…∴第n个图案中白色纸片有1+n×3=3n+1(X),根据题意得:3n+1=2017,解得:n=672,故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的X围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣=1,即b =﹣2a ,而x =﹣1时,y <0,即a ﹣b +c <0,∴a +2a +c <0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EO B A CD【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD ⊥BC 时,OD 最短,DE 的值最小.当OD ⊥BC 时,OD ∥AB .∴CD BD =CO OA =1.∴OD 是△ABC 的中位线.∴OD =12AB =2.∴DE 的最小值=2OD =4.第14题答案图EOCABD12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y =x+b落在直线y=kx+6的上方,该部分对应的x的取值X围为x>3,即不等式x+b>kx+6的解集是x>3.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OB n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA 为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB 的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB 相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型【思路分析】(1)先由OA ′=OA 得到点A ′的坐标,再用点C 、A 、A ′的坐标即可求此抛物线的解析式;(2)连接AA ′, 过点M 作MN ⊥x 轴,交AA ′于点N ,把△AMA ′分割为△AMN 和△A ′MN , △AMA ′的面积=△AMA ′的面积+△AMN 的面积=12OA ′•MN ,设点M 的横坐标为x ,借助抛物线的解析式和AA ′的解析式,建立MN 的长关于x 的函数关系式,再据此建立△AMA ′的面积关于x 的二次函数关系式,再求△AMA ′面积的最大值以及此时M 的坐标;(3)在P 、N 、B 、Q 这四个点中,B 、Q 这两个点是固定点,因此可以考虑将BQ 作为边、将BQ 作为对角线分别构造符合题意的图形,再求解.【解答】解:(1)∵ ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,点A 的坐标是(0,4),∴点A ′的坐标为(4,0),点B 的坐标为(1,4).∵抛物线过点C ,A ,A ′,设抛物线的函数解析式为y =ax 2+bx +c (a ≠0),可得: ⎩⎪⎨⎪⎧a -b +c =0c =416a + 4b +c =0. 解得:⎩⎪⎨⎪⎧a =-1b =3c =4.∴抛物线的函数解析式为y =-x 2+3x +4.(2)连接AA ′,设直线AA ′的函数解析式为y =kx +b ,可得⎩⎨⎧0+b =414k +b =0.解得:⎩⎨⎧k =-1b =4.∴直线AA '的函数解析式是y =-x +4.设M (x ,-x 2+3x +4),S △AMA ′=12×4×[-x 2+3x +4一(一x +4)]=一2x 2+8x =一2(x -2)2+8.∴x =2时,△AMA ′的面积最大S △AMA ′=8.∴M (2,6).(3)设P 点的坐标为(x ,-x 2+3x +4),当P 、N 、B 、Q 构成平行四边形时,①当BQ 为边时,PN ∥BQ 且PN =BQ ,∵BQ =4,∴一x 2+3x +4=±4.当一x 2+3x +4=4时,x 1=0,x 2=3,即P 1(0,4),P 2(3,4);当一x 2+3x +4=一4时,x 3=3+412,x 4=3-412,即P 3(3+412,-4),P 4(3-412,-4); ②当BQ 为对角线时,PB ∥x 轴,即P 1(0,4),P 2(3,4);当这个平行四边形为矩形时,即P l (0,4),P 2(3,4)时,N 1(0,0),N 2(3,0).综上所述,当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).24.如图1,△ABC 是等腰直角三角形,∠BAC = 90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请。
55.如图,抛物线y =-x2-2x +3与x 轴相交于点A 、B (A 在B 的左侧),与y 轴交于点C .(1)求线段AC 所在直线的解析式;(2)点M 是第二象限内抛物线上的一点,且S △MAC=12S △MAB,求点M 的坐标;(3)点P 以每秒1个单位长度的速度,沿线段BA 由B 向A 运动,同时,点Q 以每秒2个单位长度的速度,从A 开始沿射线AC 运动,当P 到达A 时,整个运动随即结束.设运动的时间为t 秒.①求△APQ 的面积S 与t 的函数关系式,并求当t 为何值时,△APQ 的面积最大,最大面积是多少? ②在整个运动过程中,以PQ 为直径的圆能否与直线BC 相切?若能,请直接写出相应的t 值;若不能,请说明理由;③直接写出线段PQ 的中点在整个运动过程中所经过路径的长.56.如图,在平面直角坐标系中,直线AC :y =43x +8与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax2+bx +c 过点A 、点C ,且与x 轴的另一交点为B (x 0,0)(x 0>0),点P 是抛物线的对称轴l 上一动点.(1)求点A 的坐标,并在图1中的l 上找一点P 0,使P 0到点A 与点C 的距离之和最小; (2)若△P AC 周长的最小值为10+241,求抛物线的解析式及顶点N 的坐标;(3)如图2,在线段CO 上有一动点M 以每秒2个单位的速度从点C 向点O 移动(M 不与端点C 、O 重合),过点M 作MH ∥CB 交x 轴于点H .设M 移动的时间为t 秒,试把△P 0HM 的面积S 表示成时间t 的函数,当t 为何值时,S 有最大值,并求出最大值;(4)在(3)的条件下,当S = 7532时,过M 作x 轴的平行线交抛物线于E 、F 两点,问:过E 、F 、C三点的圆与直线CN 能否相切于点C ?请证明你的结论.(用图3解答)抛物线的对称轴与x 轴交于点D . 图1 图3图2(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t s,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.48.如图,对称轴为直线x=-1的抛物线经过点A(-3,0)和点C(0,3),与x轴的另一交点为B.点P、Q同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.设运动时间为t(秒).(1)求抛物线的解析式;(2)连接PQ,将△BPQ沿PQ翻折,所得的△B′PQ与△ABC重叠部分的面积记为S,求S与t之间的函数关系式,并求S的最大值;(3)若点D的坐标为(-4,3),当点B′恰好落在抛物线上时,在抛物线的对称轴时是否存在点M,使四边形MADB′的周长最小,若存在,求出这个最小值;若不存在,请说明理由.46.如图,抛物线y=ax2+bx+4与x轴交于A(-2,0)、B(4,0)两点,与y轴交于C点.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点Q立刻掉头并以每秒32个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥x轴交AC或BC于点P.求点M的运动时间t与△APQ面积S的函数关系式,并求出S的最大值.43.已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,3)三点,连接AB,过点B作BC∥x轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动.设动点运动的时间为t(秒).(1)求抛物线的解析式;(2)记△EF A的面积为S,求S关于t的函数关系式,并求S的最大值,指出此时△EF A的形状;(3)是否存在这样的t值,使△EF AF两点的坐标;若不存在,请说明理由.40.如图,直线y=-43x+4与x轴交于点B,与y轴交于点C,二次函数的图象经过A(-1,0)、B、C三点.(1)求二次函数的表达式;(2)设二次函数图象的顶点为D,求四边形OCDB的面积;(3)若动点E、F同时从O点出发,其中点E以每秒32个单位长度的速度沿折线OBC按O→B→C的路线运动,点F 以每秒4个单位长度的速度沿折线OCB 按O →C →B 的路线运动,当E 、F 两点相遇时,整个运动随之结束.设运动时间为t (秒),△OEF 的面积为S (平方单位).①在E 、F 两点运动过程中,是否存在EF ∥OC ?若存在,求出此时t 的值;若不存在,请说明理由; ②求S 关于t 的函数关系式,并求S 的最大值.34.已知二次函数y =ax2+bx -2的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等. (1)求实数a 、b 的值;(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒 5个单位长度的速度沿射线AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF . ①当t 为何值时,线段DF 平分△ABC 的面积?②是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由. ③设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式;(3)如图2,点P 在二次函数图象上运动,点Q 在二次函数图象的对称轴上运动,四边形PQBC 能否成为以PQ 为底的等腰梯形?如果能,直接写出P 、Q 两点的坐标;如果不能,请说明理由.1.已知直线y =、B O 向点A(1)当k =-1向点点P① ② 若以Q (2)当k =-3 4时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2).① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?图1 图22.已知二次函数的图象经过A(2,0)、C(0,12)两点,与x轴的另一交点为点B,且对称轴为直线x=4,设顶点为点D.(1)求二次函数的解析式及顶点D的坐标;(2)如图1,在直线y=2x上是否存在点E,使四边形ODBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由;(3)如图2,点P是线段OD上的一个动点(不与O、D重合),以每秒2个单位长度的速度由点D 向点O运动,过点P作直线PQ∥x轴,交BD于点Q,将△DPQ沿直线PQ对折,得到△D1PQ.在点P运动的过程中,设△D1PQ与梯形OPQB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.56.如图,二次函数y=ax2+bx(a>0)与反比例函数y=kx的图象相交于A,B两点,且点A的坐标为(1,4),点B在第三象限,△AOB的面积为3.(1)求二次函数的表达式;(2)过点A作x轴的平行线,交二次函数y=ax2+bx的图象于另一点C,连接CO,在坐标平面内求点P,使△POC∽△AOB(点P与点A对应).57.已知直线y=12x和y=-x+m,二次函数y=x2+bx+c图象的顶点为M.(1)若M恰好是直线y=12x与y=-x+m的交点,试证明:无论m取何实数值,二次函数y=x2+bx+c的图象与直线y=-x+m总有两个不同的交点;(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+bx+c的表达式;(3)在(2)的条件下,若二次函数y=x2+bx+c的图象与y轴的交点为C,与x轴的左交点为A.①在直线y=12x上求异于M的点P,使点P在△ CM的外接圆上;②在二次函数图象的对称轴上是否存在点Q,使得△QAC为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.58.已知二次函数y=x2+(m-1)x+m-2的图象与x轴相交于A(x1,0),B(x2,0)两点,且x1<x2.(1)若x1x2<0,且m为正整数,求该二次函数的表达式;y=x2-1(2)若x1<1,x2>1,求m的取值范围;(3)是否存在实数m,使得过A、B两点的圆与y轴相切于点C(0,2),若存在,求出m的值;若不存在,请说明理由;(4)若过点D(0,12)的直线与(1)中的二次函数图象相交于M、N两点,且MDDN=13,求该直线的表达式.53.已知抛物线F1:y=ax2-2amx+am2+2m+1(a>0,m>0)的顶点为A,抛物线F2的顶点B在y轴上,且抛物线F1和F2关于点M(1,3)成中心对称.(1)求m的值和抛物线F2的解析式;y=-ax2 +1 m=2(2)设抛物线F2与x轴正半轴的交点为C,当△ABC为等腰三角形时,求a的值.。
2024年浙江中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、单选题(本大题共有10小题,每小题3分,共30分)1.下列各数中最大的数是()A.5−B.0 C.1−D2.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x63.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.8×80.16108.01610×B.9C.10×80.1610×D.100.8016104.下列立体图形中,主视图是三角形的是()A.B.C.D.5.在数轴上表示不等式x﹣2≤0的解集,正确的是()A.B.C .D .6.随着自动驾驶技术的不断发展,某知名汽车制造公司近期对研发的自动驾驶汽车进行了一次大规模的路测,有45辆自动驾驶汽车参与了这次测试.测试结束后,技术部门对每辆汽车的性能进行评估(车辆的自动驾驶技术、安全性、反应速度等综合表现),得分如下:得分(分) 75 80 85 90车辆(辆) 5 16 14 10得分的中位数和众数分别是( )A .80,80B .82.5,80C .80,85D .85,807.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若8AB =,3OE =,则CE 的长是( )A .8B .7C .6D .58.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x 两,每只羊值金y 两,则可列方程组为( )A .5210258x y x y += +=B .2510528x y x y += +=C .51058x y x y += +=D .21028x y x y += +=9.二次函数2y =的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在函数图象上,四边形OBAC 为菱形,且120ABO ∠=°,则点C 的坐标为( )A .14 −B .14 −C . −D .(− 10.如图,四边形ABCD 是一张矩形纸片.折叠该矩形纸片,使AB 边落在AD 边上,点B 的对应点为点F ,折痕为AE ,展平后连接EF ;继续折叠该纸片,使FD 落在FE 上,点D 的对应点为点H ,折痕为FG ,展平后连接HG .若矩形HECG ∽矩形ABCD ,1AD =,则CD 的长为( ).A .0.5B 1−C D二、填空题(本大题共有6小题,每小题4分,共24分)11.因式分解: 34t t −=12.实现中国梦,必须弘扬中国精神.在如图所示除正面图案不同外,其余无差别的四张不透明卡片上分别写有“红船精神”、“长征精神”、“延安精神”、“特区精神”,将卡片置于暗箱摇匀后随机抽取一张,则所抽取卡片为“特区精神”的概率为 .13x 的值可以是 .(写出一个即可) 14.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,掷铁饼者张开的双臂与肩宽可以近似看像一张拉满弦的弓,若弧长为2π3米,“弓”所在圆的半径1.2米,则“弓”所对的圆心角θ的度数为 .15.如图,点A 为反比例函数(0,0)k y k x x=<<的图象上一点,AB x ⊥轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为 .16.如图,正方形ABCD 的边长为2,以AB 边上的动点O 为圆心,OB 为半径作圆,将AOD △沿OD 翻折至A OD ′ ,若O 过A OD ′ 一边上的中点,则O 的半径为 .三、解答题(本大题共有8小题,共66分)(共66分)17.(本题6分)计算或化简:(1)()201253π− +−−+−; (2)()()()2m n n m m n +−−−.18.(本题6分)如图,在平面直角坐标系中,ABC 的顶点坐标分别为()2,4A ,()3,1B ,()5,3C .(1)作ABC 关于y 轴对称的111A B C △;(2)将ABC 绕原点O 顺时针旋转90°,得到222A B C △,作出222A B C △并求点C 旋转到点2C 所经过的路径长.19.(本题6分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓.引导学生爱该书.读好书,善读书,贵阳市某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查.将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.等级 周平均读书时间t (单位:小时) 人数A01t ≤< 4 B12t ≤< a C23t ≤< 20 D34t ≤< 15 E 4t ≥5 每个等级人数扇形统计图(1)求统计图表中=a ______,m =______.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为______.(3)请写出一条你对读书的建议.20.(本题8分)我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30°,夏至正午阳光与日影夹角为60°,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).21.(本题8分)如图,在矩形ABCD 中,沿EF 将矩形折叠,使A 、C 重合,AC 与EF 交于点H .(1)求证:AE =AF ;(2)若AB =4,BC =8,求△ABE 的面积.22.(本题10分)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据下表组织的信息,解答以下问题.脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元) 1200 1600 1000(1)设转运A 种脐橙的车辆数为x ,转运B 种脐橙的车辆数为y ,求y 与x 的函数表达式;(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.23.(本题10分)定义:平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,在点1(2,2)P −−,2(0,0)P ,3(1,1)P ,4(2,2)P 中,是矩形ABCD “梦之点”的是________;(2)如图②,已知A 、B 是抛物线21922y x x =−++上的“梦之点”,点C 是抛物线的顶点: ①求出AC ,AB ,BC 三条线段的长度;②判断ABC 的形状,并说明理由.24.(本题12分)如图,ABC 内接于圆O ,AD 是ABC 的高线,9AD =,12CD =,tan 3ABD ∠=,连接OC .(1)求证:ABC 是等腰三角形;(2)求证:BCO BAD ∠=∠;(3)若点E 是OC 上一动点,EF AB ∥交BC 于点F .①若OEF 与ABD △相似,求EF 的长;②当OEF 的面积与CEF △的面积差最大时,直接写出此时CF 的长.2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120(3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==,∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是ABC 的高线,∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =,∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−, 3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。
2021年浙江省中考真题汇编专题1:选择填空压轴题1.(2021·绍兴)如图,中,,,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使,连结CE,则的值为()A. B. C. D. 22.(2021·绍兴)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A. 用3个相同的菱形放置,最多能得到6个菱形B. 用4个相同的菱形放置,最多能得到15个菱形C. 用5个相同的菱形放置,最多能得到27个菱形D. 用6个相同的菱形放置,最多能得到41个菱形3.(2021·金华)如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A. B. C. D.4.(2021·杭州)已知和均是以为自变量的函数,当时,函数值分别是和,若存在实数,使得,则称函数和具有性质P。
以下函数和具有性质P的是()A. 和B. 和C. 和D. 和5.(2021·嘉兴)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A. ≤B. ≥C. ≥D. ≤6.(2021·宁波)如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.7.(2021·温州)由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为()A. B. C. D.8.(2021·湖州)已知抛物线与轴的交点为A(1,0)和B(3,0),点P1(,),P2(,)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,。
专题2.1 轴对称的几何综合【典例1】“将军饮马问题”:如图1所示,将军每天从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?某课题组在探究这一问题时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.解法:作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为线段A′B 的长.(1)根据上面的描述,在备用图中画出解决“将军饮马问题”的图形;(2)利用轴对称作图解决“饮马问题”的依据是______.(3)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,边长为a的等边△ABC中,BF是AC上的中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是______,此时∠CFE=______.(1)根据轴对称的性质作出图形;(2)根据两点之间线段最短解答;(3)①分别作P关于OA、OB的对称点M、N,根据轴对称的性质得到△PCD,根据等边三角形的判定定理和性质定理解答;②根据等边三角形的性质可证△BAD≌△CAE(SAS),根据全等的性质和三线合一可得∠ABD=∠CBD=∠ACE=30°,所以点E在射线CE上运动(∠ACE=30°),作点A关于CE的对称的M,连接FM交CE于E′,此时AE+EF的值最小,此时AE+EF=FM,所以△AEF周长的最小值是AF+AE+EF=AF+MF=1a+b,∠CFE=90°.2(1)解:作图如下:(2)利用轴对称作图解决“饮马问题”的依据是两点之间线段最短,故答案为:两点之间线段最短;(3)①分别作P关于OA、OB的对称点M、N,连接MN,交OA、OB于C、D,则△PCD的周长最小,连接OM、ON,如图,由轴对称的性质可知,OM=OP=12,ON=OP=12,CP=CM,DP=DN,∠MON=2∠AOB=60°,∴△MON为等边三角形,∴MN=12,∴△PCD的周长=PC+CD+DC=CM+CD+DN=MN=12;②∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF,∴∠ABD=∠CBD=∠ACE=30°,∴点E在射线CE上运动(∠ACE=30°),作点A关于CE的对称的M,连接FM交CE于E′,如图,此时AE+EF的值最小,此时AE+EF=FM,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴△ACM≌△ACB,∴FM=FB=b,a+b,∠CFE=90°.∴△AEF周长的最小值是AF+AE+EF=AF+MF=121.(2023秋·全国·八年级专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,AD 是∠BAC的平分线,若P,Q分别是AD和AC上的动点,求PC+PQ的最小值.【思路点拨】在AB上截取AQ1=AQ,连接QD,Q1D,可证△AQD≌△AQ1D,根据全等三角形的性质可知点Q1和点Q关于AD对称,再根据轴对称的性质及最短路径结合面积法即可得出答案.【解题过程】解:如图,在AB上截取AQ1=AQ,连接QD,Q1D,∵AD是∠BAC的平分线,∴∠QAD =∠Q 1AD在△AQD 与△AQ 1D 中AQ =AQ 1∠QAD =∠Q 1AD AD =AD∴△AQD≌△AQ 1D∴点Q 1和点Q 关于AD 对称,连接CQ 1,CQ 1与AD 交于P 点,连接PQ ,此时PC +PQ =CQ 1,∵Q 是动点,∴Q 1也是动点,当CQ 1与AB 垂直时,CQ 1最小,即PC +PQ 最小.此时,由面积法得CQ 1=3×4÷5=125.2.(2023秋·全国·八年级专题练习)如图,四边形ABCD 的对角线AC 、BD 相交于点E ,若△ABC 为等边三角形,∠BAD =90°,AD =DC =2.(1)求证:BD 垂直平分AC ;(2)求BE 的长;(3)若点F 为BC 的中点,请在BD 上找出一点P ,使PC +PF 取得最小值;PC +PF 的最小值为______(直接写出结果).【思路点拨】(1)根据线段垂直平分线性质定理的逆定理证明即可;(2)根据∠ABD =30°,确定BD =4;根据∠EAD =30°,确定ED =1;根据BE =BD−ED 计算即可;(3)根据轴对称的性质求线段和的最值问题,然后根据等边三角形的性质确定即可.【解题过程】(1)∵AD =DC ,∴点D 在线段AC 的垂直平分线上;∵△ABC 是等边三角形,∴BA =BC,∴点B在线段AC的垂直平分线上;根据两点确定一条直线,∴BD是线段AC的垂直平分线;∴BD垂直平分AC;(2)∵△ABC是等边三角形,AD⊥AB,BD垂直平分AC,∴∠ABD=30°,∠EAD=30°,∵AD=DC=2,∴BD=4,ED=1,∴BE=BD−ED=4−1=3;(3)∵BD垂直平分AC,∴点C关于直线BD的对称点为点A,连接AF,交BD于点P,则点P即为所求;∵△ABC是等边三角形,BF=CF,∴AF⊥BC,∴AF=BE=3,故答案为:3.3.(2023秋·八年级课时练习)如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC 上的点,当△AEF的周长最小时,求∠EAF的度数.【思路点拨】作点A关于BC的对称点H,作A点关于CD的对称点G,连结GH交BC于E点,交CD于点F,当G、F、E、H共线时,△AEF的周长最小,先求∠BAE+∠DAF=50°,则∠EAF=130°−50°=80°.【解题过程】解:如答图①,分别作点A关于直线CD,CB的对称点M,N,则AF=MF,AE=NE.∴△AEF的周长=AF+EF+AE=MF+EF+NE,∴当M,F,E,N四点共线(如答图②)时,△AEF的周长取到最小值.∵∠ABC=∠ADC=90°,∠C=50°,∴∠BAD=130°.根据轴对称的性质可得∠FMD=∠FAD,∠ENB=∠EAB.又由三角形的一个外角等于和它不相邻的两个内角和,可得∠MFC+∠NEC=∠FMD+∠FDM+∠ENB+∠NBE=∠FMD+90°+∠ENB+90°=∠FMD+∠ENB+180°,又∵∠MFC+∠NEC=∠FEC+∠C+∠EFC+∠C=(∠FEC+∠C+∠EFC)+∠C=∠180°+∠C,∴∠FMD+∠ENB+180°=180°+∠C,∴∠FMD+∠ENB=∠C=50°,∴∠FAD+∠EAB=50°,∴∠EAF=130°−50°=80°.4.(2023春·江西抚州·八年级校考阶段练习)等边△ABC的边长为1,△BCD是∠BDC=120度的等腰三角形,延长AC至E,使CE=BM,连接DE,以D为顶点做等边△DMN,两边分别交AB,AC于M、N①图中有两个三角形可以相互旋转得到吗?若有指出这两个三角形,并指出旋转中心及旋转角的度数.②图中有成轴对称图形的两个三角形吗?若有,指出对称轴.③求△AMN的周长.【思路点拨】①根据等边三角形和等腰三角形的性质,证明△DBM≌△DCE,再指出旋转中心和旋转角度即可;②利用等边三角形的性质,可得△DCN,△DCE是两个成轴对称的三角形,对称轴为直线DC;③利用全等三角形的性质,将MN转化为BM+CN,即可解答.【解题过程】①解:图中△DCE可由△DBM旋转得到,旋转中心为点D,旋转角度为120°,理由如下:∵△BCD是∠BDC=120度的等腰三角形,=30°,∴DB=DC,∠DBC=∠DCB=180−∠BDC2∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠MBD=∠NCD=60°+30°=90°,∴∠DCE=180°−∠NCD=90°,∵CE=BM,∴△DBM≌△DCE(SAS),故图中△DCE可由△DBM旋转得到,旋转中心为点D,旋转角度为120°;②△DCN,△DCE是两个成轴对称的三角形,对称轴为直线DC,理由如下:∵△DMN为等边三角形,∴DM=DN=DE,在Rt△DCN与Rt△DCE中,DN=DEDC=DC,∴△DCN≌△DCE(HL),∴ △DCN,△DCE 是两个成轴对称的三角形,对称轴为直线DC ;③解:∵△DMN 为等边三角形,∴∠MDN =60°,∵△BDM≌△CDE ,∴∠BDM =∠CDE ,DM =DE ,∴∠MDE =∠MDC +∠CDE =∠MDC +∠BDM =∠BDC =120°,∴ ∠CDN =120°−60°=60°,在△DNM 与△DNE 中,DM =DE ∠MDN =∠EDN DN =DN,∴△DNM≌△DNE (SAS),∴MN =EN ,∴MN =CN +CE =CN +MB ,∴△DMN 的周长为AM +MN +AN =AM +MB +AN +NC =AB +AC =2.5.(2022秋·广东广州·八年级广州市第七中学校考期中)如图,等腰三角形ABC 的周长是21cm ,底边BC =5cm .(1)求AB 的长;(2)若N 是AB 的中点,点P 从点B 出发以2cm/s 的速度向点C 运动.同时点Q 从点C 出发向点A 运动,当△BPN 与△CQP 全等时,求点Q 的速度.(3)点D,E,F 分别是BC,AB,AC 上的动点,当△DEF 的周长取最小值时,探究∠EDF 与∠A 之间的数量关系,并说明理由.【思路点拨】(1)先证明AB =AC,再结合三角形的周长公式即可得到答案;(2)如图,设Q 的速度为每秒v cm ,运动时间为t s ,再分两种情况:当△BPN≌△CPQ 时,则BP =CP,BN =CQ, 当△BPN≌△CQP 时,则BP =CQ,BN =CP, 再建立方程求解即可;(3)如图,分别作D 关于AB,AC 的对称点G,H, 连接GH, 交AB,AC 于E,F, 则此时△DEF 的周长最小,且为线段GH 的长,连接AG,AH,AD, 由轴对称的性质可得:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8, 结合∠GAH +∠AGH +∠AHG =180°, 从而可得答案.【解题过程】(1)解:∵等腰三角形ABC 的周长是21cm ,∴AB =AC,AB +AC +BC =21,∵BC =5cm .∴AB =12×(21−5)=8(cm).(2)如图,设Q 的速度为每秒v cm ,运动时间为t s ,∵N 为AB 的中点,则AN =BN =4cm,∴BP =2t,CQ =vt,∵AB =AC,∴∠B =∠C,当△BPN≌△CPQ 时,则BP =CP,BN =CQ,∴2t =5−2t,4=vt,解得:t =54,v =165, 当△BPN≌△CQP 时,则BP =CQ,BN =CP,∴2t =vt,4=5−2t,∴v =2,t =12,综上:Q 的速度为每秒165cm 或2cm.(3)如图,分别作D关于AB,AC的对称点G,H,连接GH,交AB,AC于E,F,则此时△DEF的周长最小,且为线段GH的长,连接AG,AH,AD,由轴对称的性质可得:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,而∠GAH+∠AGH+∠AHG=180°,∴2∠2+2∠3+∠6+∠7=180°,∴2∠BAC+∠EDF=180°.6.(2023春·福建泉州·七年级统考期末)如图1,已知△ABC的内角∠ACB的平分线CD与它的一个外角∠EAC 的平分线AF所在的直线交于点D.(1)求证:∠B=2∠D;(2)若作点D关于AC所在直线的对称点D′,并连接AD′、CD′.①如图2,当∠BAC=90∘时,求证:AD⊥AD′;②如图3,当AC=BC时,试探究∠DAD′与∠D之间的数量关系,并说明理由.【思路点拨】(1)根据角平分线和外角的角度关系计算即可得到角度关系;(2)①利用外角的关系用其他角度表示∠DAD′,再由三角形外角进行换角计算得到∠DAD′为90°,得到垂直关系;②通过设元∠DAD′,通过外角和角平分线换角用∠DAD′表示∠D,即可得到两个角的大小关系.【解题过程】(1)∵CD 平分∠ACB ,∴∠ACD =∠DCB =12∠ACB ,∵AF 是外角∠EAC 的平分线,∴∠CAF =∠FAE =12∠CAE ,又∵∠CAF =∠D +∠ACD ,∠CAE =∠B +∠ACB ,∴∠D =∠CAF−∠ACD =12(∠CAE−∠ACB )=12∠B ,∴∠B =2∠D(2)①如图2,D ′C 与AF 交于点O ,由对称的性质可知,∠D =∠D ′,∠DCD ′=2∠ACD ,当∠BAC =90°时,∠EAC =90°,∵∠DAD ′=∠D ′+∠D ′OA ,∠D ′OA =∠D +∠OCD ,∴∠DAD ′=∠D ′+∠D +∠OCD =2∠D +2∠ACD =2(∠D +∠ACD)=2∠FAC ,∵∠EAC =90∘=2∠FAC ,∠DAD ′=∠EAC =90°,∴AD ⊥AD ′;①当AC =BC 时,∠D +12∠DAD ′=90∘,理由如下:如图3,设∠DAD ′=α∵△DAC 与△D ′AC 关于AC 对称,∴∠DAC =∠D ′AC =360∘−α2=180∘−α2∴∠CAF =180∘−∠DAC =α2,∴∠CAE =2∠CAF =α,∴∠BAC =180∘−∠CAE =180∘−α,当AC =BC 时,∠B =∠BAC =180∘−α由(1)知∠B =2∠D∴∠D =12∠B =90∘−12α,∴∠D +12∠DAD ′=90∘.7.(2023秋·全国·八年级专题练习)如图1,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,点D 在BC 边上,连接AD ,AE ⊥AD ,AE =AD ,连接CE ,DE .(1)求证:∠B =∠ACE ;(2)点A 关于直线CE 的对称点为M ,连接CM ,EM .①补全图形并证明∠EMC =∠BAD ;②试探究,当D ,E ,M 三点恰好共线时.∠BAD 的度数为___________.【思路点拨】(1)先判断出∠BAD =∠CAE ,进而判断出△BAD≌△CAE ,即可得出结论;(2)①先判断出∠EMC =∠EAC ,再根据(1)得出∠BAD =∠EAC 即可得出结论;②先判断得出∠AMD =∠EAM ,进而得出∠CDE =∠EAM ,再判断出∠EAM =∠BAD ,进而得出∠BAD =∠CAE =∠EAM ,最后求出∠CAM =45°即可得出结论.【解题过程】(1)证明:∵AE ⊥AD ,∴∠DAE =90°=∠BAC ,∴∠BAD =∠CAE∵AB =AC ,AE =AD ,∴ △BAD≌△CAE (SAS ),∴∠B =∠ACE ,(2)补全图形如图1所示,连接AM,∵点A关于直线CE的对称点为M,∴AE=ME,AC=MC∵CE=CE∴△ACE≌△MCE(SSS)∴∠EMC=∠EAC由(1)知△ABD≌△ACE∴∠BAD=∠EAC∴∠BAD=∠EMC②如图,连接AM,由(1)知∠ACE=∠B在△ABC中,∠BAC=90°,AB=AC ∴∠B=∠ACB=45°∴∠ACE=∠B=45°∴∠BCE=90°∵点M,A关于CE对称∴AE=ME,AM⊥CE∴AM∥BC∴∠AMD=∠CDE∴∠AMD=∠EAM∴∠CDE=∠EAM∵∠B=∠ADE=45°∴∠BAD+∠ADB=∠CDE+∠ADB=135°∴∠BAD=∠CDE∴∠EAN=∠BAD由(1)知△BAD≌△CAE∴∠BAD=∠CAE∴∠BAD=∠CAE=∠EAM∵AM//BC∴∠BAM=180°−∠B=135°∵∠BAC=90°∴∠CAM=∠BAM−∠BAD=45°∴∠CAE=12∠CAM=22.5°∴∠BAD=22.5°.故答案为:22.5°.8.(2022秋·北京海淀·八年级101中学校考期中)在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)如图1,若∠PAB=30°,则∠ACE=_________;(2)如图2,若60°<∠PAB<90°,请补全图形,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并说明理由.(1)根据题意可得∠DAP=∠BAP=30°,然后根据AB=AC,∠BAC=60°,得出AD=AC,∠DAC=120°,最后根据三角形的内角和公式求解;(2)由线段AB,CE,ED可以构成一个含有60度角的三角形,连接AD,EB,根据对称可得∠EDA=∠EBA,然后证得AD=AC,最后即可得出∠BAC=∠BEC=60°.【解题过程】(1)解:连接AD,如图,在等边△ABC中,∠BAC=∠ABC=∠BCA=60°,AB=BC=CA,∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=∠DAP+∠BAP+∠BAC=120°,∴∠ACE+∠ADC+120°=180°,∠ACE=∠ADC+120°,∴∠ACE=30°,故答案为:30°;(2)解:补全图形如下:线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图2.在等边△ABC中,∠BAC=∠ABC=∠BCA=60°,AB=BC=CA,∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,∴∠BDA=∠DBA,∠EDB=∠EBD,∴∠EDA=∠EBA,∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,又∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,结合:AB=BC,DE=BE,可知以线段AB,CE,ED构成的三角形必与△EBC全等,∵∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.9.(2022秋·福建厦门·八年级厦门五缘实验学校校考期中)如图,∠MON=60°,点A、B分别是射线OM、射线ON上的动点,连接AB,∠AMB的角平分线与∠NBA的角平分线交于点P.(1)当OA=OB时,求证:AP∥OB;(2)在点A、B运动的过程中,∠P的大小是否发生改变?若不改变,请求出∠P的度数;若改变请说明理由;(3)连接OP,C是线段OP上的动点,D是线段OA上的动点,当S△AOB=12,OB=6时,求AC+CD的最小值.【思路点拨】(1)如图1,先证ΔAOB是等边三角形,再证∠PAB=∠ABO=60°,即可证得结论;(2)如图2,∠P的大小不变,∠P=60°.只需求出∠PAB+∠PBA的大小即可得结论;(3)如图3,过点A作AH⊥OB于H,过点P作PJ⊥ON于J,PK⊥OM于K,PI⊥ON于I,先证OP平分∠MON,作点D关于OP的对称点D′,连接CD′,证得AC+CD=AC+CD′≥AH,求出AH即可得到结论.【解题过程】(1)如图1∵∠MON=60°,OA=OB,∴ΔAOB是等边三角形,∴∠OAB=∠OBA=60°,∵∠BAM+∠OAB=180°,∴∠BAM=120°,∵AP平分∠MAB,∠MAB=60°,∴∠BAP=12∴∠BAP=∠OBA=60°,∴AP∥OB;(2)如图2,∠P的大小不变,∠P=60°.理由如下:∵∠MAB=∠MON+∠OBA,∠ABN=∠MON+∠OBA,∴∠MAB+∠ABN=∠MON+∠ABO+∠OAB+∠MON,∵∠MON+∠OAB+∠ABO=180°,∠MON=60°,∴∠MAB+∠ABN=180°+60°=240°,∵PA,PB分别平分∠MAB,∠ABN,∴∠PAB+∠PBA=1(∠MAB+∠ABN)=120°,2∵∠P+∠PAB+∠PBA=180°,∴∠P=180°−120°=60°;(3)如图3,过点A作AH⊥OB于H,过点P作PJ⊥ON于J,PK⊥OM于K,PI⊥ON于I,∵PA平分∠MAB,PJ⊥AB,PK⊥OM,∴PK=PJ,∵PB平分∠ABN,PJ⊥AB,PI⊥ON,∴PI=PJ,∴PI=PK,∴OP平分∠MON,作点D关于OP的对称点D′,连接CD,CD′,OB·AH=12,∵SΔAOB=12×6×AH=12,∴12∴AH=4,∵CD=CD′,∴AC+CD=AC+CD′≥AH,∴AC+CD≥4,∴AC+CD的最小值为4.10.(2023秋·四川绵阳·八年级统考期末)如图,△ABC为等腰三角形,AC=BC,△BDC和△AEC分别为等边三角形,AE与BD交于点F,连接CF并延长,交AB于点G.(1)求证:CG⊥AB;(2)如图2,点M为CE边上点,连接AM,且∠MAE=∠BAE.①证明:∠ACD=∠MAB;②若CD⊥CE,点P为线段AM上动点,若AB=3,求PC−PB的最大值.【思路点拨】(1)根据等腰三角形和等边三角形的性质得到∠FAG=∠FBG,推出AF=BF,求证△CFA≌△CFB(SSS)可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可证明;(2)①设∠MAE=∠BAE=x,根据三角形的外角的性质得出∠ABC=60°+x,∠CMA=∠MAE+∠E=60°+x,根据三角形呢几何定理得出∠ACD=∠MAB;②作点B关于AM的对称点B′,连接CB′并延长交AM于点P,连接AB′,根据PC−PB=PC−PB′=B′C最大,证明△ABB′是等边三角形,进而得出BB′=CB′=AB=3,即可求解.【解题过程】(1)证明:∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等边三角形,∴∠CAE=∠CBD,∴∠FAG=∠FBG,∴AF=BF.在△CFA和△CFB中,AF=BFAC=BC,CF=CF∴△CFA≌△CFB(SSS),∴∠ACF=∠BCF,∴AG=BG,∵CA=CB,∴CG⊥AB;(2)①设∠MAE=∠BAE=x由(1)可得AF=BF,则∠EAB=∠FBA=x 又∵∠CBD=60°∴∠ABC=60°+x,∵∠E=60°,∴∠CMA=∠MAE+∠E=60°+x∵∠MAB+∠CBA=∠BCM+∠CMA,∴∠MAB=∠BCM,∵∠DCB−∠ACB=∠ECA−∠ACB即∠ACD=∠BCM,∴∠ACD=∠MAB,②∵CD⊥CE∴∠DCE=90°∵∠DCB=∠ACE=60°∴∠DCA=∠ACB=∠BCE=30°∴∠CBA=∠CMA=75°,∠MAB=30°作点B关于AM的对称点B′,如图所示,连接CB′并延长交AM于点P,连接AB′此时PC−PB=PC−PB′=B′C最大,由①可得∠MAB=∠BCM∴∠BAB′=60°∵∠MAB=30°∴∠B′AM=30°∴∠B′AB=60°∴△ABB′是等边三角形∴∠ABB′=60°∴∠B′BC=∠ABC−60°=15°∠ACB=15°∵∠GCB=12∴BB′=CB′=AB=3即PC−PB的最大值为3.11.(2023春·四川成都·八年级校考期中)阅读下面材料:小胖同学遇到这样一个问题:如图1,点D为△ABC的边BC的中点,点E,F分别在边AB,AC上,∠EDF=90°,试比较BE+CF与EF的大小.小胖通过探究发现,延长FD至点G,使得DG=DF,连接F′E和F′B,如图2:可以得到一对全等三角形和一个等腰三角形,从而解决问题.试回答:(1)小胖同学发现BE+CF与EF的大小关系是.(2)证明小胖发现的结论.(3)如图3,BC=3,∠BAC=30°,△ABC的面积为12,点D是边BC上一点(点D不与B、C两点重合),点E、F分别是边AB、AC上一点,求△DEF周长的最小值.【思路点拨】(1)根据三角形三边关系,即可求解.(2)过点B作BH∥CF,交FD的延长线于H,由“ASA”可证△BDH≌△CDF,可得BH=CF,DH=DF,由线段垂直平分线的性质可得EF=EH,由三边关系可求解;(3)作D关于AB和AC的对称点G和H,连接GH交AB于E,交AC于F,则DE+EF+DF=GE+EF+FH=GH=AD,△DEF周长的最小值就是AD的最小值,由点到直线的距离可得,当AD⊥BC时,AD最小,再根据面积,求解即可.【解题过程】(1)解:根据三角形三边关系可得:BE+CF>EF,故答案为:BE+CF>EF;(2)证明如下,过点B作BH∥CF,交FD的延长线于H,∴∠C=∠HBD,∵点D是BC的中点,∴BD=CD,在△BDH和△CDF中,∠C=∠HBDBD=CD,∠CDF=∠BDH∴△BDH≌△CDF(ASA),∴BH=CF,DH=DF,∵∠EDF=90°,DH=DF,∴△EFH为等腰三角形,即EF=EH,在△BEH中,BE+BH>EH,∴BE+CF>EF.(3)如图3,作D关于AB和AC的对称点G和H,连接GH交AB于E,交AC于F,由对称性得,∠GAE=∠BAD,∠HAC=∠CAD,GE=DE,FH=DF,AG=AD,AD=AH,∴DE+EF+DF=GE+EF+FH=GH,AG=AH,∠GAH=∠GAE+∠BAD+∠HAC+∠CAD=2∠BAD+2∠CAD=2(∠BAD+∠CAD)=2×30°=60°∴△AGH是正三角形,∴DE+EF+DF=GH=AD,∴△DEF周长的最小值就是AD的最小值,由点到直线的距离可得,当AD⊥BC时,AD最小,∵S△ABC=12×BC×AD=12×3×AD=12,∴AD=8,∴DE+EF+DF=8,∴△DEF的周长的最小值是8.12.(2023·广东广州·统考二模)在△ABC中,∠B=90°,D为BC延长线上一点,且EA=EC=ED.(1)如图1,当∠BAC=35°时,则∠AED=_________;(2)如图2,当∠BAC=60°时,①连接AD,判断△AED的形状,并证明;②直线CF与ED交于点F,满足∠CFD=∠CAE,P为直线CF上一动点.当PE−PD的值最大时,判断PE、PD与AB之间的数量关系,并证明.【思路点拨】(1)根据∠BAC=35°,∠B=90°即可得到∠ACD=∠ACE+∠ECD=∠B+∠BAC=125°,根据EA=EC=ED得到∠ACE=∠EAC,∠EDC=∠ECD,结合三角形内角和定理即可得到答案;(2)①根据(1)得到∠AED,即可得到答案;②作点D关于直线CF的对称点D′,连接CD′,DD′,ED′,当点P在ED′的延长线上时,PE−PD的值最大,此时PE−PD=ED′,利用全等三角形的性质证明ED′=AC,即可得到答案;【解题过程】(1)解:∵∠BAC=35°,∠B=90°,∴∠ACD=∠ACE+∠ECD=∠B+∠BAC=125°,∵EA=EC=ED,∴∠ACE=∠EAC,∠EDC=∠ECD,∴∠AEC=180°−2∠ACE,∠DEC=180°−2∠DCE,∴∠AED=AEC+∠DEC=360°−2∠ACE−2∠DCE=360°−2×125°=110°,故答案为:110°;(2)解:①∵∠BAC=60°,∠B=90°,∴∠ACD=∠ACE+∠ECD=∠B+∠BAC=150°,∵EA=EC=ED,∴∠ACE=∠EAC,∠EDC=∠ECD,∴∠AEC=180°−2∠ACE,∠DEC=180°−2∠DCE,∴∠AED=AEC+∠DEC=360°−2∠ACE−2∠DCE=360°−2×150°=60°,∵EA=ED,∴△AED是等边三角形;②PE−PD=2AB,证明如下,作点D关于直线CF的对称点D′,连接CD′,DD′,ED′,,根据三角形任意两边之和大于第三边可得,当点P在ED′的延长线上时,PE−PD的值最大,∵D关于直线CF的对称点D′,∴PD=PD′,CD=CD′,∴PE−PD=ED′,∵∠AED=60°,∠CFD=∠CAE,∴∠ACF=360°−60°−180°=120°,∵∠ACD=150°,∴∠FCD=30°,∴∠D′CD=60°,∴∠D′CE=∠DCE−60°∵△AED是等边三角形,∴∠CDA=∠CDE−60°,∴∠CDA=∠D′CE,又∵CD=CD′,EC=ED,∴△CDA≌△D′CE(SAS),∴AC=ED′,∵∠BAC=60°,∠B=90°,∴∠ACB=30°,∴AC=2AB,∴PE−PD=2AB.13.(2023秋·北京东城·八年级统考期末)已知:在△ABC中,∠CAB=2∠B.点D与点C关于直线AB对称,连接AD,CD,CD交直线AB于点E.(1)当∠CAB=60°时,如图1.用等式表示,AD与AE的数量关系是:,BE与AE的数量关系是:;(2)当∠CAB是锐角(∠CAB≠60°)时,如图2;当∠CAB是钝角时,如图3.在图2,图3中任选一种情况,①依题意补全图形;②用等式表示线段AD,AE,BE之间的数量关系,并证明.【思路点拨】(1)根据轴对称的性质,得出∠B=30°,∠ACE=90°−∠CAB=30°=∠ADE,根据含30度角的直角三角形的性质,得出AD =2AE ,AC =12AB ,进而得出BE =3AE ;(2)在图2,图3中任选一种情况,补全图形,根据等腰三角形的性质,分类讨论即可求解.【解题过程】(1)解:∵ ∠CAB =2∠B ,点D 与点C 关于直线AB 对称,∠CAB =60°∴ CD ⊥AB ,∠ACE =90°−∠CAB =30°=∠ADE ,∠B =30°,则∠ACB =90°∴ AD =2AE ,AC =12AB ,∴AE =12AC =14AB ,EB =AB−AE =34AB ,∴BE =3AE .故答案为:AD =2AE ;BE =3AE .(2)选择图2时.①补全图形如图2,图2②数量关系:AD =BE−AE .证明:在EB 上取点F ,使FE =AE ,连接CF .∵点C 与点D 关于直线AB 对称,∴CD ⊥AB ,CE =DE .∴AD =AC ,AC =FC ..∴AD =FC , ∠CFA =∠CAB .∵∠CAB=2∠B,∴∠CFA=2∠B.∵∠CFA=∠B+∠BCF,∴∠BCF=∠B.∴FC=FB.∴FB=AD.∵FB=BE−EF,∴AD=BE−AE.选择图3时.①补全图形如图3,图3-②数量关系:AD=BE+AE.证明:在BE的延长线上取点F,使FE=AE,连接FC.∵点C与点D关于直线AB对称,∴CD⊥AB,CE=DE.∴AD=AC,AC=FC.∴AD=FC,∠CFA=∠CAF.∵∠CAF+∠BAC=180°,∴∠CFA+∠BAC=180°.∵∠BAC=2∠B,∴∠CFA+2∠B=180°.∵∠CFA+∠B+∠BCF=180°,∴∠BCF=∠B.∴FC=FB.∴FB=AD.∵FB=BE+FE,∴AD=BE+AE.14.(2023春·四川达州·八年级校联考期中)在△ABC中,AB=AC,∠ABC=α,点D 是直线BC上一点,点 C 关于射线AD的对称点为点E.作直线BE交射线AD于点F.连接CF.(1)如图1,点 D 在线段BC上,求∠AFB的大小(用含α的代数式表示);(2)如果∠α=60°,①如图2,当点D 在线段BC上时,用等式表示线段AF,BF,CF之间的数量关系,并证明;②如图3,当点D 在线段CB的延长线上时,补全图形,直接写出线段AF、BF、CF之间的数量关系.【思路点拨】(1)连接AE、CE,由轴对称的性质可得AE=AC,EF=FC,∠EAD=∠CAD,设∠EAD=∠CAD=x,则∠CAE=2x,由等腰三角形的性质可得出结论;(2)①延长FB至点G,使FG=FA,连接AG,证明△AFG为等边三角形,由等边三角形的性质得出AG=AF,∠GAF=60°,证明△ABG≅△ACF,由全等三角形的性质得出BG=CF,即可得出结论;②在BE上取点G,使得FG=FA,连接AG,证明△AGE≅△AFB,由全等三角形的性质得出BF=EG,即可得出结论.【解题过程】(1)解:连接AE、CE,∵点E为点C关于AD的对称点,∴AE=AC,EF=FC,∠EAD=∠CAD,设∠EAD=∠CAD=x,则∠CAE=2x,∵AB=AC,∴∠ACB=∠ABC=α,∴∠BAE=180°−2x−2α,∴∠ABE+∠AEB=2x+2α,∵AE=AB,∴∠ABE=AEB=x+α,∴∠AFB=∠AEB−∠EAD=α;(2)解:①AF=BF+CF,延长FB至点G,使FG=FA,连接AG,∵AB=AC,∴∠ABC=α=60°,∴△ABC为等边三角形,∠BAC=60°,由(1)知,∠AFB=α=60°,∴△AFG 为等边三角形,∴AG =AF ,∠GAF =60°,∴∠GAB =∠FAC ,在△ABG 和△ACF 中,AG =AF ∠GAB =∠FAC AB =AC,∴△ABG≅△ACF (SAS ),∴BG =CF ,∴CF +BF =BG +BF =GF ,∵GF =AF ,∴AF =BF +CF ;②CF =AF +BF ,连接AE ,∵点E 为点C 关于AD 的对称点,∴AE =AC ,EF =FC ,∠EAD =∠CAD ,设∠EAD =∠CAD =x ,则∠CAE =2x ,∵AB =AC =AE ,∴∠ACB =∠ABC =∠BAC =60°,∴∠DAB =x−60°,∴∠EAB =x +x−60°=2x−60°,∵AE =AB ,∴∠ABE =∠AEB =180°−2x 60°2=120°−x ,∴∠AFE =∠DAB +∠ABE =x−60°+120°−x =60°,在BE 上取点G ,使得FG =FA ,连接AG ,∴△AFG为等边三角形,∴AG =AF ,∠GAF =60°,∴∠GAE =∠FAB =x−60°,在△AGE 和△AFB 中,AG =AF ∠GAE =∠FAB AE =AB, ∴△AGE≅△AFB (SAS ),∴BF =EG ,∴EF =EG +FG =BF +AF ,∴CF =EF =BF +AF .15.(2023·全国·八年级专题练习)在直角三角形ABC 中,∠C =90°,点D ,E 分别在AB ,AC 上,将△DEA 沿DE 翻折,得到△DEF .(1)如图①,若∠CED =70°,则∠CEF =______°;(2)如图②,∠BDF 的平分线交线段BC 于点G .若∠CED =∠BDG ,求证BC ∥DF .(3)已知∠A =α,∠BDF 的平分线交直线BC 于点G .当△DEF 的其中一条边与BC 平行时,直接写出∠BGD 的度数(可用含α的式表示).【思路点拨】(1)先求出∠AED=180°−∠CED=110°,再利用翻折即可得出答案;(2)根据角平分线的定义得出∠FDG=∠BDG,设∠FDG=∠BDG=β,则∠ADF=180°−2β,根据翻折得出∠ADE=∠FDE=90°−β,再求出∠EMD=180°−(∠EDF+∠DEC)=90°,即可得出结论;(3)分情况:①当ED∥BC,②当DF∥BC,③当EF∥BC,④当DF∥BC时,DF在AB的下方,⑤当EF∥BC 时,F在AB的下方,分别求解即可.【解题过程】(1)解:∵∠CED=70°,∴∠AED=180°−∠CED=110°,∵翻折,∴∠AED=∠DEF=110°,∴∠CEF=∠FED−∠CED=110°−70°=40°,故答案为:40;(2)解:∵∠BDF的平分线交线段BC于点G,∴∠FDG=∠BDG,∵∠CED=∠BDG,设∠FDG=∠BDG=β,∴∠ADF=180°−∠BDF=180°−2β,∵翻折,∠ADF=90°−β,∴∠ADE=∠FDE=12∴∠EDF+∠DEC=90°−β+β=90°,∴∠EMD=180°−(∠EDF+∠DEC)=90°,∵∠C=90°,∴BC∥DF;(3)解:①当ED∥BC,如图①所示:∴∠1=∠C=90°,∵∠A=α,∴∠2=180°−∠2−∠A=90°−α,∵翻折,∴∠3=∠2=90°−α,∴∠FDB=180°−∠2−∠3=2α,∵∠BDF的平分线交线段BC于点G,∠BDF=α,∴∠4=12∵∠B=90°−α,∴∠BGD=180°−∠B−∠4=90°;②当DF∥BC,如图②所示:∴∠1=∠C =90°,∴∠ADF =180°−∠1−∠A =90°−α,∴∠FDB =180°−∠ADF =90°+α,∵∠BDF 的平分线交线段BC 于点G ,∴∠2=12∠BDF =45°+12α,∵∠B =90°−α,∴∠BGD =180°−∠B−∠2=45°+12α;③当EF ∥BC ,如图③所示:∴∠1=∠C =90°,∵翻折,∠F =∠A =α,∴∠2=∠1+∠F =90°+α,∴∠FDB =∠A +∠2=90°+2α,∵∠BDF 的平分线交线段BC 于点G ,∴∠GDB =12∠BDF =45°+α,∵∠B =90°−α,∴∠BGD =180°−∠B−∠GDB =45°;④当DF ∥BC 时,DF 在AB 的下方,如图④所示:∴∠FDB =∠A =90°−α,∵∠BDF 的平分线交线段BC 于点G ,∴∠GDB =12∠BDF =45°−12α,∴∠BGD =∠1−∠GDB =45°−12α;⑤当EF ∥BC 时,F 在AB 的下方,如图⑤所示:∴∠1=∠2=90°−α,∵翻折,∠F =∠A =α,∴∠FDB =∠1−∠F =90°−2α,∵∠BDF 的平分线交线段BC 于点G ,∴∠GDB =12∠BDF =45°−α,∴∠BGD =∠2−∠GDB =45°;综上所述,∠BGD =90°或∠BGD =45°+12α或∠BGD =45°或∠BGD =45°−12α.16.(2022秋·福建福州·八年级校考阶段练习)如图,等边△ABC 中,过点A 在AB 边的右侧作射线AP ,∠BAP =α (30°<α<90°),点B 与点E 关于直线AP 对称,连接AE ,BE ,且BE 交射线AP 于点D ,过C 、E 两点作直线交射线AP 于点F .(1)当α=40°时,求∠AEC的度数;(2)在α变换过程中,∠AFE的大小是否发生变化?如果变化,写出变化的范围,如果不变化,求∠AFE的大小;(3)在α变化过程中,直接写出线段AF,CF,DF之间的数量关系.【思路点拨】根据等边三角形的性质得到∠ABC=∠BAC=∠ACB=60°,AB=BC=AC,根据轴对称的性质得到BD=DE,BE ⊥AP,求得AB=BC=AC=AE,得到∠AEC=∠ACE=180°−∠CAE;2(1)当∠BAP=α=40°时,如图1.得到∠BAD=∠EAD=40°,求得∠CAE=∠BAD+∠EAD−∠BAC=20°,于是得到∠AEC=∠ACE=80°;(2)①当30°<α≤90°时,60°<2α≤180°,D,F在射线AP上,如图1.得到∠BAD=∠EAD=α,求得∠CAE=∠BAD+∠EAD−∠BAC=2α−60°,于是得到∠AFE=180°−∠AEC−∠EAD=60°;②当90°<α<120°时,180°<2α<240°,D,F在点A的两侧,如图2.根据轴对称的性质得到BD=DE,BE⊥AP,求得∠BAD=∠EAD,AB=AE,根据等边三角形的性质得到∠EAP=∠BAP=α,AB=AC,求得∠CAE=2α−60°,于是得到∠AFE=180°−∠AEC−∠EAP=60°;(3)连接BF,在FA上截取FH=FC,连接CH.由(2)知∠AFE=60°,根据等边三角形的性质得到∠HFC=∠FHC=∠HCF=60°,HF=FC=HC,根据线段垂直平分线的性质得到BF=EF,∠FDE=90°,于是得到EF=2DF =BF;①当30°<α≤60°时,如图3.根据全等三角形的性质得到AH=BF.求得AF=AH+HF=2DF+CF;②当60°<α<120°时,如图4.得到∠ACB+∠ACF+∠HCF+∠ACF,根据全等三角形的性质得到AH=BF.求得AF=AH−HF=2DF−CF.【解题过程】(1)解:∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,AB=BC=AC,∵点B与点E关于直线AP对称,且BE交射线AP于点D,∴BD=DE,BE⊥AP,∴AB=AE,∠BAD=∠EAD,∴AB=BC=AC=AE,∴∠AEC=∠ACE=180°−∠CAE;2当∠BAP=α=40°时,如图1.∴∠BAD=∠EAD=40°,∴∠CAE=∠BAD+∠EAD−∠BAC=20°,∴∠AEC=∠ACE=80°;(2)当30°<α≤90°时,60°<2α≤180°,D,F在射线AP上,如图1.∴∠BAD=∠EAD=α,∴∠CAE=∠BAD+∠EAD−∠BAC=2α−60°,∴∠AEC=∠ACE=120°−α,∴∠AFE=180°−∠AEC−∠EAD=60°;当90°<α<120°时,180°<2α<240°,D,F在点A的两侧,如图2.∵点B与点E关于直线AP对称,且BE交射线AP于点D,∴BD=DE,BE⊥AP,∴∠BAD=∠EAD,AB=AE,∵等边△ABC,∠BAP=α,∴∠EAP=∠BAP=α,AB=AC,∴∠CAE=2α−60°,∴∠AEC=∠ACE=120°−α,∴∠AFE=180°−∠AEC−∠EAP=60°;∴综上所述,当30°<α<120°时,∠AFE=60°;(3)①当30°<α≤60°时,AF=2DF+CF,②当60°<α≤90°时,AF=2DF−CF,理由如下:连接BF,在FA上截取FH=FC,连接CH.由(2)知∠AFE=60°,∴△HFC是等边三角形,∴∠HFC=∠FHC=∠HCF=60°,HF=FC=HC,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC.∵点B与点E关于直线AP对称,且BE交射线AP于点D,∴AP为BE中垂线,∴BF=EF,∠FDE=90°,又有∠AFE=60°,∴∠DEF=90°−∠AFE=30°,∴EF=2DF=BF;①当30°<α≤60°时,如图3.∴∠ACB−∠HCB=∠HCF−∠HCB,∴∠ACH=∠BCF,∴△ACH≌△BCF(SAS),∴AH=BF.∴AH=BF=EF=2DF,∴AF=AH+HF=2DF+CF;②当60°<α<120°时,如图4.∴∠ACB+∠ACF=∠HCF+∠ACF,∴∠BCF=∠ACH,∴△BCF≌△ACH(SAS),∴AH=BF.∴AH=BF=EF=2DF,∴AF=AH−HF=2DF−CF,综上所述,①当30°<α≤60°时,AF=2DF+CF,②当60°<α≤90°时,AF=2DF−CF.17.(2022秋·吉林松原·八年级统考期中)如图①,在△ABD中,∠ABD=90°,∠A=60°,AB=2cm,以BD为直角边在BD的上方作直角三角形BCD,使∠BDC=90°,且BC∥AD,点E是AD的中点,点P从点A出发,沿折线AB−BC以1cm/s的速度向终点C运动,连接PE,设点P的运动时间为t(s).(1)求证:△ABD≌△CDB;(2)用含t的式子表示PB的长;(3)当PE 将四边形ABCD 的周长分成2:3两部分时,求t 的值;(4)如图②,在点P 运动的过程中,作点A 关于直线PE 的对称点A ′,连接A ′E ,当A ′E 所在直线与四边形ABCD 的边垂直时,请直接写出∠AEP 的度数.【思路点拨】(1)易证∠ABD =∠CDB ,再由平行线的性质得到∠ADB =∠CBD ,然后由ASA 得到△ABD≌△CDB 即可;(2)先由含30°角直角三角形的性质得AD =2AB =2×2=4cm ,当点P 在AB 上运动时,则PB =(2−t )cm ,当点P 在BC 上运动时,PB =(t−2)cm ;(3)先求出四边形ABCD 的周长为12cm ,AE =12AD =12×4=2cm ,再由PE 将四边形ABCD 的周长分成2:3两部分可列方程2+t =12×25或2+t =12×35,即可求解;(4)先证∠AEP =∠A ′EP =12∠AEA ′,再分四种情况讨论:当A ′E ⊥AB ,且点P 在AB 上时;当A ′E ⊥AD ,且点P 在AB 上时;当A ′E ⊥AB ,且点P 在BC 上时;当A ′E ⊥AD ,且点P 在BC 上时;分别求出相应的∠AEP 的度数即可.【解题过程】(1)证明:∵∠ABD =90°,∠BDC =90°,∴∠ABD =∠CDB ,∵BC∥AD ,∴∠ADB =∠CBD ,在△ABD 和△CDB 中,∠ABD =∠CDB BD =BD ∠ADB =∠CBD,∴△ABD≌△CDB (ASA );(2)解:∵∠ABD =90°,∠A =60°,∴∠ADB =90°−60°=30°,∴AB =12AD ,∴AD =2AB =2×2=4(cm ),∵△ABD≌△CDB ,∴BC =AD =4cm ,∴AB +BC =2+4=6(cm ),∴当0≤t ≤2时,PB =(2−t )cm ;当2<t ≤6时,PB =(t−2)cm ;(3)解:∵△ABD≌△CDB ,∴CD =AB =2cm ,∴AB +CB +CD +AD =2×2+4×2=12(cm ),∵E 为AD 的中点,∴AE =12AD =12×4=2(cm ),∵PE 将四边形ABCD 的周长分成2:3两部分,∴2+t =12×25或2+t =12×35,解得:t =145或t =265;(4)解:∵点A ′与点A 关于直线PE 成轴对称,∴点P 、点E 都在对称轴上,∴△PA ′E 与△PAE 关于直线PE 成轴对称,∴∠AEP =∠A ′EP =12∠AEA ′,当A ′E ⊥AB ,且点P 在AB 上时,如图②所示:∵∠A =60°,∴∠AEA ′=30°,∴∠AEP =12×30°=15°;当A ′E ⊥AD ,且点P 在AB 上时,如图③所示:∵∠AEA ′=90°,∴∠AEP=1×90°=45°;2当A′E⊥AB,且点P在BC上时,如图④所示:延长A′E交AB于点F,则∠AFE=90°,∵∠BAD=60°,∴∠AEF=30°,∴∠AEA′=180°−30°=150°,×(360°−150°)=105°,∴∠AEP=12当A′E⊥AD,且点P在BC上时,如图⑤所示:∵∠AEA′=90°,×(360°−90°)=135°,∴∠AEP=12综上所述,∠AEP的度数为15°或45°或105°或135°.18.(2023秋·重庆涪陵·八年级统考期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,连结CD,过点B作BE⊥CD交CD的延长线于点E.(1)如图1,若∠BCE=2∠DBE,BE=4,求△ABC的面积;(2)如图2,延长EB到点F使EF=CE,分别连结CF,AF,AF交EC于点G.求证:BF=2EG.(3)如图3,若AC=AD,点M是直线AC上的一个动点,连结MD,将线段MD绕点D顺时针方向旋转90°得到线段M′D,点P是AC边上一点,AP=3PC,Q是线段CD上的一个动点,连结PQ,QM′.当PQ+QM′的值最小时,请直接写出∠PQM′的度数.【思路点拨】(1)过点C作CF⊥AB于点F,利用8字型图,得到∠DCF=∠DBE,易得∠BCE=30°,从而得到AC=BC=2BE=8,再利用面积公式进行计算即可;(2)延长FE到T,使ET=EF,连接AT和CT,证明△ACT≌△BCF(SAS),得到AT=BF,连接TG,推出△AGT 是等腰三角形,过点G作GM⊥AT,得到AT=2MT,根据平行线间距离处处相等,得到MT=EG,从而得到AT=2GE,即可得证;(3)过点D作DE⊥AB交AC的延长线于点E,作点P关于CD的对称点P′,连接AM′,CP′,QP′,P′M′,证明△MDE≌△M′DA(SAS),推出点M在直线AC上运动时,点M′在过点A且垂直于AC的直线上运动,根据轴对称和三角形的三边关系以及垂线段最短,得到P′Q+QM′≥P′M′,得到P′,Q,M′三点共线时,且P′M′⊥AM′时,PQ+QM′有最小值,根据P′M′⊥BC,P′M′∥AC,求出∠CP′M′=45°,证明PQ∥CP′,进而得到∠PQM′=∠C P′M′,即可得出结论.【解题过程】(1)如图1,过点C作CF⊥AB于点F,∵∠ACB=90°,AC=BC,∴∠ABC=∠A=45°,∵CF⊥AB,BE⊥CD,∴∠CFD=∠E=90°,∠BCF=45°,∵∠CDF=∠BDE,∵∠DCF=180°−∠CFD−∠FDC,∠DBE=180°−∠BED−∠BDE,∴∠DCF=∠DBE,∵∠BCE=2∠DBE,∠BCE+∠DCF=∠BCF=45°,。
浙教版中考压轴题精选(一)
1、如图、有一根直尺的短边长为6 cm,长边长为12 cm,还有一块锐角为45°的直角三角形纸
板,它的斜边为12cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边放置在同一直线上,
且D与B重合.将Rt△ABC沿AB方向平移(如图乙),设平移的长度为x cm(),直尺
和三角形纸板的重叠部分(图中的阴影部分)的面积为S cm2
(1)写出当时,S=;
(2)当时,求S关于x的函数关系式.
2、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动
点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动
点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当
其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是
△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
3、已知抛物线与它的对称轴相交于点,与轴交于
,与轴正半轴交于.
(1)求这条抛物线的函数关系式;
(2)设直线交轴于是线段上一动点(点异于),过作轴,交直
线于,过作轴于,求当四边形的面积等于时,求点的坐标.
4、已知抛物线()与轴相交于点
,顶点为.直线分别与轴,轴
相交于两点,并且与直线相交于点.
(1)填空:试用含的代数式分别表示点与的坐标,则;
(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;
(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
6.如图13,二次函数的图像与x轴交于A、B两点,与y
轴交于点C(0,-1),ΔABC的面积=
(1)求该二次函数的关系式;
(2)在该二次函数的图像上是否存在点D,使四边形ABCD为直角梯形?若存在,
求出点D的坐标;若不存在,请说明理由。
6、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,
0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C
出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P
作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段
EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值.
参考答案
1、(1)18cm2
(2)如图,当时
BE=x-6,AD=12-x
∴
=
2、(1)由题意知 CQ=4t,PC=12-
3t,
∴S△PCQ =.
∵△PCQ与△PDQ关于直线PQ对称,
∴y=2S△PCQ .
(2)当时,有PQ∥AB,而AP与BQ不平行,这时四边形PQBA是梯形,∵CA=12,CB=16,CQ=4t, CP=12-3t,
∴,解得t=2.
∴当t=2秒时,四边形PQBA是梯形
3、解:(1)由题意,知点是抛物线的顶点,
,,抛物线的函数关系式为.
(2)由(1)知,点的坐标是.设直线的函数关系式为,
则,,.
由,得,,点的坐标是.
设直线的函数关系式是,
则解得,.
直线的函数关系式是.
设点坐标为,则.
轴,点的纵坐标也是.
设点坐标为,
点在直线上,,.
轴,点的坐标为,
,,,
,,,当时,,
而,,
点坐标为和.
4、(1)
(2)由题意得点与点′关于轴对称,
,
将′的坐标代入得,
(不合题意,舍去),.
,点到轴的距离为3.
,,直线的解析式为,
它与轴的交点为点到轴的距离为.
.
(3)当点在轴的左侧时,若是平行四边形,则平行且等于,把向上平移个单位得到,坐标为,代入抛物线的解析式,
得:
(不合题意,舍去),,
.
当点在轴的右侧时,若是平行四边形,则与互相平分,
.
与关于原点对称,,
将点坐标代入抛物线解析式得:,
(不合题意,舍去),,.
存在这样的点或,能使得以为顶点的四边形是平行四边形.5、解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=
设A(a,0),B(b,0)
AB=b-a==,解得p=,但p<0,所以p=。
所以解析式为:
(2)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9)
②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D()
综上,所以存在两点:(,9)或()。
6、 (1)点A的坐标为(4,8)
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
解得a =-,b=4
∴抛物线的解析式为:y=-x2+4x
(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=
∴PE=AP=t.PB=8-t.
∴点E的坐标为(4+t,8-t).
∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8.
∴EG=-t2+8-(8-t)
=-t2+t.
∵-<0,∴当t=4时,线段EG最长为2.
②共有三个时刻. t1=, t2=,t3= .。